Investigation of the Adsorption Capacity of H3PO4-Activated Biochar from Eucalyptus Harvest Waste for the Efficient Removal of Paracetamol in Water
Abstract
1. Introduction
2. Material and Methods
2.1. Chemicals and Reagents
2.2. Obtaining the Biomass
2.3. Production and Characterization of the Activated Biochar
2.4. Preliminary Adsorption Tests
2.5. Effect of Temperature and Thermodynamic Study
2.6. Adsorption Isotherms
2.7. Kinetic Study
2.8. Study on Desorption and Reusability
2.9. Application in Real Water Samples
3. Results and Discussion
3.1. Characterization of the Activated Biochar
3.2. Results of Preliminary Adsorption Tests
3.2.1. Effect of Contact Time
3.2.2. Effect of Initial Paracetamol Concentration
3.2.3. Effect of Adsorbent Dosage
3.2.4. Effect of pH
3.3. Effect of Temperature and Evaluation of Adsorption Thermodynamics
3.4. Adsorption Isotherms Results
3.5. Adsorption Kinetics
3.6. Possible Adsorption Mechanisms
3.7. Desorption and Reusability Study
3.8. Application in Real Water Environments
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bursztyn Fuentes, A.L.; Canevesi, R.L.S.; Gadonneix, P.; Mathieu, S.; Celzard, A.; Fierro, V. Paracetamol Removal by Kon-Tiki Kiln-Derived Biochar and Activated Carbons. Ind. Crops Prod. 2020, 155, 112740. [Google Scholar] [CrossRef]
- Agarwal, N. Paracetamol—A Contaminant of High Concern: Existence in Environment and Adverse Effect. Pharm. Drug Regul. Aff. J. 2022, 5, 000128. [Google Scholar] [CrossRef]
- García-Mateos, F.J.; Ruiz-Rosas, R.; Marqués, M.D.; Cotoruelo, L.M.; Rodríguez-Mirasol, J.; Cordero, T. Removal of Paracetamol on Biomass-Derived Activated Carbon: Modeling the Fixed Bed Breakthrough Curves Using Batch Adsorption Experiments. Chem. Eng. J. 2015, 279, 18–30. [Google Scholar] [CrossRef]
- El Saied, M.; Shaban, S.A.; Mostafa, M.S.; Naga, A.O.A. El Efficient Adsorption of Acetaminophen from the Aqueous Phase Using Low-Cost and Renewable Adsorbent Derived from Orange Peels. Biomass Convers. Biorefin. 2022, 14, 2155–2172. [Google Scholar] [CrossRef]
- Ouyang, J.; Chen, J.; Chen, W.; Zhou, L.; Cai, D.; Ren, C. H3PO4 Activated Biochars Derived from Different Agricultural Biomasses for the Removal of Ciprofloxacin from Aqueous Solution. Particuology 2023, 75, 217–227. [Google Scholar] [CrossRef]
- Afolabi, I.C.; Popoola, S.I.; Bello, O.S. Machine Learning Approach for Prediction of Paracetamol Adsorption Efficiency on Chemically Modified Orange Peel. Spectrochim. Acta-Part A Mol. Biomol. Spectrosc. 2020, 243, 118769. [Google Scholar] [CrossRef]
- Tran, H.N.; Tomul, F.; Thi Hoang Ha, N.; Nguyen, D.T.; Lima, E.C.; Le, G.T.; Chang, C.T.; Masindi, V.; Woo, S.H. Innovative Spherical Biochar for Pharmaceutical Removal from Water: Insight into Adsorption Mechanism. J. Hazard. Mater. 2020, 394, 122255. [Google Scholar] [CrossRef]
- Lee, W.J.; Goh, P.S.; Lau, W.J.; Ismail, A.F. Removal of Pharmaceutical Contaminants from Aqueous Medium: A State-of-the-Art Review Based on Paracetamol. Arab. J. Sci. Eng. 2020, 45, 7109–7135. [Google Scholar] [CrossRef]
- De Gusseme, B.; Vanhaecke, L.; Verstraete, W.; Boon, N. Degradation of Acetaminophen by Delftia Tsuruhatensis and Pseudomonas Aeruginosa in a Membrane Bioreactor. Water Res. 2011, 45, 1829–1837. [Google Scholar] [CrossRef] [PubMed]
- Daikh, S.; Ouis, D.; Benyoucef, A.; Mouffok, B. Equilibrium, Kinetic and Thermodynamic Studies for Evaluation of Adsorption Capacity of a New Potential Hybrid Adsorbent Based on Polyaniline and Chitosan for Acetaminophen. Chem. Phys. Lett. 2022, 798, 139565. [Google Scholar] [CrossRef]
- Mphahlele, K.; Onyango, M.S.; Mhlanga, S.D. Adsorption of Aspirin and Paracetamol from Aqueous Solution Using Fe/N-CNT/β-Cyclodextrin Nanocomopsites Synthesized via a Benign Microwave Assisted Method. J. Environ. Chem. Eng. 2015, 3, 2619–2630. [Google Scholar] [CrossRef]
- Pauletto, P.S.; Lütke, S.F.; Dotto, G.L.; Salau, N.P.G. Adsorption Mechanisms of Single and Simultaneous Removal of Pharmaceutical Compounds onto Activated Carbon: Isotherm and Thermodynamic Modeling. J. Mol. Liq. 2021, 336, 116203. [Google Scholar] [CrossRef]
- Paredes-Laverde, M.; Salamanca, M.; Silva-Agredo, J.; Manrique-Losada, L.; Torres-Palma, R.A. Selective Removal of Acetaminophen in Urine with Activated Carbons from Rice (Oryza Sativa) and Coffee (Coffea Arabica) Husk: Effect of Activating Agent, Activation Temperature and Analysis of Physical-Chemical Interactions. J. Environ. Chem. Eng. 2019, 7, 103318. [Google Scholar] [CrossRef]
- Spessato, L.; Bedin, K.C.; Cazetta, A.L.; Souza, I.P.A.F.; Duarte, V.A.; Crespo, L.H.S.; Silva, M.C.; Pontes, R.M.; Almeida, V.C. KOH-Super Activated Carbon from Biomass Waste: Insights into the Paracetamol Adsorption Mechanism and Thermal Regeneration Cycles. J. Hazard. Mater. 2019, 371, 499–505. [Google Scholar] [CrossRef] [PubMed]
- Żur, J.; Wojcieszyńska, D.; Hupert-Kocurek, K.; Marchlewicz, A.; Guzik, U. Paracetamol—Toxicity and Microbial Utilization. Pseudomonas Moorei KB4 as a Case Study for Exploring Degradation Pathway. Chemosphere 2018, 206, 192–202. [Google Scholar] [CrossRef]
- Mokhtaryan, S.; Khodabakhshi, A.; Sadeghi, R.; Nourmoradi, H.; Shakeri, K.; Hemati, S.; Mohammadi-Moghadam, F. New Activated Carbon Derived from Gundelia Tournefortii Seeds for Effective Removal of Acetaminophen from Aqueous Solutions: Adsorption Performance. Arab. J. Chem. 2023, 16, 105253. [Google Scholar] [CrossRef]
- Yanan, C.; Srour, Z.; Ali, J.; Guo, S.; Taamalli, S.; Fèvre-Nollet, V.; da Boit Martinello, K.; Georgin, J.; Franco, D.S.P.; Silva, L.F.O.; et al. Adsorption of Paracetamol and Ketoprofenon Activated Charcoal Prepared from the Residue of the Fruit of Butiacapitate: Experiments and Theoretical Interpretations. Chem. Eng. J. 2023, 454, 139943. [Google Scholar] [CrossRef]
- Ninh, P.T.T.; Ngoc Tuyen, L.T.; Dat, N.D.; Nguyen, M.L.; Dong, N.T.; Chao, H.P.; Tran, H.N. Two-Stage Preparation of Highly Mesoporous Carbon for Super-Adsorption of Paracetamol and Tetracycline in Water: Important Contribution of Pore Filling and π-π Interaction. Environ. Res. 2023, 218, 114927. [Google Scholar] [CrossRef]
- Sivarasan, G.; Manikandan, V.; Periyasamy, S.; AlSalhi, M.S.; Devanesan, S.; Murphin Kumar, P.S.; Pasupuleti, R.r.; Liu, X.; Lo, H.M. Iron-Engineered Mesoporous Biocarbon Composite and Its Adsorption, Activation, and Regeneration Approach for Removal of Paracetamol in Water. Environ. Res. 2023, 227, 115723. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Lin, H.; Raza, S.; Chen, C.; Yu, W.; Zeng, Q.; Zhao, Z.; Huang, X.; Shen, L. Construction of MXene-MOF Membranes with Photocatalytic Self-Cleaning for Enhanced Oil-Water Emulsion Separation. J. Memb. Sci. 2025, 718, 123685. [Google Scholar] [CrossRef]
- Li, H.; Lin, H.; Raza, S.; Zhao, Z.; Chen, S.; Wang, Y.; Zeng, Q.; Chen, C.; Yu, W.; Shen, L. Molecular Insights in Outstanding Performance of Ca2+ Bridging MXene/Sodium Alginate Composite Membranes. Water Res. 2025, 286, 124296. [Google Scholar] [CrossRef] [PubMed]
- Dutta, M.; Das, U.; Mondal, S.; Bhattachriya, S.; Khatun, R.; Bagal, R. Adsorption of Acetaminophen by Using Tea Waste Derived Activated Carbon. Int. J. Environ. Sci. 2015, 6, 270–281. [Google Scholar]
- Boudrahem, N.; Delpeux-Ouldriane, S.; Khenniche, L.; Boudrahem, F.; Aissani-Benissad, F.; Gineys, M. Single and Mixture Adsorption of Clofibric Acid, Tetracycline and Paracetamol onto Activated Carbon Developed from Cotton Cloth Residue. Process Saf. Environ. Prot. 2017, 111, 544–559. [Google Scholar] [CrossRef]
- Chen, K.; Ma, D.; Yu, H.; Zhang, S.; Seyler, B.C.; Chai, Z.; Peng, S. Biosorption of V(V) onto Lantana Camara Biochar Modified by H3PO4: Characteristics, Mechanism, and Regenerative Capacity. Chemosphere 2022, 291, 132721. [Google Scholar] [CrossRef] [PubMed]
- Neme, I.; Gonfa, G.; Masi, C. Preparation and Characterization of Activated Carbon from Castor Seed Hull by Chemical Activation with H3PO4. Results Mater. 2022, 15, 100304. [Google Scholar] [CrossRef]
- Regalbuto, J.R.; Robles, J. The Engineering of Pt/Carbon Catalyst Preparation; University of Illionis: Chicago, IL, USA, 2004. [Google Scholar]
- Mbarki, F.; Selmi, T.; Kesraoui, A.; Seffen, M. Low-Cost Activated Carbon Preparation from Corn Stigmata Fibers Chemically Activated Using H3PO4, ZnCl2 and KOH: Study of Methylene Blue Adsorption, Stochastic Isotherm and Fractal Kinetic. Ind. Crops Prod. 2022, 178, 114546. [Google Scholar] [CrossRef]
- Lima, E.C.; Hosseini-Bandegharaei, A.; Moreno-Piraján, J.C.; Anastopoulos, I. A Critical Review of the Estimation of the Thermodynamic Parameters on Adsorption Equilibria. Wrong Use of Equilibrium Constant in the Van’t Hoof Equation for Calculation of Thermodynamic Parameters of Adsorption. J. Mol. Liq. 2019, 273, 425–434. [Google Scholar] [CrossRef]
- Lung, I.; Soran, M.L.; Stegarescu, A.; Opris, O.; Gutoiu, S.; Leostean, C.; Lazar, M.D.; Kacso, I.; Silipas, T.D.; Porav, A.S. Evaluation of CNT-COOH/MnO2/Fe3O4 Nanocomposite for Ibuprofen and Paracetamol Removal from Aqueous Solutions. J. Hazard. Mater. 2021, 403, 123528. [Google Scholar] [CrossRef]
- Bachmann, S.A.L.; Calvete, T.; Féris, L.A. Caffeine Removal from Aqueous Media by Adsorption: An Overview of Adsorbents Evolution and the Kinetic, Equilibrium and Thermodynamic Studies. Sci. Total Environ. 2021, 767, 144229. [Google Scholar] [CrossRef]
- Ma, W.; Fan, J.; Cui, X.; Wang, Y.; Yan, Y.; Meng, Z.; Gao, H.; Lu, R.; Zhou, W. Pyrolyzing Spent Coffee Ground to Biochar Treated with H3PO4for the Efficient Removal of 2,4-Dichlorophenoxyacetic Acid Herbicide: Adsorptive Behaviors and Mechanism. J. Environ. Chem. Eng. 2023, 11, 109165. [Google Scholar] [CrossRef]
- Nguyen, D.T.; Tran, H.N.; Juang, R.S.; Dat, N.D.; Tomul, F.; Ivanets, A.; Woo, S.H.; Hosseini-Bandegharaei, A.; Nguyen, V.P.; Chao, H.P. Adsorption Process and Mechanism of Acetaminophen onto Commercial Activated Carbon. J. Environ. Chem. Eng. 2020, 8, 104408. [Google Scholar] [CrossRef]
- Ho, Y.; McKay, G. Pseudo-Second Order Model for Sorption Processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Wu, F.C.; Tseng, R.L.; Juang, R.S. Characteristics of Elovich Equation Used for the Analysis of Adsorption Kinetics in Dye-Chitosan Systems. Chem. Eng. J. 2009, 150, 366–373. [Google Scholar] [CrossRef]
- Debord, J.; Harel, M.; Bollinger, J.C.; Chu, K.H. The Elovich Isotherm Equation: Back to the Roots and New Developments. Chem. Eng. Sci. 2022, 262, 118012. [Google Scholar] [CrossRef]
- Schnitzler, E.; Lençone, K.; Kobelnik, M. Characterization of Pharmaceuticals by Thermal Analysis. Publ. UEPG-Exact Soil Sci. 2002, 8, 91–100. [Google Scholar]
- Akkouche, F.; Boudrahem, F.; Yahiaoui, I.; Vial, C.; Audonnet, F.; Aissani-Benissad, F. Cotton Textile Waste Valorization for Removal of Tetracycline and Paracetamol Alone and in Mixtures from Aqueous Solutions: Effects of H3PO4 as an Oxidizing Agent. Water Environ. Res. 2021, 93, 464–478. [Google Scholar] [CrossRef]
- Jawad, A.H.; Saber, S.E.M.; Abdulhameed, A.S.; Reghioua, A.; ALOthman, Z.A.; Wilson, L.D. Mesoporous Activated Carbon from Mangosteen (Garcinia mangostana) Peels by H3PO4 Assisted Microwave: Optimization, Characterization, and Adsorption Mechanism for Methylene Blue Dye Removal. Diam. Relat. Mater. 2022, 129, 109389. [Google Scholar] [CrossRef]
- Turk Sekulic, M.; Boskovic, N.; Slavkovic, A.; Garunovic, J.; Kolakovic, S.; Pap, S. Surface Functionalised Adsorbent for Emerging Pharmaceutical Removal: Adsorption Performance and Mechanisms. Process Saf. Environ. Prot. 2019, 125, 50–63. [Google Scholar] [CrossRef]
- Cheng, B.H.; Zeng, R.J.; Jiang, H. Recent Developments of Post-Modification of Biochar for Electrochemical Energy Storage. Bioresour. Technol. 2017, 246, 224–233. [Google Scholar] [CrossRef]
- Wong, S.; Lim, Y.; Ngadi, N.; Mat, R.; Hassan, O.; Inuwa, I.M.; Mohamed, N.B.; Low, J.H. Removal of Acetaminophen by Activated Carbon Synthesized from Spent Tea Leaves: Equilibrium, Kinetics and Thermodynamics Studies. Powder Technol. 2018, 338, 878–886. [Google Scholar] [CrossRef]
- Haro, N.K.; Dávila, I.V.J.; Nunes, K.G.P.; de Franco, M.A.E.; Marcilio, N.R.; Féris, L.A. Kinetic, Equilibrium and Thermodynamic Studies of the Adsorption of Paracetamol in Activated Carbon in Batch Model and Fixed-Bed Column. Appl. Water Sci. 2021, 11, 38. [Google Scholar] [CrossRef]
- Sajid, M.; Bari, S.; Saif Ur Rehman, M.; Ashfaq, M.; Guoliang, Y.; Mustafa, G. Adsorption Characteristics of Paracetamol Removal onto Activated Carbon Prepared from Cannabis Sativum Hemp. Alex. Eng. J. 2022, 61, 7203–7212. [Google Scholar] [CrossRef]
- Kerkhoff, C.M.; da Boit Martinello, K.; Franco, D.S.P.; Netto, M.S.; Georgin, J.; Foletto, E.L.; Piccilli, D.G.A.; Silva, L.F.O.; Dotto, G.L. Adsorption of Ketoprofen and Paracetamol and Treatment of a Synthetic Mixture by Novel Porous Carbon Derived from Butia Capitata Endocarp. J. Mol. Liq. 2021, 339, 117184. [Google Scholar] [CrossRef]
- Streit, A.F.M.; Collazzo, G.C.; Druzian, S.P.; Verdi, R.S.; Foletto, E.L.; Oliveira, L.F.S.; Dotto, G.L. Adsorption of Ibuprofen, Ketoprofen, and Paracetamol onto Activated Carbon Prepared from Effluent Treatment Plant Sludge of the Beverage Industry. Chemosphere 2021, 262, 128322. [Google Scholar] [CrossRef] [PubMed]
- Piccin, J.S.; Dotto, G.L.; Pinto, L.A.A. Adsorption Isotherms and Thermochemical Data of FDandC RED N° 40 Binding by Chitosan. Brazilian J. Chem. Eng. 2011, 28, 295–304. [Google Scholar] [CrossRef]
- Bernal, V.; Giraldo, L.; Moreno-Piraján, J.C. Understanding the Solid-Liquid Equilibria between Paracetamol and Activated Carbon: Thermodynamic Approach of the Interactions Adsorbent-Adsorbate Using Equilibrium, Kinetic and Calorimetry Data. J. Hazard. Mater. 2021, 419, 126432. [Google Scholar] [CrossRef]
- Ma, W.; Song, R.; Wang, Y.; Cui, X.; Yan, Y.; Liu, Z.; Wang, X.; Gao, H.; Lua, R.; Zhou, W. Optimized Ginkgo Leaf Biochar: An Efficient Adsorbent for 2,4-D Herbicide Removal from Wastewater. Water Environ. Res. 2024, 96, e11124. [Google Scholar] [CrossRef]
Separation Factor RL | Isotherm |
---|---|
RL > 1 | unfavorable |
RL = 1 | linear |
0 < RL < 1 | favorable |
RL = 0 | irreversible |
Adsorbent | SBET (m2 g−1) a | Vp (cm3 g−1) b |
---|---|---|
Activated commercial carbon | 826 ± 15 | 0.32 ± 0.01 |
Biochar without activation | 17 ± 2 | not detected |
H3PO4 activated biochar | 1187 ± 20 | 0.89 ± 0.01 |
T (K) | Keq × 104 | ΔG° (kJ mol−1) | ΔH° (kJ mol−1) | ΔS° (kJ mol−1 K−1) |
---|---|---|---|---|
298 | 8.255 ± 0.720 | −27.49 ± 3.19 | −3.09 ± 0.50 | 0.094 ± 0.011 |
308 | 7.762 ± 0.635 | −28.59 ± 3.43 | ||
318 | 7.225 ± 0.963 | −30.09 ± 3.61 | ||
328 | 7.147 ± 0.786 | −30.48 ± 3.66 |
Isotherm | Parameters | 25 °C | 35 °C | 45 °C | 55 °C |
---|---|---|---|---|---|
Langmuir | KL (L mg−1) | 0.546 ± 0.031 | 0.513 ± 0.033 | 0.478 ± 0.041 | 0.473 ± 0.045 |
Q[max]calc (mg g−1) | 27.8 ± 3.6 | 30.5 ± 4.3 | 33.8 ± 3.2 | 37.2 ± 4.1 | |
R2 | 0.9815 | 0.9885 | 0.990 | 0.9896 | |
RL | 0.07 | 0.07 | 0.08 | 0.08 | |
Freundlich | KF (mg g−1)·(L mg−1)1/n | 10.79 ± 0.76 | 11.27 ± 0.89 | 11.80 ± 0.79 | 12.64 ± 0.82 |
n (dimensionless) | 2.67 | 2.49 | 2.32 | 2.19 | |
R2 | 0.9256 | 0.9413 | 0.9490 | 0.9480 | |
Temkin | KT (L mol−1) | 4.75 ± 0.27 | 4.27 ± 0.28 | 3.84 ± 0.34 | 3.69 ± 0.34 |
b (J mol−1) | 6.36 ± 0.60 | 7.14 ± 0.70 | 8.07 ± 0.81 | 9.03 ± 0.89 | |
R2 | 0.9664 | 0.9790 | 0.9850 | 0.9881 |
Model | Parameters | Values |
---|---|---|
Pseudo-first-order model | K1 (min−1) | 0.059 ± 0.007 |
qe (mg g−1) | 12.84 ± 0.30 | |
R2 | 0.9598 | |
Pseudo-second-order model | K2 (g mg−1 min−1) | 0.0071 ± 0.010 |
qe (mg g−1) | 13.71 ± 0.00 | |
R2 | 0.9241 | |
Elovich kinetic model | α (mg g−1 min−1) | 3.12 × 102 |
β (g mg−1) | 0.638 ± 1.18 | |
R2 | 0.4878 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ries, L.A.d.S.; Chies, J.H.d.S.; Soares, L.d.M.; Benvenutti, E.V.; Gasparin, F.P. Investigation of the Adsorption Capacity of H3PO4-Activated Biochar from Eucalyptus Harvest Waste for the Efficient Removal of Paracetamol in Water. Water 2025, 17, 2654. https://doi.org/10.3390/w17172654
Ries LAdS, Chies JHdS, Soares LdM, Benvenutti EV, Gasparin FP. Investigation of the Adsorption Capacity of H3PO4-Activated Biochar from Eucalyptus Harvest Waste for the Efficient Removal of Paracetamol in Water. Water. 2025; 17(17):2654. https://doi.org/10.3390/w17172654
Chicago/Turabian StyleRies, Lúcia Allebrandt da Silva, Joyce Helena da Silveira Chies, Luamar de Mattos Soares, Edilson Valmir Benvenutti, and Fabiano Perin Gasparin. 2025. "Investigation of the Adsorption Capacity of H3PO4-Activated Biochar from Eucalyptus Harvest Waste for the Efficient Removal of Paracetamol in Water" Water 17, no. 17: 2654. https://doi.org/10.3390/w17172654
APA StyleRies, L. A. d. S., Chies, J. H. d. S., Soares, L. d. M., Benvenutti, E. V., & Gasparin, F. P. (2025). Investigation of the Adsorption Capacity of H3PO4-Activated Biochar from Eucalyptus Harvest Waste for the Efficient Removal of Paracetamol in Water. Water, 17(17), 2654. https://doi.org/10.3390/w17172654