Spatio-Temporal Trends of Monthly and Annual Precipitation in Guanajuato, Mexico
Abstract
1. Introduction
- Apply a comprehensive suite of absolute homogeneity tests (Pettitt, SNHT, Buishand, and von Neumann) to identify and characterize non-climatic breaks in precipitation series across Guanajuato.
- Implement the Multiple Imputation by Chained Equations (MICE) algorithm with Predictive Mean Matching (PMM) to handle missing data while preserving the statistical properties and temporal structure of precipitation series.
- Employ the Trend-Free Pre-Whitening Mann–Kendall (TFPW-MK) test on homogenized and imputed series to reliably detect monotonic trends while controlling for serial correlation.
- Quantify the magnitude and direction of any significant trends using Sen’s slope estimator.
- Analyze the spatial patterns of precipitation trends across Guanajuato and discuss their implications for water management policy in the context of the state’s severe water crisis.
2. Study Area
3. Data and Methodology
3.1. Data Source and Preprocessing
Spatial Analysis
3.2. Homogeneity Tests
- Useful (Class 1): 0–1 rejections. Variations are attributable to natural climate variability.
- Doubtful (Class 2): 2 rejections. Moderate inhomogeneities are present, requiring verification.
- Suspicious (Class 3): 3 rejections. Significant alterations invalidate the series for reliable analysis.
Test Name | Type | Null Hypothesis () | Statistic and Breakpoint Detection | Sensitivity |
---|---|---|---|---|
Pettitt [44] | Non-parametric | The series is homogeneous. | Identifies an abrupt shift in the median. The test statistic K is the maximum absolute value of , where are ranks. The most probable break year is at . | Most sensitive to breaks near the middle of the series. |
SNHT [11] | Parametric | The series is homogeneous. | Detects a shift in the mean. The test statistic is the maximum of , where and are normalized means before and after year k. | Most sensitive to breaks near the beginning and end of the series. |
Buishand [45] | Parametric | The series is homogeneous. | Evaluates cumulative deviations from the mean. The adjusted partial sum is . The rescaled range is the test statistic. A break is indicated near the point where reaches a maximum or minimum. | Most sensitive to breaks near the middle of the series. |
Von Neumann [46] | Non-parametric | The series is homogeneous and random. | Evaluates randomness via the ratio . For a homogeneous series, . Values significantly different from 2 indicate non-homogeneity. | Sensitive to any pattern affecting the overall randomness of the series (gradual or abrupt). |
3.3. Trend Detection Analysis
- Slope Estimation: The magnitude of the trend () is estimated using Sen’s robust slope estimator [23]:
- Detrending: The linear trend is removed from the original time series to create a detrended series :
- Pre-Whitening: The first-order autocorrelation coefficient () is computed from the detrended series and used to remove the serial correlation, creating a pre-whitened series of residuals :
- Trend Reincorporation: The estimated trend is added back to the pre-whitened residuals to create the TFPW-adjusted series , which should be free of autocorrelation but contain the trend signal:
- Final Trend Test: The standard Mann–Kendall test is applied to this final TFPW-adjusted series () to assess the statistical significance of the trend. Kendall’s and Sen’s slope are also computed from this adjusted series.
4. Results and Discussion
4.1. Descriptive Statistics and Imputation Validation
Station | Series | Mean (mm) | Std (mm) | CV (%) | S | K |
---|---|---|---|---|---|---|
11004 (Irapuato) | Original | 33.2 | 55.1 | 166 | 2.05 | 7.48 |
Imputation | 32.1 | 53.7 | 167 | 2.11 | 7.88 | |
11053 (S.L. Paz) | Original | 39.7 | 44.5 | 112 | 1.43 | 4.82 |
Imputation | 39.2 | 44.0 | 112 | 1.40 | 4.76 | |
11141 (Guanajuato) | Original | 76.6 | 97.4 | 127 | 1.72 | 5.86 |
Imputation | 75.9 | 97.1 | 128 | 1.73 | 5.92 |
4.2. Monthly Distribution and Seasonal Regime
4.3. Homogeneity Assessment
4.3.1. Overall Results and Temporal Patterns
- Monthly analysis:In total, 60 stations (93.8%) were classified as useful, 3 stations (4.7%) as doubtful(11020, 11143, 11146), and 2 stations (3.1%) as suspicious (11004, 11061).
- Annual analysis: In total, 58 stations (85.9%) were classified as useful, 5 stations (7.8%) as doubtful (11001, 11045, 11053, 11055, 11143), and 4 stations (6.3%) as suspicious (11020, 11025, 11061, 11072).
Station | Pettitt Test | Buishand Range Test | SNHT Test | von Neumann Ratio Test_Stat | Rejections | Classification | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
p | Year | Month | p | Year | Month | p | Year | Month | ||||
11001 | 0.7608 | 2000 | 04 | 0.6649 | 2001 | 04 | 0.7701 | 2001 | 04 | 0.9623 | 0 | Useful |
11002 | 0.7838 | 2013 | 04 | 0.7798 | 2001 | 05 | 0.6202 | 2016 | 05 | 0.8022 | 0 | Useful |
11003 | 0.2229 | 2000 | 04 | 0.3904 | 2000 | 04 | 0.4423 | 2000 | 04 | 0.9626 | 0 | Useful |
11004 | 0.0080 | 2011 | 06 | 0.0000 | 1992 | 10 | 0.0058 | 2012 | 06 | 0.9586 | 3 | Suspicious |
11006 | 1.0000 | 2000 | 04 | 0.3698 | 1998 | 05 | 0.8774 | 1998 | 05 | 1.0067 | 0 | Useful |
11007 | 0.5418 | 2000 | 04 | 0.7932 | 2000 | 04 | 0.8655 | 2000 | 04 | 0.9813 | 0 | Useful |
11009 | 0.5113 | 2000 | 04 | 0.4604 | 2001 | 05 | 0.6672 | 2001 | 05 | 0.9728 | 0 | Useful |
11010 | 0.0653 | 2003 | 04 | 0.0590 | 2002 | 05 | 0.1431 | 2002 | 05 | 0.9596 | 0 | Useful |
11011 | 0.2321 | 2000 | 04 | 0.5748 | 2002 | 05 | 0.3205 | 2013 | 05 | 1.1129 | 0 | Useful |
11012 | 0.5307 | 1993 | 09 | 0.0251 | 1996 | 10 | 0.2391 | 2013 | 05 | 0.8985 | 1 | Useful |
11013 | 0.5071 | 2002 | 05 | 0.6406 | 2002 | 05 | 0.9585 | 2002 | 05 | 1.0443 | 0 | Useful |
11014 | 0.3630 | 2012 | 01 | 0.2144 | 2001 | 05 | 0.1390 | 2013 | 05 | 1.0261 | 0 | Useful |
11015 | 0.3288 | 2013 | 04 | 0.4615 | 2001 | 05 | 0.1906 | 2013 | 04 | 1.1969 | 0 | Useful |
11020 | 0.2979 | 2001 | 04 | 0.0255 | 2001 | 04 | 0.0201 | 2001 | 04 | 0.9564 | 2 | Doubtful |
11021 | 0.5071 | 1986 | 11 | 0.2020 | 2002 | 05 | 0.6093 | 2002 | 05 | 0.9434 | 0 | Useful |
11022 | 1.0000 | 2000 | 04 | 0.8591 | 2001 | 05 | 0.9875 | 2016 | 04 | 0.9213 | 0 | Useful |
11023 | 0.7111 | 2001 | 04 | 0.5888 | 2001 | 05 | 0.4511 | 2016 | 05 | 0.9837 | 0 | Useful |
11025 | 0.1341 | 2001 | 04 | 0.1641 | 2001 | 04 | 0.1535 | 2001 | 04 | 0.9937 | 0 | Useful |
11028 | 0.6517 | 2013 | 04 | 0.9574 | 2002 | 06 | 0.5899 | 2013 | 05 | 0.9384 | 0 | Useful |
11031 | 0.6811 | 1986 | 10 | 0.8291 | 2001 | 05 | 0.9094 | 2016 | 04 | 0.8492 | 0 | Useful |
11033 | 0.2776 | 2000 | 04 | 0.5848 | 2001 | 04 | 0.6522 | 2001 | 04 | 1.0771 | 0 | Useful |
11034 | 0.7454 | 2013 | 05 | 0.9872 | 2013 | 05 | 0.6139 | 2013 | 05 | 0.9134 | 0 | Useful |
11035 | 0.4355 | 2001 | 03 | 0.6231 | 2001 | 05 | 0.5558 | 2013 | 05 | 0.9170 | 0 | Useful |
11036 | 0.2367 | 2000 | 04 | 0.7088 | 2001 | 05 | 0.3467 | 2016 | 05 | 0.9323 | 0 | Useful |
11040 | 0.6147 | 2001 | 04 | 0.5416 | 2001 | 04 | 0.4420 | 2016 | 06 | 0.9556 | 0 | Useful |
11041 | 0.2930 | 2000 | 04 | 0.3682 | 2013 | 05 | 0.2294 | 2015 | 04 | 1.0297 | 0 | Useful |
11042 | 0.1150 | 1994 | 10 | 0.0423 | 1994 | 10 | 0.5658 | 1994 | 10 | 1.1312 | 1 | Useful |
11045 | 0.2882 | 2009 | 04 | 0.1774 | 2001 | 04 | 0.0620 | 2016 | 06 | 1.1051 | 0 | Useful |
11048 | 1.0000 | 2013 | 05 | 0.8860 | 2003 | 05 | 0.9731 | 2003 | 05 | 1.0277 | 0 | Useful |
11049 | 0.7233 | 2013 | 05 | 0.8786 | 2003 | 05 | 0.5449 | 2013 | 05 | 1.1225 | 0 | Useful |
11050 | 0.2233 | 2013 | 04 | 0.4236 | 2002 | 05 | 0.0438 | 2013 | 05 | 1.2374 | 1 | Useful |
11051 | 0.4297 | 2003 | 05 | 0.6579 | 2002 | 05 | 0.8506 | 2002 | 05 | 1.2211 | 0 | Useful |
11052 | 1.0000 | 2000 | 04 | 0.7760 | 2001 | 05 | 0.7439 | 2016 | 05 | 0.8597 | 0 | Useful |
11053 | 0.2780 | 2013 | 05 | 0.4286 | 2006 | 06 | 0.1139 | 2013 | 05 | 1.2288 | 0 | Useful |
11055 | 0.5228 | 2002 | 04 | 0.4873 | 2002 | 05 | 0.4867 | 2002 | 05 | 0.9996 | 0 | Useful |
11061 | 0.0002 | 2002 | 05 | 0.0000 | 2002 | 05 | 0.0063 | 2002 | 05 | 1.0358 | 3 | Suspicious |
11066 | 1.0000 | 1993 | 09 | 0.3950 | 2003 | 05 | 0.5112 | 2003 | 05 | 1.0672 | 0 | Useful |
11070 | 1.0000 | 2000 | 05 | 0.9732 | 1998 | 05 | 0.9030 | 2015 | 02 | 0.9991 | 0 | Useful |
11071 | 0.6612 | 1996 | 10 | 0.9752 | 2003 | 05 | 0.9936 | 2006 | 06 | 0.8752 | 0 | Useful |
11072 | 0.2096 | 2001 | 04 | 0.3552 | 2002 | 05 | 0.3484 | 2002 | 05 | 1.0009 | 0 | Useful |
11077 | 0.3430 | 1992 | 11 | 0.5890 | 2003 | 04 | 0.9058 | 2014 | 04 | 0.8743 | 0 | Useful |
11078 | 1.0000 | 2013 | 05 | 0.9970 | 1991 | 05 | 0.9192 | 2016 | 05 | 0.9187 | 0 | Useful |
11079 | 1.0000 | 2013 | 05 | 0.8461 | 2003 | 05 | 0.6020 | 2013 | 05 | 0.9453 | 0 | Useful |
11083 | 0.7361 | 2013 | 05 | 0.6626 | 2006 | 03 | 0.6754 | 2006 | 03 | 1.2606 | 0 | Useful |
11085 | 0.3737 | 1995 | 09 | 0.8362 | 2002 | 06 | 0.4764 | 2016 | 05 | 1.1576 | 0 | Useful |
11095 | 0.4637 | 2001 | 04 | 0.6322 | 2001 | 05 | 0.6632 | 2001 | 05 | 0.9698 | 0 | Useful |
11099 | 0.7846 | 2001 | 04 | 0.6236 | 2001 | 05 | 0.5913 | 2014 | 04 | 0.9899 | 0 | Useful |
11103 | 0.4779 | 2000 | 04 | 0.7716 | 2001 | 04 | 0.9343 | 2001 | 04 | 1.0574 | 0 | Useful |
11116 | 0.3121 | 2000 | 04 | 0.8112 | 2003 | 05 | 0.6400 | 2012 | 05 | 0.9389 | 0 | Useful |
11122 | 1.0000 | 2000 | 04 | 0.8498 | 2001 | 04 | 0.9204 | 2016 | 07 | 0.9965 | 0 | Useful |
11124 | 0.3072 | 2000 | 04 | 0.5604 | 2001 | 05 | 0.6236 | 2001 | 05 | 0.9388 | 0 | Useful |
11134 | 0.7514 | 2013 | 04 | 0.6547 | 2001 | 05 | 0.6365 | 2016 | 05 | 0.9516 | 0 | Useful |
11136 | 0.7245 | 2000 | 04 | 0.6387 | 2001 | 05 | 0.8665 | 2001 | 05 | 0.9757 | 0 | Useful |
11140 | 0.1178 | 2001 | 04 | 0.0609 | 2003 | 06 | 0.7120 | 2003 | 06 | 1.2173 | 0 | Useful |
11141 | 0.0535 | 2002 | 05 | 0.0699 | 2002 | 05 | 0.0036 | 2013 | 05 | 0.9906 | 1 | Useful |
11142 | 1.0000 | 2013 | 05 | 0.8642 | 2001 | 05 | 0.9166 | 2013 | 05 | 0.8537 | 0 | Useful |
11143 | 0.1460 | 2002 | 04 | 0.0074 | 2002 | 04 | 0.0140 | 2014 | 04 | 0.9612 | 2 | Doubtful |
11144 | 0.4335 | 1986 | 09 | 0.1133 | 1994 | 10 | 0.4938 | 2016 | 05 | 1.0878 | 0 | Useful |
11145 | 0.3740 | 1992 | 11 | 0.9300 | 2001 | 05 | 0.9684 | 2015 | 02 | 0.9526 | 0 | Useful |
11146 | 0.0484 | 1987 | 09 | 0.0012 | 1992 | 11 | 0.0524 | 2012 | 05 | 0.9797 | 2 | Doubtful |
11148 | 0.7397 | 1993 | 09 | 0.9104 | 2002 | 05 | 0.8980 | 2015 | 02 | 1.1139 | 0 | Useful |
11149 | 0.4358 | 1992 | 11 | 0.4387 | 1986 | 10 | 0.5667 | 2016 | 04 | 0.8374 | 0 | Useful |
11151 | 0.9399 | 2001 | 04 | 0.7760 | 2001 | 04 | 0.5884 | 2015 | 04 | 0.9412 | 0 | Useful |
11161 | 0.3240 | 2001 | 03 | 0.4353 | 2001 | 05 | 0.5528 | 2001 | 05 | 1.3611 | 0 | Useful |
11166 | 0.4882 | 2000 | 04 | 0.7591 | 2002 | 05 | 0.6868 | 2016 | 05 | 0.7817 | 0 | Useful |
Station | Pettitt | Buishand | SNHT | VN_Stat | Rejections | Classification | |||
---|---|---|---|---|---|---|---|---|---|
p | Year | p | Year | p | Year | ||||
11001 | 0.0750 | 2000 | 0.0389 | 2000 | 0.0479 | 2000 | 1.6329 | 2 | Doubtful |
11002 | 0.1604 | 2000 | 0.1273 | 2000 | 0.2343 | 2000 | 1.7064 | 0 | Useful |
11003 | 0.1339 | 1999 | 0.2510 | 1999 | 0.1662 | 2000 | 1.5900 | 0 | Useful |
11004 | 0.1846 | 1992 | 0.0003 | 1992 | 0.0876 | 2011 | 1.0559 | 1 | Useful |
11006 | 0.3202 | 1997 | 0.2328 | 1997 | 0.6590 | 1997 | 1.7210 | 0 | Useful |
11007 | 0.2045 | 1999 | 0.5204 | 1999 | 0.4261 | 1999 | 2.0445 | 0 | Useful |
11009 | 0.3300 | 2000 | 0.2982 | 2000 | 0.3918 | 2000 | 2.0714 | 0 | Useful |
11010 | 0.0515 | 2001 | 0.0336 | 2001 | 0.0674 | 2001 | 1.2890 | 1 | Useful |
11011 | 0.1069 | 2001 | 0.3623 | 2001 | 0.2200 | 2012 | 1.8873 | 0 | Useful |
11012 | 0.1494 | 1996 | 0.0021 | 1996 | 0.2048 | 2012 | 1.0479 | 1 | Useful |
11013 | 0.4047 | 2001 | 0.1280 | 2001 | 0.4998 | 2001 | 1.9603 | 0 | Useful |
11014 | 0.1846 | 2000 | 0.1368 | 2000 | 0.1375 | 2012 | 1.7040 | 0 | Useful |
11015 | 0.2414 | 2000 | 0.1560 | 2000 | 0.0683 | 2012 | 1.6611 | 0 | Useful |
11020 | 0.0089 | 2000 | 0.0120 | 2000 | 0.0053 | 2000 | 1.2791 | 3 | Suspicious |
11021 | 0.3714 | 2001 | 0.0721 | 2001 | 0.3184 | 2001 | 1.4130 | 0 | Useful |
11022 | 1.0000 | 2000 | 0.5375 | 2000 | 0.9440 | 1990 | 1.7856 | 0 | Useful |
11023 | 0.0880 | 2000 | 0.1190 | 2000 | 0.0666 | 2000 | 1.4807 | 0 | Useful |
11025 | 0.0089 | 2000 | 0.0366 | 2000 | 0.0188 | 2000 | 1.4919 | 3 | Suspicious |
11028 | 0.2045 | 2001 | 0.5634 | 2001 | 0.0784 | 2012 | 1.6122 | 0 | Useful |
11031 | 0.9709 | 1986 | 0.2862 | 1986 | 0.6980 | 1986 | 1.8821 | 0 | Useful |
11031 | 0.9709 | 2002 | 0.2862 | 1986 | 0.6980 | 1986 | 1.8821 | 0 | Useful |
11033 | 0.0585 | 2000 | 0.1911 | 2000 | 0.1480 | 2000 | 2.0530 | 0 | Useful |
11034 | 0.1389 | 2000 | 0.6024 | 2011 | 0.1180 | 2011 | 2.1682 | 0 | Useful |
11035 | 0.1029 | 2000 | 0.1870 | 2000 | 0.1812 | 2000 | 1.9676 | 0 | Useful |
11036 | 0.0380 | 2000 | 0.1869 | 2000 | 0.1184 | 2000 | 1.3234 | 1 | Useful |
11040 | 0.0453 | 2000 | 0.2374 | 2000 | 0.1417 | 2000 | 1.5768 | 1 | Useful |
11041 | 0.6936 | 2012 | 0.0983 | 2012 | 0.0340 | 2014 | 1.8077 | 1 | Useful |
11042 | 0.4903 | 1994 | 0.0355 | 1994 | 0.4252 | 1994 | 1.4682 | 1 | Useful |
11045 | 0.0099 | 2000 | 0.0761 | 2000 | 0.0299 | 2012 | 1.6996 | 2 | Doubtful |
11048 | 0.6936 | 2002 | 0.6434 | 2002 | 0.7570 | 2002 | 1.8324 | 0 | Useful |
11049 | 0.3400 | 2001 | 0.5671 | 2001 | 0.3615 | 2012 | 1.4739 | 0 | Useful |
11050 | 0.3823 | 2001 | 0.4083 | 2001 | 0.0584 | 2012 | 1.2127 | 0 | Useful |
11051 | 0.1548 | 2001 | 0.2193 | 2001 | 0.3394 | 2001 | 1.4704 | 0 | Useful |
11052 | 0.1722 | 2000 | 0.4502 | 2000 | 0.3151 | 2000 | 2.0403 | 0 | Useful |
11053 | 0.0363 | 2005 | 0.0584 | 2005 | 0.0030 | 2014 | 1.3058 | 2 | Doubtful |
11055 | 0.0317 | 2000 | 0.0867 | 2000 | 0.0488 | 2001 | 1.5595 | 2 | Doubtful |
11061 | 0.0189 | 2001 | 0.0006 | 2001 | 0.0303 | 2001 | 0.9571 | 3 | Suspicious |
11066 | 0.0636 | 2002 | 0.0747 | 2002 | 0.0902 | 2002 | 1.8167 | 0 | Useful |
11070 | 1.0000 | 2000 | 0.9059 | 2000 | 0.4080 | 2014 | 2.2872 | 0 | Useful |
11071 | 1.0000 | 2005 | 0.6763 | 2005 | 0.6526 | 2005 | 1.7745 | 0 | Useful |
11072 | 0.0303 | 2001 | 0.0297 | 2001 | 0.0128 | 2001 | 1.7973 | 3 | Suspicious |
11077 | 0.5167 | 2000 | 0.1866 | 2002 | 0.5756 | 2002 | 1.7896 | 0 | Useful |
11078 | 1.0000 | 1990 | 0.8768 | 1990 | 0.5542 | 1982 | 2.0119 | 0 | Useful |
11079 | 0.4903 | 2002 | 0.4126 | 2002 | 0.2710 | 2012 | 2.1581 | 0 | Useful |
11083 | 0.1290 | 2005 | 0.0788 | 2005 | 0.0689 | 2005 | 1.6400 | 0 | Useful |
11085 | 0.4047 | 2001 | 0.3998 | 2001 | 0.3963 | 2014 | 1.9099 | 0 | Useful |
11095 | 0.0494 | 2000 | 0.1670 | 2000 | 0.0969 | 2000 | 1.5729 | 1 | Useful |
11099 | 0.0585 | 2000 | 0.0814 | 2000 | 0.0748 | 2000 | 2.0725 | 0 | Useful |
11103 | 0.2575 | 2000 | 0.4295 | 2000 | 0.4833 | 2000 | 1.7137 | 0 | Useful |
11116 | 0.0750 | 2000 | 0.2974 | 2000 | 0.1688 | 2011 | 1.9619 | 0 | Useful |
11122 | 0.5167 | 2000 | 0.4674 | 2000 | 0.6528 | 2000 | 1.7788 | 0 | Useful |
11124 | 0.0538 | 2000 | 0.0973 | 2000 | 0.0876 | 2000 | 1.1651 | 0 | Useful |
11134 | 0.1029 | 2000 | 0.2190 | 2000 | 0.1755 | 2000 | 1.5637 | 0 | Useful |
11136 | 0.1722 | 2000 | 0.2620 | 2000 | 0.3358 | 2000 | 1.7684 | 0 | Useful |
11140 | 0.5581 | 2000 | 0.0503 | 2000 | 0.6254 | 2002 | 1.1746 | 0 | Useful |
11140 | 0.5581 | 2002 | 0.0503 | 2000 | 0.6254 | 2002 | 1.1746 | 0 | Useful |
11141 | 0.0561 | 2001 | 0.0699 | 2001 | 0.0028 | 2011 | 1.1533 | 1 | Useful |
11142 | 0.3300 | 2000 | 0.2622 | 2000 | 0.4678 | 2000 | 2.1256 | 0 | Useful |
11143 | 0.0720 | 2001 | 0.0192 | 2001 | 0.0477 | 2001 | 0.8255 | 2 | Doubtful |
11144 | 0.3300 | 1994 | 0.0682 | 1994 | 0.4732 | 1994 | 1.3211 | 0 | Useful |
11145 | 0.9524 | 2001 | 0.6752 | 2001 | 0.5009 | 2014 | 2.1121 | 0 | Useful |
11146 | 0.1722 | 1992 | 0.0003 | 1992 | 0.0772 | 2011 | 0.7256 | 1 | Useful |
11148 | 0.6014 | 1992 | 0.5855 | 2001 | 0.5338 | 2014 | 1.7473 | 0 | Useful |
11149 | 0.5867 | 1986 | 0.3546 | 1986 | 0.4007 | 1986 | 1.7754 | 0 | Useful |
11151 | 0.3934 | 2000 | 0.5070 | 2001 | 0.2419 | 2014 | 1.9125 | 0 | Useful |
11161 | 0.3012 | 2001 | 0.3360 | 2002 | 0.2926 | 2002 | 1.8156 | 0 | Useful |
11166 | 0.2336 | 2001 | 0.3584 | 2001 | 0.2435 | 2001 | 1.5454 | 0 | Useful |
4.3.2. Comparison Between Monthly and Annual Analyses
- Stations changing from useful (monthly) to doubtful (annual): 11001 and 11055. The annual aggregation revealed breakpoints masked by seasonal variability at the monthly scale.
- Stations changing from doubtful (monthly) to useful (annual): 11146. Annual smoothing reduced intra-annual variability, making previously detected breaks statistically insignificant.
- Consistently suspicious stations: 11020 and 11061 exhibited clear, unambiguous breakpoints regardless of temporal aggregation.
4.3.3. Implications for Trend Analysis
4.4. Trend Analysis
4.4.1. Core Finding: Absence of Significant Trends
- Direction of non-significant tendencies: Among the 65 stations analyzed, 49 stations (75.4%) showed positive values (range: 0.0016 to 0.0520), suggesting a slight non-significant increasing tendency. The remaining 16 stations (24.6%) exhibited negative values (range: −0.0377 to −0.0008), indicating a non-significant decreasing tendency.
- Negligible magnitude of changes: The Sen’s Slope estimates, representing the actual rate of change, were exceptionally small—ranging from −0.0029 to 0.0111 mm/year across all stations. These values are statistically indistinguishable from zero and hold no practical significance for water resources management.
- Statistical insignificance: All p-values were >0.05, confirming the absence of statistical significance across the entire network.
4.4.2. Statistical Distribution of Trend Magnitudes
4.4.3. Spatial and Altitudinal Patterns
4.4.4. Comparison with Regional Studies and Methodological Implications
4.5. Implications of Precipitation Stability for Water Management in Guanajuato
4.5.1. The Central Finding: A Management Crisis, Not a Climate Crisis
4.5.2. Context of Water Scarcity
4.5.3. Strategic Implications for Management
- Water capture and storage infrastructure: Maximizing the capture of high-volume, short-duration rainfall events is essential to recharge aquifers and support irrigation during the dry season.
- Soil conservation practices: Reducing erosion is crucial for maintaining agricultural productivity and preventing siltation in reservoirs.
- Demand management and efficient irrigation: The only viable path to sustainability is a drastic reduction in water consumption, particularly in the agricultural sector, through modernized irrigation systems and policy reforms.
5. Conclusions
- Data Quality and Homogeneity are Prerequisites: The multi-test homogenization approach (Pettitt, SNHT, Buishand, von Neumann) proved essential, identifying that 93.8% of monthly series were homogeneous and suitable for trend analysis. Critically, it detected systematic breakpoints coinciding with documented instrumental changes (2000–2003; 2011–2014), underscoring that homogenization is a non-negotiable first step to avoid spurious trend detection in this region.
- Stability is the Norm: The application of the Trend-Free Pre-Whitening Mann–Kendall (TFPW-MK) test to the homogenized series yielded a definitive result: no statistically significant monotonic trends were found in any of the 65 monthly precipitation series. This demonstrates a stable precipitation regime over the 36-year period, a finding robust against the significant serial correlation () prevalent in the data.
- The Water Crisis is a Management Crisis: The conclusive evidence of precipitation stability means the severe water crisis and aquifer overexploitation in Guanajuato cannot be attributed to climate-driven reductions in rainfall. Instead, the crisis is overwhelmingly driven by socio-economic factors, particularly unsustainable agricultural water use. This finding necessitates a fundamental shift in policy from passive adaptation to anticipated climate changes to active and urgent demand-side management.
- A Robust Protocol for Arid Regions: The integrated methodology—combining MICE imputation, multi-test homogenization, and TFPW-MK trend analysis—proved essential for reliable climate assessment in a semi-arid, data-scarce region. This protocol effectively mitigates the risks of false trends from autocorrelation and non-climatic inhomogeneities and is recommended as a standard for similar hydroclimatic studies.
- Future Research Directions: Given the stability of precipitation, future research must focus on other drivers of water stress, such as temperature, evapotranspiration, land-use change, and socio-economic dynamics. Developing integrated models that couple these factors with groundwater depletion is paramount for crafting effective mitigation strategies for Guanajuato’s water scarcity.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Descriptive Statistics Before and After Imputation
Station | Series | Mean | STD | VC | S | K |
---|---|---|---|---|---|---|
11001 | Imputed | 55.756 | 72.350 | 129.762 | 1.386 | 4.119 |
Original | 55.881 | 72.388 | 129.540 | 1.383 | 4.110 | |
11002 | Imputed | 63.137 | 78.258 | 123.950 | 1.372 | 4.401 |
Original | 63.137 | 78.258 | 123.950 | 1.372 | 4.401 | |
11003 | Imputed | 53.824 | 73.979 | 137.447 | 1.568 | 4.885 |
Original | 53.945 | 74.022 | 137.217 | 1.565 | 4.874 | |
11006 | Imputed | 54.689 | 70.523 | 128.953 | 1.503 | 4.732 |
Original | 54.926 | 70.579 | 128.498 | 1.497 | 4.718 | |
11007 | Imputed | 63.155 | 78.535 | 124.352 | 1.414 | 4.217 |
Original | 62.896 | 78.058 | 124.105 | 1.407 | 4.197 | |
11009 | Imputed | 50.528 | 66.759 | 132.121 | 1.839 | 6.900 |
Original | 50.736 | 66.913 | 131.885 | 1.832 | 6.860 | |
11010 | Imputed | 56.416 | 75.170 | 133.243 | 1.607 | 5.451 |
Original | 55.640 | 73.987 | 132.974 | 1.598 | 5.413 | |
11011 | Imputed | 53.044 | 66.434 | 125.243 | 1.628 | 5.451 |
Original | 52.604 | 66.277 | 125.993 | 1.655 | 5.570 | |
11012 | Imputed | 52.329 | 62.107 | 118.685 | 1.497 | 5.156 |
Original | 52.082 | 62.112 | 119.258 | 1.511 | 5.291 | |
11013 | Imputed | 52.154 | 65.610 | 125.800 | 1.468 | 4.647 |
Original | 52.030 | 65.671 | 126.219 | 1.475 | 4.666 | |
11014 | Imputed | 49.134 | 70.417 | 143.315 | 1.754 | 5.566 |
Original | 49.217 | 70.538 | 143.322 | 1.750 | 5.545 | |
11015 | Imputed | 36.457 | 41.875 | 114.862 | 1.396 | 4.483 |
Original | 35.755 | 40.968 | 114.581 | 1.426 | 4.677 | |
11020 | Imputed | 49.604 | 68.453 | 137.999 | 1.799 | 5.856 |
Original | 49.604 | 68.453 | 137.999 | 1.799 | 5.856 | |
11021 | Imputed | 50.552 | 67.841 | 134.199 | 1.600 | 5.226 |
Original | 50.237 | 67.317 | 133.999 | 1.614 | 5.337 | |
11022 | Imputed | 54.703 | 67.374 | 123.162 | 1.492 | 4.997 |
Original | 54.915 | 67.715 | 123.310 | 1.483 | 4.947 | |
11023 | Imputed | 52.645 | 69.446 | 131.913 | 1.660 | 5.622 |
Original | 52.665 | 70.260 | 133.408 | 1.665 | 5.627 | |
11025 | Imputed | 57.398 | 74.415 | 129.647 | 1.592 | 5.122 |
Original | 57.556 | 74.604 | 129.621 | 1.586 | 5.092 | |
11028 | Imputed | 54.227 | 70.117 | 129.303 | 1.411 | 4.493 |
Original | 54.227 | 70.117 | 129.303 | 1.411 | 4.493 | |
11031 | Imputed | 64.585 | 79.530 | 123.140 | 1.311 | 4.146 |
Original | 64.106 | 78.803 | 122.925 | 1.309 | 4.148 | |
11033 | Imputed | 49.072 | 59.597 | 121.448 | 1.475 | 4.904 |
Original | 48.841 | 59.612 | 122.053 | 1.488 | 4.939 | |
11034 | Imputed | 58.405 | 74.110 | 126.891 | 1.190 | 3.342 |
Original | 58.807 | 74.474 | 126.641 | 1.193 | 3.370 | |
11035 | Imputed | 51.113 | 66.280 | 129.674 | 1.336 | 3.942 |
Original | 51.175 | 66.374 | 129.700 | 1.341 | 3.952 | |
11036 | Imputed | 59.498 | 78.109 | 131.280 | 1.431 | 4.446 |
Original | 59.697 | 78.234 | 131.051 | 1.424 | 4.424 | |
11040 | Imputed | 56.229 | 74.131 | 131.837 | 1.604 | 5.133 |
Original | 56.229 | 74.131 | 131.837 | 1.604 | 5.133 | |
11041 | Imputed | 50.393 | 67.630 | 134.206 | 1.541 | 4.703 |
Original | 50.519 | 67.645 | 133.898 | 1.511 | 4.580 | |
11042 | Imputed | 44.361 | 56.929 | 128.333 | 1.962 | 8.181 |
Original | 45.267 | 57.460 | 126.935 | 1.891 | 7.851 | |
11045 | Imputed | 58.984 | 79.716 | 135.147 | 1.909 | 8.026 |
Original | 58.749 | 79.753 | 135.753 | 1.927 | 8.137 | |
11048 | Imputed | 47.974 | 61.080 | 127.320 | 1.587 | 5.613 |
Original | 48.302 | 61.390 | 127.096 | 1.579 | 5.591 | |
11049 | Imputed | 55.081 | 66.078 | 119.965 | 1.586 | 5.678 |
Original | 55.402 | 66.088 | 119.287 | 1.573 | 5.674 | |
11050 | Imputed | 37.703 | 49.814 | 132.123 | 1.677 | 5.667 |
Original | 37.848 | 49.864 | 131.746 | 1.687 | 5.716 | |
11051 | Imputed | 42.297 | 52.962 | 125.215 | 1.655 | 5.463 |
Original | 42.297 | 52.962 | 125.215 | 1.655 | 5.463 | |
11052 | Imputed | 50.438 | 63.725 | 126.343 | 1.435 | 4.451 |
Original | 50.517 | 63.777 | 126.250 | 1.431 | 4.439 | |
11055 | Imputed | 54.471 | 71.824 | 131.859 | 1.795 | 6.509 |
Original | 54.834 | 72.395 | 132.025 | 1.786 | 6.461 | |
11061 | Imputed | 42.425 | 67.258 | 158.536 | 2.288 | 9.372 |
Original | 42.886 | 68.521 | 159.773 | 2.304 | 9.379 | |
11066 | Imputed | 42.014 | 49.283 | 117.301 | 1.329 | 4.002 |
Original | 42.500 | 49.624 | 116.761 | 1.278 | 3.791 | |
11070 | Imputed | 54.966 | 71.870 | 130.755 | 1.597 | 5.115 |
Original | 55.579 | 72.302 | 130.088 | 1.588 | 5.075 | |
11071 | Imputed | 53.463 | 66.532 | 124.445 | 1.288 | 4.149 |
Original | 53.463 | 66.532 | 124.445 | 1.288 | 4.149 | |
11072 | Imputed | 57.412 | 75.308 | 131.171 | 1.530 | 5.057 |
Original | 57.412 | 75.308 | 131.171 | 1.530 | 5.057 | |
11077 | Imputed | 62.917 | 78.216 | 124.317 | 1.383 | 4.338 |
Original | 63.460 | 78.432 | 123.593 | 1.368 | 4.297 | |
11078 | Imputed | 61.409 | 77.515 | 126.228 | 1.402 | 4.356 |
Original | 61.708 | 78.018 | 126.431 | 1.393 | 4.310 | |
11079 | Imputed | 54.521 | 69.097 | 126.735 | 1.439 | 4.475 |
Original | 54.118 | 68.894 | 127.302 | 1.435 | 4.468 | |
11083 | Imputed | 47.166 | 55.399 | 117.455 | 1.619 | 5.583 |
Original | 47.200 | 55.459 | 117.497 | 1.616 | 5.568 | |
11085 | Imputed | 56.158 | 74.536 | 132.725 | 1.595 | 5.017 |
Original | 55.262 | 73.654 | 133.281 | 1.619 | 5.142 | |
11095 | Imputed | 56.960 | 77.217 | 135.564 | 1.603 | 4.960 |
Original | 56.960 | 77.217 | 135.564 | 1.603 | 4.960 | |
11099 | Imputed | 58.425 | 76.738 | 131.344 | 1.385 | 4.129 |
Original | 59.126 | 77.574 | 131.201 | 1.376 | 4.087 | |
11103 | Imputed | 60.781 | 77.903 | 128.169 | 1.657 | 5.638 |
Original | 61.273 | 78.572 | 128.234 | 1.661 | 5.636 | |
11116 | Imputed | 55.062 | 71.083 | 129.096 | 1.592 | 5.227 |
Original | 55.647 | 71.194 | 127.940 | 1.588 | 5.230 | |
11122 | Imputed | 51.951 | 63.786 | 122.781 | 1.495 | 4.975 |
Original | 51.405 | 63.395 | 123.324 | 1.524 | 5.117 | |
11124 | Imputed | 54.986 | 71.684 | 130.368 | 1.477 | 4.439 |
Original | 55.077 | 71.743 | 130.260 | 1.473 | 4.427 | |
11134 | Imputed | 58.657 | 77.690 | 132.447 | 1.511 | 4.743 |
Original | 58.792 | 77.729 | 132.210 | 1.508 | 4.733 | |
11136 | Imputed | 55.244 | 72.283 | 130.842 | 1.575 | 5.158 |
Original | 55.173 | 71.373 | 129.362 | 1.549 | 5.092 | |
11140 | Imputed | 43.617 | 59.519 | 136.460 | 2.006 | 7.414 |
Original | 43.824 | 59.900 | 136.682 | 2.011 | 7.401 | |
11142 | Imputed | 53.261 | 67.388 | 126.524 | 1.349 | 4.009 |
Original | 52.968 | 67.537 | 127.505 | 1.361 | 4.029 | |
11143 | Imputed | 54.459 | 74.091 | 136.050 | 1.718 | 5.900 |
Original | 53.606 | 73.989 | 138.025 | 1.760 | 6.076 | |
11144 | Imputed | 31.825 | 38.366 | 120.552 | 1.484 | 5.386 |
Original | 32.077 | 39.032 | 121.684 | 1.510 | 5.421 | |
11145 | Imputed | 52.494 | 70.158 | 133.648 | 1.389 | 4.070 |
Original | 51.859 | 69.397 | 133.818 | 1.396 | 4.104 | |
11146 | Imputed | 43.278 | 63.507 | 146.741 | 1.762 | 5.691 |
Original | 43.212 | 63.018 | 145.835 | 1.750 | 5.661 | |
11148 | Imputed | 51.630 | 66.372 | 128.553 | 1.727 | 6.425 |
Original | 51.750 | 66.624 | 128.741 | 1.727 | 6.402 | |
11149 | Imputed | 54.708 | 72.425 | 132.385 | 1.482 | 4.740 |
Original | 54.906 | 73.832 | 134.469 | 1.495 | 4.728 | |
11151 | Imputed | 56.454 | 75.766 | 134.209 | 1.338 | 3.723 |
Original | 55.056 | 75.195 | 136.578 | 1.391 | 3.880 | |
11161 | Imputed | 34.174 | 39.889 | 116.723 | 1.712 | 7.016 |
Original | 34.371 | 39.874 | 116.011 | 1.718 | 7.098 | |
11166 | Imputed | 64.804 | 76.422 | 117.928 | 1.206 | 3.730 |
Original | 64.804 | 76.422 | 117.928 | 1.206 | 3.730 |
References
- Arnell, N.W. Climate change and global water resources. Glob. Environ. Change 1999, 9, S31–S49. [Google Scholar] [CrossRef]
- Tzanakakis, V.A.; Paranychianakis, N.V.; Angelakis, A.N. Water supply and water scarcity. Water 2020, 12, 2347. [Google Scholar] [CrossRef]
- Allan, R.P.; Soden, B.J.; John, V.O.; Ingram, W.; Good, P. Current changes in tropical precipitation. Environ. Res. Lett. 2010, 5, 025205. [Google Scholar] [CrossRef]
- Janizadeh, S.; Pal, S.C.; Saha, A.; Chowdhuri, I.; Ahmadi, K.; Mirzaei, S.; Mosavi, A.H.; Tiefenbacher, J.P. Mapping the spatial and temporal variability of flood hazard affected by climate and land-use changes in the future. J. Environ. Manag. 2021, 298, 113551. [Google Scholar] [CrossRef]
- Field, C.B.; Barros, V.R. Climate Change 2014: Impacts, Adaptation and Vulnerability: Regional Aspects; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Asakereh, H. Trends in monthly precipitation over the northwest of Iran (NWI). Theor. Appl. Climatol. 2017, 130, 443–451. [Google Scholar] [CrossRef]
- AL-Lami, A.M.; AL-Timimi, Y.K.; AL-Salihi, A.M. The homogeneity analysis of rainfall time series for selected meteorological stations in Iraq. Diyala J. Pure Sci. 2014, 10, 60–77. [Google Scholar]
- Elzeiny, R.; Khadr, M.; Zahran, S.; Rashwan, E. Homogeneity analysis of rainfall series in the upper blue nile river basin, Ethiopia. J. Eng. Res. 2019, 3, 46–53. [Google Scholar] [CrossRef]
- Easterling, D.R.; Peterson, T.C. A new method for detecting undocumented discontinuities in climatological time series. Int. J. Climatol. 1995, 15, 369–377. [Google Scholar] [CrossRef]
- Aguilar, E.; Llanso, P. Guidelines on Climate Metadata and Homogenization; WMO: Geneva, Switzerland, 2003.
- Alexandersson, H. A homogeneity test applied to precipitation data. J. Climatol. 1986, 6, 661–675. [Google Scholar] [CrossRef]
- Wijngaard, J.B.; Klein Tank, A.M.G.; Können, G.P. Homogeneity of 20th century European daily temperature and precipitation series. Int. J. Climatol. J. R. Meteorol. Soc. 2003, 23, 679–692. [Google Scholar] [CrossRef]
- Talaee, P.H.; Kouchakzadeh, M.; Some’e, B.S. Homogeneity analysis of precipitation series in Iran. Theor. Appl. Climatol. 2014, 118, 297–305. [Google Scholar] [CrossRef]
- Machiwal, D.; Jha, M.K. Comparative evaluation of statistical tests for time series analysis: Application to hydrological time series. Hydrol. Sci. J. 2008, 53, 353–366. [Google Scholar] [CrossRef]
- Mendes, M.P.; Rodriguez-Galiano, V.; Aragones, D. Evaluating the BFAST method to detect and characterise changing trends in water time series: A case study on the impact of droughts on the Mediterranean climate. Sci. Total Environ. 2022, 846, 157428. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Griffin: London, UK, 1975. [Google Scholar]
- Ruiz-Alvarez, O.; Singh, V.P.; Enciso-Medina, J.; Ontiveros-Capurata, R.E.; Corrales-Suastegui, A. Spatio-temporal trends of monthly and annual precipitation in Aguascalientes, Mexico. Atmosphere 2020, 11, 437. [Google Scholar] [CrossRef]
- Yue, S.; Pilon, P.; Phinney, B.; Cavadias, G. The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrol. Processes 2002, 16, 1807–1829. [Google Scholar] [CrossRef]
- Yue, S.; Pilon, P.; Phinney, B. Canadian streamflow trend detection: Impacts of serial and cross-correlation. Hydrol. Sci. J. 2003, 48, 51–63. [Google Scholar] [CrossRef]
- Hamed, K.H.; Rao, A.R. A modified Mann-Kendall test for autocorrelated data. J. Hydrol. 1998, 204, 182–196. [Google Scholar] [CrossRef]
- Ahmad, I.; Tang, D.; Wang, T.; Wang, M.; Wagan, B. Precipitation Trends over Time Using Mann-Kendall and Spearman’s Rho Tests in Swat River Basin, Pakistan. Adv. Meteorol. 2015, 2015, 431860. [Google Scholar] [CrossRef]
- Mallick, J.; Talukdar, S.; Alsubih, M.; Salam, R.; Ahmed, M.; Kahla, N.B.; Shamimuzzaman, M. Analysing the trend of rainfall in Asir region of Saudi Arabia using the family of Mann-Kendall tests, innovative trend analysis, and detrended fluctuation analysis. Theor. Appl. Climatol. 2021, 143, 823–841. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Addi, M.; Gyasi-Agyei, Y.; Obuobie, E.; Amekudzi, L.K. Evaluation of imputation techniques for infilling missing daily rainfall records on river basins in Ghana. Hydrol. Sci. J. 2022, 67, 613–627. [Google Scholar] [CrossRef]
- Burhanuddin, S.N.Z.A.; Deni, S.M.; Shaadan, N. Controlled Sampling Approach in Improving Multiple Imputation for Missing Seasonal Rainfall Data. Res. Sq. 2021. [Google Scholar] [CrossRef]
- Nor, S.M.C.M.; Shaharudin, S.M.; Ismail, S.; Zainuddin, N.H.; Tan, M.L. A comparative study of different imputation methods for daily rainfall data in east-coast Peninsular Malaysia. Bull. Electr. Eng. Inform. 2020, 9, 635–643. [Google Scholar]
- Morales Martínez, J.L.; Horta-Rangel, F.A.; Segovia-Domínguez, I.; Robles Morua, A.; Hernández, J.H. Analysis of a new spatial interpolation weighting method to estimate missing data applied to rainfall records. Atmósfera 2019, 32, 237–259. [Google Scholar] [CrossRef]
- Navarro Cespedes, J.M.; Hernández Anguiano, J.H.; Alcantara Concepción, P.C.; Morales Martínez, J.L.; Carreño Aguilera, G.; Padilla, F. A comparison of missing value imputation methods applied to daily precipitation in a semi-arid and a humid region of Mexico. Atmósfera 2023, 37, 33–52. [Google Scholar] [CrossRef]
- Van Buuren, S. Flexible Imputation of Missing Data; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Azur, M.J.; Stuart, E.A.; Frangakis, C.; Leaf, P.J. Multiple imputation by chained equations: What is it and how does it work? Int. J. Methods Psychiatr. Res. 2011, 20, 40–49. [Google Scholar] [CrossRef]
- Norazizi, N.A.A.; Deni, S.M. Comparison of artificial neural network (ANN) and other imputation methods in estimating missing rainfall data at Kuantan station. In Soft Computing in Data Science, Proceedings of the 5th International Conference, SCDS 2019, Iizuka, Japan, 28–29 August 2019; Proceedings 5; Springer: Singapore, 2019; pp. 298–306. [Google Scholar]
- Comisión Nacional del Agua (Conagua). Estadísticas del Agua en México 2021; Comisión Nacional del Agua: Ciudad de México, Mexico, 2022. Available online: https:/agua.org.mx/wp-content/uploads/2023/10/EAM_2021.pdf (accessed on 10 June 2025).
- Secretaría de Medio Ambiente y Ordenamiento Territorial (SMAOT). Diagnóstico Climatológico y Prospectiva Sobre Vulnerabilidad al Cambio Climático en el Estado de Guanajuato; Technical report; SMAOT: Guanajuato, Mexico, 2010.
- INEGI. Conjunto de Datos Vectoriales de uso de Suelo y Vegetación; Instituto Nacional de Estadística y Geografía: Aguascalientes, Mexico, 2010.
- García, E. Modificaciones al Sistema de Clasificación Climática de Köppen; Instituto de Geografía, UNAM: Mexico City, Mexico, 2004.
- Barrett, B.S.; Esquivel Longoria, M.I. Variability of precipitation and temperature in Guanajuato, Mexico. Atmósfera 2013, 26, 521–536. [Google Scholar] [CrossRef]
- Arguez, A.; Vose, R.S. The definition of the standard WMO climate normal: The key to deriving alternative climate normals. Bull. Am. Meteorol. Soc. 2011, 92, 699–704. [Google Scholar] [CrossRef]
- World Meteorological Organization (WMO). Guide to Climatological Practices, 3rd ed.; WMO: Geneva, Switzerland, 2017.
- Campozano, L.; Sánchez, E.; Avilés, A.; Samaniego, E. Evaluation of infilling methods for time series of daily precipitation and temperature: The case of the Ecuadorian Andes. Maskana 2015, 5, 99–115. [Google Scholar] [CrossRef]
- Toro-Trujillo, A.M.; Arteaga-Ramírez, R.; Vázquez-Peña, M.A.; Ibáñez-Castillo, L.A. Relleno de series diarias de precipitación, temperatura mínima, máxima de la región norte del Urabá antioqueño. Rev. Mex. Cienc. Agrícolas 2015, 6, 577–588. [Google Scholar]
- Rubin, D.B. Multiple imputation. In Flexible Imputation of Missing Data; Chapman and Hall/CRC: Boca Raton, FL, USA, 2018; pp. 29–62. [Google Scholar]
- Khaliq, M.N.; Ouarda, T.B.M.J. On the critical values of the standard normal homogeneity test (SNHT). Int. J. Climatol. J. R. Meteorol. Soc. 2007, 27, 681–687. [Google Scholar] [CrossRef]
- Guajardo-Panes, R.A.; Granados-Ramirez, G.R.; Sanchez-Cohen, I.; Diaz-Padilla, G.; Barbosa-Moreno, F. Validacion espacial de datos climatologicos y pruebas de homogeneidad: Caso Veracruz, Mexico. Tecnol. Cienc. Agua 2017, 8, 157–177. [Google Scholar] [CrossRef]
- Pettitt, A.N. A non-parametric approach to the change-point problem. J. R. Stat. Soc. Ser. C (Appl. Stat.) 1979, 28, 126–135. [Google Scholar] [CrossRef]
- Buishand, T.A. Some methods for testing the homogeneity of rainfall records. J. Hydrol. 1982, 58, 11–27. [Google Scholar] [CrossRef]
- Von Neumann, J. Distribution of the ratio of the mean square successive difference to the variance. Ann. Math. Stat. 1941, 12, 367–395. [Google Scholar] [CrossRef]
- Pohlert, T. Trend: Non-Parametric Trend Tests and Change-Point Detection. 2020. Available online: https://CRAN.R-project.org/package=trend (accessed on 5 June 2025).
- Houze, R.A., Jr. Orographic effects on precipitating clouds. Rev. Geophys. 2012, 50. [Google Scholar] [CrossRef]
- Roe, G.H. Orographic precipitation. Annu. Rev. Earth Planet. Sci. 2005, 33, 645–671. [Google Scholar] [CrossRef]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences, 3rd ed.; Academic Press: Cambridge, MA, USA, 2011. [Google Scholar]
- CONAGUA (Comisión Nacional del Agua). Servicio Meteorológico Nacional: 135 Años de Historia en México; Secretaría de Medio Ambiente y Recursos Naturales: Mexico City, Mexico, 2012.
- Nava, L.F.; Torres Bernardino, L.; Orozco, I. Crisis water management in Mexico. In The Palgrave Encyclopedia of Sustainable Resources and Ecosystem Resilience; Springer: Berlin/Heidelberg, Germany, 2024; pp. 1–21. [Google Scholar]
- Pacheco-Treviño, S.; Manzano-Camarillo, M.G.F. Review of water scarcity assessments: Highlights of Mexico’s water situation. Wiley Interdiscip. Rev. Water 2024, 11, e1721. [Google Scholar] [CrossRef]
- Government of Mexico. Programa Nacional Hídrico 2020–2024. Off. J. Fed. (DOF) 2020, 24, 1–92. Available online: https://www.gob.mx/conagua/articulos/consulta-para-el-del-programa-nacional-hidrico-2019-2024-190499 (accessed on 5 June 2025).
ID | Municipality | Long (W) | Lat (N) | Alt (masl) | MD (%) | Max | Mean | Std | VC | S | K |
---|---|---|---|---|---|---|---|---|---|---|---|
11001 | Abasolo | −101.536.389 | 20.446.667 | 1761 | 0.23 | 330.8 | 55.88 | 72.39 | 129.54 | 1.38 | 4.11 |
11002 | Acámbaro | −100.712.222 | 200.325 | 1860 | 0 | 397.7 | 63.14 | 78.26 | 123.95 | 1.37 | 4.4 |
11003 | Pénjamo | −101.629.444 | 20.510.278 | 1720 | 0.23 | 358.4 | 53.95 | 74.02 | 137.22 | 1.56 | 4.87 |
11004 | Irapuato | −101.318.889 | 20.816.944 | 1800 | 6.94 | 355.4 | 33.21 | 55.09 | 165.91 | 2.05 | 7.48 |
11006 | Apaseo El Alto | −100.620.833 | 20.455 | 1875 | 6.25 | 324 | 54.93 | 70.58 | 128.5 | 1.5 | 4.72 |
11007 | Guanajuato | −101.227.222 | 20.991.667 | 2357 | 2.08 | 348.5 | 62.90 | 78.06 | 124.11 | 1.41 | 4.2 |
11009 | Celaya | −100.816.667 | 20.536.389 | 1761 | 0.69 | 426.7 | 50.74 | 66.91 | 131.89 | 1.83 | 6.86 |
11010 | Yuriria | −101.395.833 | 20.101.111 | 1909 | 8.33 | 382.5 | 55.64 | 73.99 | 132.97 | 1.60 | 5.41 |
11011 | San Miguel De Allende | −100.893.333 | 20.957.778 | 2062 | 1.39 | 375.1 | 52.60 | 66.28 | 125.99 | 1.65 | 5.57 |
11012 | Coroneo | −100.363.333 | 20.198.333 | 2271 | 9.03 | 367.2 | 52.08 | 62.11 | 119.26 | 1.51 | 5.29 |
11013 | Cortazar | −100.962.778 | 20.487.778 | 1730 | 0.69 | 288.8 | 52.03 | 65.67 | 126.22 | 1.48 | 4.67 |
11014 | Cuerámaro | −101.675.833 | 20.625.556 | 1732 | 0.46 | 344.1 | 49.22 | 70.54 | 143.32 | 1.75 | 5.54 |
11015 | Doctor Mora | −100.330.556 | 21.139.167 | 2114 | 7.41 | 198.4 | 35.75 | 40.97 | 114.58 | 1.43 | 4.68 |
11020 | León | −101.696.389 | 21.172.778 | 1837 | 0 | 332.8 | 49.60 | 68.45 | 138 | 1.80 | 5.86 |
11021 | Salvatierra | −101.006.389 | 20.281.389 | 1730 | 2.08 | 338.4 | 50.24 | 67.32 | 134 | 1.61 | 5.34 |
11022 | Apaseo El Alto | −100.554.722 | 20.369.722 | 2099 | 1.39 | 373 | 54.91 | 67.72 | 123.31 | 1.48 | 4.95 |
11023 | San Francisco Del Rincón | −101.836.667 | 21.025.278 | 1767 | 8.10 | 397.2 | 52.67 | 70.26 | 133.41 | 1.66 | 5.63 |
11025 | León | −101.705.278 | 21.231.111 | 1920 | 0.69 | 361.5 | 57.56 | 74.60 | 129.62 | 1.59 | 5.09 |
11028 | Irapuato | −101.337.222 | 20.668.333 | 1729 | 0 | 373 | 54.23 | 70.12 | 129.3 | 1.41 | 4.49 |
11031 | Jerécuaro | −100.518.889 | 20.143.056 | 1787 | 3.47 | 395.7 | 64.11 | 78.80 | 122.92 | 1.31 | 4.15 |
11033 | San Miguel De Allende | −100.825.833 | 20.848.333 | 1850 | 0.46 | 300.3 | 48.84 | 59.61 | 122.05 | 1.49 | 4.94 |
11034 | Pénjamo | −101.718.333 | 20.434.444 | 1795 | 9.03 | 335.5 | 58.81 | 74.47 | 126.64 | 1.19 | 3.37 |
11035 | León | −1.016.975 | 20.920.556 | 1771 | 1.16 | 289.6 | 51.17 | 66.37 | 129.7 | 1.34 | 3.95 |
11036 | Manuel Doblado | −101.844.167 | 20.675.278 | 1727 | 0.46 | 405.4 | 59.70 | 78.23 | 131.05 | 1.42 | 4.42 |
11040 | León | −1.016.675 | 21.195.278 | 1865 | 0 | 374.8 | 56.23 | 74.13 | 131.84 | 1.60 | 5.13 |
11041 | Salamanca | −101.148.889 | 20.675.833 | 1768 | 4.86 | 321.9 | 50.52 | 67.64 | 133.9 | 1.51 | 4.58 |
11042 | San Miguel De Allende | −100.640.556 | 21.040.833 | 2009 | 8.56 | 392.5 | 45.27 | 57.46 | 126.93 | 1.89 | 7.85 |
11045 | León | −101.639.167 | 213.325 | 2042 | 1.85 | 581 | 58.75 | 79.75 | 135.75 | 1.93 | 8.14 |
11048 | Comonfort | −100.835.556 | 20.707.778 | 1933 | 3.70 | 370 | 48.30 | 61.39 | 127.1 | 1.58 | 5.59 |
11049 | León | −101.425.833 | 21.211.111 | 2247 | 2.08 | 415.7 | 55.40 | 66.09 | 119.29 | 1.57 | 5.67 |
11050 | Ocampo | −101.479.722 | 21.65 | 2253 | 2.31 | 276 | 37.85 | 49.86 | 131.75 | 1.69 | 5.72 |
11051 | Dolores Hidalgo | −100.878.056 | 21.107.778 | 1906 | 0 | 253.5 | 42.30 | 52.96 | 125.21 | 1.65 | 5.46 |
11052 | Salamanca | −101.118.333 | 20.522.222 | 1719 | 0.23 | 309.2 | 50.52 | 63.78 | 126.25 | 1.43 | 4.44 |
11053 | San Luis De La Paz | −100.496.111 | 21.22 | 2206 | 9.95 | 229.8 | 39.74 | 44.52 | 112.03 | 1.43 | 4.82 |
11055 | Purísima Del Rincón | −101.871.111 | 21.078.611 | 1794 | 3.94 | 413.9 | 54.83 | 72.39 | 132.02 | 1.79 | 6.46 |
11061 | Dolores Hidalgo | −101.218.889 | 21.469.444 | 2090 | 9.95 | 465 | 42.89 | 68.52 | 159.77 | 2.30 | 9.38 |
11066 | San José Iturbide | −100.513.889 | 21.296.389 | 2041 | 5.79 | 207 | 42.50 | 49.62 | 116.76 | 1.28 | 3.79 |
11070 | Guanajuato | −101.196.111 | 21.072.222 | 2552 | 3.01 | 365.1 | 55.58 | 72.30 | 130.09 | 1.59 | 5.08 |
11071 | Silao De La Victoria | −101.430.278 | 20.943.333 | 1768 | 0 | 383.5 | 53.46 | 66.53 | 124.45 | 1.29 | 4.15 |
11072 | Jaral Del Progreso | −101.066.944 | 20.298.333 | 1728 | 0 | 442.5 | 57.41 | 75.31 | 131.17 | 1.53 | 5.06 |
11077 | Tarandacuao | −101.782.778 | 20.305.556 | 1708 | 3.01 | 375 | 63.46 | 78.43 | 123.59 | 1.37 | 4.3 |
11078 | Tarimoro | −100.512.222 | 199.975 | 1937 | 2.08 | 393.1 | 61.71 | 78.02 | 126.43 | 1.39 | 4.31 |
11079 | Valle De Santiago | −101.178.889 | 20.382.778 | 1790 | 3.01 | 326 | 54.12 | 68.89 | 127.3 | 1.44 | 4.47 |
11083 | Xichú | −1.000.925 | 21.298.611 | 1318 | 0.23 | 288.9 | 47.20 | 55.46 | 117.5 | 1.62 | 5.57 |
11085 | San Miguel De Allende | −101.061.111 | 20.833.889 | 2241 | 3.94 | 370 | 55.26 | 73.65 | 133.28 | 1.62 | 5.14 |
11095 | León | −101.698.889 | 21.136.111 | 1828 | 0 | 376.4 | 56.96 | 77.22 | 135.56 | 1.60 | 4.96 |
11099 | Pénjamo | −101.948.889 | 20.499.444 | 1711 | 7.18 | 362.6 | 59.13 | 77.57 | 131.2 | 1.38 | 4.09 |
11103 | Guanajuato | −101.255.833 | 21.034.167 | 2147 | 4.86 | 454.4 | 61.27 | 78.57 | 128.23 | 1.66 | 5.64 |
11116 | Jerécuaro | −100.555 | 20.292.778 | 2027 | 2.55 | 332 | 55.65 | 71.19 | 127.94 | 1.59 | 5.23 |
11122 | Comonfort | −100.614.722 | 207.625 | 1992 | 1.39 | 321.4 | 51.41 | 63.40 | 123.32 | 1.52 | 5.12 |
11124 | Guanajuato | −101.244.444 | 20.871.944 | 1853 | 0.23 | 326 | 55.08 | 71.74 | 130.26 | 1.47 | 4.43 |
11134 | Irapuato | −101.369.722 | 20.715.833 | 1740 | 0.23 | 403.2 | 58.79 | 77.73 | 132.21 | 1.51 | 4.73 |
11136 | Salamanca | −101.006.944 | 20.668.889 | 1828 | 6.48 | 385.2 | 55.17 | 71.37 | 129.36 | 1.55 | 5.09 |
11140 | Dolores Hidalgo | −101.135.556 | 21.269.444 | 2115 | 3.01 | 342.8 | 43.82 | 59.90 | 136.68 | 2.01 | 7.4 |
11141 | Guanajuato | −101.241.667 | 21.173.333 | 2475 | 1.16 | 511 | 76.62 | 97.43 | 127.17 | 1.72 | 5.86 |
11142 | Salvatierra | −100.899.722 | 20.280.278 | 1738 | 0.93 | 302.5 | 52.97 | 67.54 | 127.5 | 1.36 | 4.03 |
11143 | Pénjamo | −1.018.175 | 20.509.722 | 2348 | 3.47 | 431 | 53.61 | 73.99 | 138.02 | 1.76 | 6.08 |
11144 | San José Iturbide | −100.431.389 | 20.919.167 | 2201 | 9.49 | 220 | 32.08 | 39.03 | 121.68 | 1.51 | 5.42 |
11145 | Cortazar | −100.885.556 | 20.398.056 | 2342 | 0.69 | 324.7 | 51.86 | 69.40 | 133.82 | 1.40 | 4.1 |
11146 | Valle De Santiago | −101.358.889 | 20.275.833 | 1859 | 6.02 | 307 | 43.21 | 63.02 | 145.84 | 1.75 | 5.66 |
11148 | Apaseo El Grande | −100.608.056 | 20.667.778 | 2019 | 1.39 | 410.5 | 51.75 | 66.62 | 128.74 | 1.73 | 6.4 |
11149 | Acámbaro | −100.723.611 | 20.110.556 | 1890 | 9.03 | 341 | 54.91 | 73.83 | 134.47 | 1.50 | 4.73 |
11151 | Pénjamo | −101.782.778 | 20.305.556 | 1708 | 6.94 | 295.2 | 55.06 | 75.20 | 136.58 | 1.39 | 3.88 |
11161 | San Luis De La Paz | −100.663.611 | 21.45 | 2192 | 3.24 | 275 | 34.37 | 39.87 | 116.01 | 1.72 | 7.1 |
11166 | Maravatío | −101.436.111 | 21.041.944 | 1898 | 0 | 371.8 | 64.80 | 76.42 | 117.93 | 1.21 | 3.73 |
Station | Method | Sen_Slope | SS_p | Z | p | Sig | Direction | MK_Direction | ||
---|---|---|---|---|---|---|---|---|---|---|
11001 | 0.5182 | TFPW | 0.0020 | 0.6296 | 0.0100 | 0.3025 | 0.7622 | No | Increasing | Increasing |
11002 | 0.5982 | TFPW | 0.0005 | 0.8660 | 0.0058 | 0.1774 | 0.8592 | No | Increasing | Increasing |
11003 | 0.5181 | TFPW | 0.0035 | 0.3457 | 0.0324 | 0.9748 | 0.3297 | No | Increasing | Increasing |
11004 | 0.5201 | TFPW | 0.0000 | 0.8687 | −0.0126 | −0.3634 | 0.7163 | No | No trend | Decreasing |
11006 | 0.4959 | TFPW | 0.0000 | 0.8256 | 0.0016 | 0.0488 | 0.9611 | No | No trend | Increasing |
11007 | 0.5087 | TFPW | 0.0021 | 0.7886 | 0.0191 | 0.5866 | 0.5574 | No | Increasing | Increasing |
11009 | 0.5129 | TFPW | −0.0003 | 0.8787 | 0.0073 | 0.2238 | 0.8229 | No | Decreasing | Increasing |
11010 | 0.5195 | TFPW | 0.0000 | 0.7680 | 0.0520 | 1.5732 | 0.1157 | No | No trend | Increasing |
11011 | 0.4429 | TFPW | 0.0086 | 0.2462 | 0.0460 | 1.4121 | 0.1579 | No | Increasing | Increasing |
11012 | 0.5499 | TFPW | 0.0000 | 0.9909 | −0.0185 | −0.5668 | 0.5709 | No | No trend | Decreasing |
11013 | 0.4770 | TFPW | 0.0007 | 0.6453 | 0.0220 | 0.6668 | 0.5049 | No | Increasing | Increasing |
11014 | 0.4864 | TFPW | 0.0000 | 0.9874 | 0.0216 | 0.6523 | 0.5142 | No | No trend | Increasing |
11015 | 0.4007 | TFPW | 0.0028 | 0.6540 | 0.0215 | 0.6574 | 0.5109 | No | Increasing | Increasing |
11020 | 0.5212 | TFPW | 0.0028 | 0.5744 | 0.0345 | 1.0508 | 0.2933 | No | Increasing | Increasing |
11021 | 0.5276 | TFPW | 0.0000 | 0.8216 | −0.0192 | −0.5812 | 0.5611 | No | No trend | Decreasing |
11022 | 0.5386 | TFPW | 0.0076 | 0.4566 | 0.0107 | 0.3288 | 0.7423 | No | Increasing | Increasing |
11023 | 0.5075 | TFPW | 0.0000 | 0.9243 | 0.0198 | 0.6054 | 0.5449 | No | No trend | Increasing |
11025 | 0.5030 | TFPW | 0.0049 | 0.4124 | 0.0457 | 1.3814 | 0.1672 | No | Increasing | Increasing |
11028 | 0.5303 | TFPW | 0.0044 | 0.3848 | 0.0132 | 0.4004 | 0.6889 | No | Increasing | Increasing |
11031 | 0.5746 | TFPW | 0.0016 | 0.8299 | −0.0168 | −0.5150 | 0.6065 | No | Increasing | Decreasing |
11033 | 0.4607 | TFPW | 0.0058 | 0.4180 | 0.0366 | 1.1196 | 0.2629 | No | Increasing | Increasing |
11034 | 0.5425 | TFPW | 0.0016 | 0.4707 | 0.0045 | 0.1350 | 0.8926 | No | Increasing | Increasing |
11035 | 0.5408 | TFPW | 0.0036 | 0.4010 | 0.0223 | 0.6757 | 0.4992 | No | Increasing | Increasing |
11036 | 0.5331 | TFPW | 0.0067 | 0.2671 | 0.0346 | 1.0477 | 0.2948 | No | Increasing | Increasing |
11040 | 0.5215 | TFPW | 0.0019 | 0.6525 | 0.0163 | 0.4959 | 0.6200 | No | Increasing | Increasing |
11041 | 0.4845 | TFPW | 0.0000 | 0.7229 | 0.0336 | 1.0123 | 0.3114 | No | No trend | Increasing |
11042 | 0.4336 | TFPW | 0.0023 | 0.6044 | −0.0208 | −0.6327 | 0.5269 | No | Increasing | Decreasing |
11045 | 0.4468 | TFPW | 0.0021 | 0.4321 | 0.0325 | 0.9794 | 0.3274 | No | Increasing | Increasing |
11048 | 0.4854 | TFPW | 0.0003 | 0.5910 | −0.0008 | −0.0228 | 0.9818 | No | Increasing | Decreasing |
11049 | 0.4379 | TFPW | 0.0083 | 0.4623 | 0.0092 | 0.2845 | 0.7760 | No | Increasing | Increasing |
11050 | 0.3806 | TFPW | 0.0048 | 0.3067 | 0.0342 | 1.0336 | 0.3013 | No | Increasing | Increasing |
11051 | 0.3887 | TFPW | 0.0079 | 0.2574 | 0.0298 | 0.9149 | 0.3603 | No | Increasing | Increasing |
11052 | 0.5694 | TFPW | 0.0000 | 0.9688 | 0.0015 | 0.0459 | 0.9634 | No | No trend | Increasing |
11053 | 0.3839 | TFPW | 0.0006 | 0.8871 | 0.0185 | 0.5705 | 0.5683 | No | Increasing | Increasing |
11055 | 0.4995 | TFPW | 0.0000 | 0.9685 | 0.0319 | 0.9745 | 0.3298 | No | No trend | Increasing |
11061 | 0.4818 | TFPW | 0.0000 | 0.0833 | 0.0520 | 1.5269 | 0.1268 | No | No trend | Increasing |
11066 | 0.4646 | TFPW | 0.0000 | 0.9525 | −0.0026 | −0.0806 | 0.9358 | No | No trend | Decreasing |
11070 | 0.4997 | TFPW | −0.0014 | 0.7765 | 0.0052 | 0.1581 | 0.8744 | No | Decreasing | Increasing |
11071 | 0.5617 | TFPW | −0.0013 | 0.7678 | −0.0204 | −0.6233 | 0.5331 | No | Decreasing | Decreasing |
11072 | 0.4989 | TFPW | 0.0018 | 0.7454 | 0.0213 | 0.6518 | 0.5145 | No | Increasing | Increasing |
11077 | 0.5620 | TFPW | 0.0000 | 0.8568 | −0.0168 | −0.5113 | 0.6091 | No | No trend | Decreasing |
11078 | 0.5399 | TFPW | 0.0017 | 0.7878 | −0.0009 | −0.0258 | 0.9794 | No | Increasing | Decreasing |
11079 | 0.5266 | TFPW | 0.0000 | 0.9816 | 0.0029 | 0.0870 | 0.9307 | No | No trend | Increasing |
11083 | 0.3688 | TFPW | −0.0029 | 0.7799 | 0.0028 | 0.0861 | 0.9314 | No | Decreasing | Increasing |
11085 | 0.4205 | TFPW | 0.0000 | 0.7497 | −0.0292 | −0.8813 | 0.3781 | No | No trend | Decreasing |
11095 | 0.5145 | TFPW | 0.0000 | 0.8810 | 0.0250 | 0.7623 | 0.4459 | No | No trend | Increasing |
11099 | 0.5042 | TFPW | 0.0000 | 0.7841 | 0.0127 | 0.3847 | 0.7005 | No | No trend | Increasing |
11103 | 0.4706 | TFPW | 0.0085 | 0.4129 | 0.0193 | 0.5932 | 0.5530 | No | Increasing | Increasing |
11116 | 0.5298 | TFPW | 0.0090 | 0.1787 | 0.0502 | 1.5359 | 0.1246 | No | Increasing | Increasing |
11122 | 0.5010 | TFPW | 0.0073 | 0.3732 | 0.0052 | 0.1563 | 0.8758 | No | Increasing | Increasing |
11124 | 0.5301 | TFPW | 0.0046 | 0.4097 | 0.0341 | 1.0336 | 0.3013 | No | Increasing | Increasing |
11134 | 0.5237 | TFPW | 0.0051 | 0.4758 | 0.0173 | 0.5278 | 0.5977 | No | Increasing | Increasing |
11136 | 0.5115 | TFPW | 0.0024 | 0.5900 | 0.0151 | 0.4572 | 0.6475 | No | Increasing | Increasing |
11140 | 0.3907 | TFPW | 0.0000 | 0.7431 | 0.0074 | 0.2246 | 0.8223 | No | No trend | Increasing |
11141 | 0.5041 | TFPW | 0.0111 | 0.2350 | 0.0451 | 1.3670 | 0.1716 | No | Increasing | Increasing |
11142 | 0.5725 | TFPW | 0.0000 | 0.8639 | −0.0044 | −0.1341 | 0.8933 | No | No trend | Decreasing |
11143 | 0.5189 | TFPW | 0.0000 | 0.6579 | 0.0083 | 0.2471 | 0.8049 | No | No trend | Increasing |
11144 | 0.4545 | TFPW | 0.0000 | 0.9259 | −0.0009 | −0.0265 | 0.9789 | No | No trend | Decreasing |
11145 | 0.5230 | TFPW | 0.0000 | 0.8647 | −0.0377 | −1.1117 | 0.2663 | No | No trend | Decreasing |
11146 | 0.5095 | TFPW | 0.0000 | 0.9734 | 0.0053 | 0.1576 | 0.8748 | No | No trend | Increasing |
11148 | 0.4424 | TFPW | 0.0000 | 0.7694 | −0.0177 | −0.5375 | 0.5909 | No | No trend | Decreasing |
11149 | 0.5800 | TFPW | 0.0000 | 0.4181 | −0.0231 | −0.6919 | 0.4890 | No | No trend | Decreasing |
11151 | 0.5289 | TFPW | 0.0000 | 0.4893 | 0.0111 | 0.3299 | 0.7415 | No | No trend | Increasing |
11161 | 0.3187 | TFPW | 0.0034 | 0.5865 | 0.0241 | 0.7384 | 0.4603 | No | Increasing | Increasing |
11166 | 0.6085 | TFPW | 0.0018 | 0.8098 | 0.0182 | 0.5579 | 0.5769 | No | Increasing | Increasing |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morales Martínez, J.L.; Ortega Chávez, V.M.; Carreño Aguilera, G.; González Cruz, T.; Delgado Galvan, X.V.; Navarro Céspedes, J.M. Spatio-Temporal Trends of Monthly and Annual Precipitation in Guanajuato, Mexico. Water 2025, 17, 2597. https://doi.org/10.3390/w17172597
Morales Martínez JL, Ortega Chávez VM, Carreño Aguilera G, González Cruz T, Delgado Galvan XV, Navarro Céspedes JM. Spatio-Temporal Trends of Monthly and Annual Precipitation in Guanajuato, Mexico. Water. 2025; 17(17):2597. https://doi.org/10.3390/w17172597
Chicago/Turabian StyleMorales Martínez, Jorge Luis, Victor Manuel Ortega Chávez, Gilberto Carreño Aguilera, Tame González Cruz, Xitlali Virginia Delgado Galvan, and Juan Manuel Navarro Céspedes. 2025. "Spatio-Temporal Trends of Monthly and Annual Precipitation in Guanajuato, Mexico" Water 17, no. 17: 2597. https://doi.org/10.3390/w17172597
APA StyleMorales Martínez, J. L., Ortega Chávez, V. M., Carreño Aguilera, G., González Cruz, T., Delgado Galvan, X. V., & Navarro Céspedes, J. M. (2025). Spatio-Temporal Trends of Monthly and Annual Precipitation in Guanajuato, Mexico. Water, 17(17), 2597. https://doi.org/10.3390/w17172597