Bibliometric Analysis of the Impact of Soil Erosion on Lake Water Environments in China
Abstract
1. Introduction
2. Overview of the Study Area
3. Data Sources and Research Methods
3.1. Data Source
3.2. Research Methods
4. Analysis of the Basic Characteristics of Literature
4.1. Analysis of the Number of Publications and Governance Changes
4.2. Cooperation Network Analysis
4.2.1. Analysis of National Cooperation Network
4.2.2. Analysis of Major Research Institutions
4.3. Key Words and Hot Frontier Research Analysis
4.3.1. Keyword Clustering Analysis
4.3.2. Analysis of Hot Research Topics
5. Discussion
5.1. Three Gorges Reservoir
5.2. Deposition Rate
5.3. Soil Loss
5.4. Soil Erosion
5.5. CS-137 Technique
5.6. Sensitivity Analysis
5.7. Climate Change
5.8. Nitrogen
5.9. Riparian Strips
5.10. Limitations and Prospects
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guo, J.; Chen, H.; Li, Z.; Xiao, Y.; Fang, F. Bibliometric and hot topic analysis of related literatures on water environment in Three Gorges Reservoir. J. Lake Sci. 2018, 30, 1177–1186. [Google Scholar] [CrossRef]
- Zhang, Z.; Yu, R. Assessment of Soil Erosion from an Ungauged Small Watershed and Its Effect on Lake Ulansuhai, China. Land 2023, 12, 440. [Google Scholar] [CrossRef]
- Ma, L.; Sun, J.; Chen, X. Policy-Driven Changes in Soil Erosion Research: A Bibliometric Analysis of Chinese Studies (1990–2020). Sustainability 2021, 13, 6789. [Google Scholar]
- Zhao, G.; Mu, X.; Tian, P. Evaluating the Effectiveness of Terraces in Reducing Soil Erosion Using CS-137 Technique: Evidence from the Yellow River Basin. Remote Sens. 2020, 12, 1987. [Google Scholar]
- Chen, C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 2006, 57, 359–377. [Google Scholar] [CrossRef]
- Hu, Z.; Liu, C.; Dong, W. Modeling the Impact of Climate Change on Soil Erosion in Arid Northwest China: A Multi-Scenario Approach. Water 2022, 14, 1890. [Google Scholar]
- Yang, R.; Zhang, W.; Liu, X. Freeze-Thaw Cycles and Soil Erosion in Northeastern China: Current Trends and Future Projections. Sustainability 2023, 15, 4567. [Google Scholar]
- Zhang, J.; Wang, Y.; Li, T. Freeze-thaw cycles exacerbate soil erosion in northeastern China: Evidence from field experiments and modeling. Geoderma 2022, 405, 115401. [Google Scholar]
- Gao, J.; Zhang, Y.; Li, X. The Role of Vegetation Buffer Strips in Mitigating Agricultural Pollution in Lake Dianchi Watershed. Sustainability 2021, 13, 10542. [Google Scholar]
- Liu, W.; Wang, Z.; Yao, W. Assessing the Long-Term Effectiveness of Soil Conservation Measures in the Tibetan Plateau Using Google Earth Engine. Remote Sens. 2022, 14, 4321. [Google Scholar]
- Chen, T.; Jiao, J.; Wei, W.; Li, J.; Zhang, Z.; Yang, H.; Ma, H. Spatiotemporal Variation in the Land Use/Cover of Alluvial Fans in Lhasa River Basin, Qinghai–Tibet Plateau. Agriculture 2023, 13, 312. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, J.; Li, Z. Climate Change and Soil Erosion in the Loess Plateau: A CMIP6-Based Scenario Analysis. Sustainability 2022, 14, 10233. [Google Scholar] [CrossRef]
- Deng, X.; Xu, Y.; Han, L. Sediment Deposition Rates in Chinese Lakes: A Synthesis of 137Cs and 210Pb Dating Techniques. Water 2023, 15, 876. [Google Scholar]
- Zupic, I.; Čater, T. Bibliometric methods in management and organization research: A systematic review. Organ. Res. Methods 2015, 18, 429–472. [Google Scholar] [CrossRef]
- Chen, H.; Huang, Y.; Xu, L. Sensitivity Analysis of SWAT Model Parameters in Predicting Sediment Yield for Karst Catchments. Water 2022, 14, 312. [Google Scholar]
- Wang, L.; Fang, H.; Cai, Q. Effects of land use change on soil erosion and lake sedimentation in the Yangtze River Basin. Catena 2020, 187, 104319. [Google Scholar]
- Ma, J.; Li, Z.; Sun, B.; Ma, B. Mechanism and modeling of different plant root effects on soil detachment rate. Catena 2022, 212, 106109. [Google Scholar] [CrossRef]
- Wen, L.; Peng, Y.; Zhou, Y.; Cai, G.; Lin, Y.; Li, B. Study on soil erosion and its driving factors from the perspective of landscape in Xiushui watershed, China. Sci. Rep. 2023, 13, 8182. [Google Scholar] [CrossRef]
- Lin, C.; Ma, R.; He, B. Identifying Watershed Regions Sensitive to Soil Erosion and Contributing to Lake Eutrophication—A Case Study in the Taihu Lake Basin (China). Int. J. Environ. Res. Public Health 2016, 13, 77. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Q.; Yao, J. Sediment and nutrient transport from the Three Gorges Reservoir to downstream lakes: A decadal assessment. J. Hydrol. 2023, 617, 128889. [Google Scholar]
- Wu, L.; Long, T.; Liu, X. Modeling the impacts of climate change and land use change on soil erosion and lake water quality. Ecol. Model. 2022, 464, 109827. [Google Scholar]
- Gao, H.; Li, Z.; Jia, L. Remote sensing of lake water quality in China: Advances and challenges. ISPRS J. Photogramm. Remote Sens. 2021, 174, 111–125. [Google Scholar]
- Li, S.; Wang, F.; Zhang, Y. Riparian Buffer Strips for Controlling Non-Point Pollution in Lake Taihu: A Remote Sensing and Modeling Approach. Water 2019, 11, 2468. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, L.; Yang, H. Impacts of Soil Erosion on Water Quality in the Three Gorges Reservoir: A Sediment Flux Perspective. Water 2023, 15, 1254. [Google Scholar]
- Liu, B.; Yang, G. Impacts of land use and climate change on soil erosion in the Three Gorges Reservoir area, China. Environ. Geol. 2009, 57, 1283–1291. [Google Scholar]
- Tang, Q.; Bao, Y.; He, X. Sediment yield and deposition in the Three Gorges Reservoir: A review of monitoring and modeling approaches. Water Resour. Res. 2022, 58, e2021WR030331. [Google Scholar]
- Liu, J.; Zheng, C.; Wang, X. Using 137Cs and 210Pbex to trace soil erosion and lake sedimentation in the Tibetan Plateau. Quat. Geochronol. 2022, 67, 101229. [Google Scholar]
- Sun, W.; Shao, Q.; Yang, P. Assessing the impacts of terraces on soil erosion control using 137Cs measurements in the Loess Plateau, China. Soil Tillage Res. 2018, 176, 103–111. [Google Scholar]
- Deng, L.; Shangguan, Z.; Li, R. Effects of vegetation restoration on soil erosion control in China’s Loess Plateau: A meta-analysis. Prog. Phys. Geogr. Earth Environ. 2022, 46, 66–91. [Google Scholar]
- Zhou, Y.; Li, Q.; Wang, S. Integrating UAV and Satellite Data for Assessing the Impact of Land Use Change on Lake Eutrophication. Remote Sens. 2020, 12, 4012. [Google Scholar]
- Wu, J.; Li, P.; Qian, H. Heavy Metal Contamination in Lake Sediments: A Case Study of the Interaction Between Soil Erosion and Industrial Activities. Int. J. Environ. Res. Public Health 2021, 18, 9345. [Google Scholar]
- Zhang, L.; Wang, Q.; Smith, P. Nitrogen transport from agricultural soils to lakes: A review of processes and controls in Chinese watersheds. Environ. Pollut. 2015, 203, 145–156. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Huang, Y.; Ma, Y. Nitrogen and phosphorus losses from agricultural soils to lakes in China: A meta-analysis. Sci. Total Environ. 2021, 758, 143653. [Google Scholar]
- Zhang, K.; Wei, X.; Zhou, J. Nitrogen and Phosphorus Migration from Agricultural Land to Lakes: A Meta-Analysis of Chinese Case Studies. Int. J. Environ. Res. Public Health 2021, 18, 7890. [Google Scholar]
- Cao, X.; Hu, W.; Wang, X. Efficacy of riparian buffer strips in reducing nitrogen loading to lakes: A meta-analysis of Chinese studies. Ecol. Eng. 2016, 94, 402–410. [Google Scholar]
- He, M.; Zhang, G.; Tang, C. Using δ15N to trace nitrogen sources in sediments of Dianchi Lake, China. Sci. Total Environ. 2011, 409, 3654–3661. [Google Scholar]
- Henriques, M.; Mcvicar, T.R.; Holland, K.L.; Daly, E. Monitoring spatially heterogeneous riparian vegetation around permanent waterholes: A method to integrate LiDAR and Landsat data for enhanced ecological interpretation of Landsat fPAR time-series. Remote Sens. Environ. 2024, 315, 114382. [Google Scholar] [CrossRef]
- Jordan, T.E.; Weller, D.E. Riparian buffer width, vegetation, and nutrient retention: A review of regional and local scale studies. J. Environ. Qual. 2000, 29, 649–658. [Google Scholar]
Frequency | Betweenness Centrality | Earliest Year of Occurrence | Country |
---|---|---|---|
209 | 1 | 1998 | Peoples R. China |
23 | 0 | 2002 | USA |
14 | 0.85 | 2000 | England |
12 | 0.44 | 2003 | Canada |
6 | 0.11 | 2012 | Germany |
6 | 0.13 | 2007 | Australia |
5 | 0.02 | 2004 | Japan |
4 | 0.25 | 2020 | Italy |
3 | 0.1 | 2017 | Sweden |
3 | 0.13 | 2002 | Singapore |
Frequency | Betweenness Centrality | Earliest Year of Occurrence | Organ |
---|---|---|---|
93 | 0.7 | 2001 | Chinese Academy of Sciences |
32 | 0.29 | 2002 | Nanjing Institute of Geography & Limnology |
13 | 0.31 | 2001 | Beijing Normal University |
13 | 0.22 | 2002 | Nanjing University |
13 | 0.15 | 2012 | University of Chinese Academy of Sciences |
8 | 0.01 | 2006 | Chinese Research Academy of Environmental Sciences |
7 | 0.05 | 2010 | China University of Geosciences |
5 | 0.23 | 2002 | Institute of Mountain Hazards & Environment |
5 | 0.09 | 2010 | Institute of Soil & Water Conservation (ISWC) |
5 | 0.02 | 2011 | Hohai University |
5 | 0.02 | 2003 | Institute of Geographic Sciences & Natural Resources Research |
Cluster Number | Tag Clustering | Typical Keywords | Contour Steps | Scale |
---|---|---|---|---|
#0 | three gorges reservoir | sediment, water quality, heavy metals | 0.82 | 28 |
#1 | deposition rate | cesium-137, accumulation, dating | 0.79 | 22 |
#2 | soil loss | erosion, RUSLE, loess plateau | 0.85 | 19 |
#3 | soil erosion | nonpoint source pollution, land use, watershed | 0.81 | 18 |
#5 | cs-137 technique | dating, sedimentation, tracer | 0.77 | 15 |
#8 | sensitivity analysis | modeling, parameters, uncertainty | 0.83 | 12 |
#9 | climate change | carbon cycle, temperature, extreme events | 0.80 | 10 |
#11 | nitrogen | eutrophication, phosphorus, algal bloom | 0.78 | 9 |
#10 | riparian strips | buffer zone, vegetation, filtration | 0.76 | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mei, X.; Yang, G.; Su, M.; Chen, T.; Yang, H.; Wang, S. Bibliometric Analysis of the Impact of Soil Erosion on Lake Water Environments in China. Water 2025, 17, 2592. https://doi.org/10.3390/w17172592
Mei X, Yang G, Su M, Chen T, Yang H, Wang S. Bibliometric Analysis of the Impact of Soil Erosion on Lake Water Environments in China. Water. 2025; 17(17):2592. https://doi.org/10.3390/w17172592
Chicago/Turabian StyleMei, Xingshuai, Guangyu Yang, Mengqing Su, Tongde Chen, Haizhen Yang, and Sen Wang. 2025. "Bibliometric Analysis of the Impact of Soil Erosion on Lake Water Environments in China" Water 17, no. 17: 2592. https://doi.org/10.3390/w17172592
APA StyleMei, X., Yang, G., Su, M., Chen, T., Yang, H., & Wang, S. (2025). Bibliometric Analysis of the Impact of Soil Erosion on Lake Water Environments in China. Water, 17(17), 2592. https://doi.org/10.3390/w17172592