Machine Learning Model for Predicting the Height of the Water-Conducting Fracture Zone Considering the Influence of Key Stratum and Dip Mining Intensity
Abstract
:1. Introduction
2. Factors Affecting the Height of the WCFZ
2.1. Mining Thickness
2.2. Mining Depth
2.3. Dip Mining Intensity
2.4. Overlying Rock Properties
2.5. Key Stratum
2.6. Dip Angle
2.7. Faults
3. Material
3.1. The Model of WCFZ
3.2. Database
4. Methodology
4.1. Machine Learning Algorithms
4.1.1. Adaptive Boosting (AdaBoost)
- Initialize the sample weights:
- In each iteration, a weak classifier is trained to minimize the weighted classification error.
- Calculate the weight assigned to the weak classifier.
- Update the sample weights in each iteration.
4.1.2. Extreme Gradient Boosting (XGBoost)
4.1.3. Categorical Boosting (CatBoost)
4.2. Hyperparameter Optimization Algorithms
4.2.1. Sparrow Search Algorithm (SSA)
4.2.2. Harris Hawks Optimization Algorithm (HHO)
4.2.3. Lotus Effect Optimization Algorithm (LEA)
- Global Search Phase
- Local Optimization Stage
4.3. Model Evaluation
5. Results and Discussion
6. Sensitivity Analysis
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wei, X.F.; Wang, J.G.; Ding, Y.J. Progress and development trend of clean and efficient coal utilization technology. Bull. Chin. Acad. Sci. 2019, 34, 409–416. [Google Scholar]
- Liu, T. Coal Mine Ground Movement and Strata Failure, 1st ed.; China Coal Industry Publishing House: Beijing, China, 1981; pp. 165–214. [Google Scholar]
- Gao, B.; Liu, Y.; Pan, J.; Yuan, T. Detection and analysis of the height of water flowing fractured zone in underwater mining. Chin. J. Rock. Mech. Eng. 2014, 33, 3384–3390. [Google Scholar]
- Chang, S.; Yang, Z.; Guo, C.; Ma, Z.; Wu, X. Dynamic monitoring of the water flowing fractured zone during the mining process under a river. Appl. Sci. 2018, 9, 43. [Google Scholar] [CrossRef]
- Chang, X.; Wang, M.; Zhu, W.; Fan, J.; Liu, M. Study on height development characteristics of water-conducting fracture zone in fully mechanized mining of shallow thick coal seam under water. Sustainability 2023, 15, 7370. [Google Scholar] [CrossRef]
- Luo, B.; Zhang, C.; Zhang, P.; Huo, J.; Liu, S. A Combined Method Utilizing Microseismic and Parallel Electrical Monitoring to Determine the Height of the Water-Conducting Fracture Zone in Shengfu Coal Mine. Water 2024, 16, 3047. [Google Scholar] [CrossRef]
- Su, B.Y.; Yue, J.H. Research of the electrical anisotropic characteristics of water-conducting fractured zones in coal seams. Appl. Geophys. 2017, 14, 216–224. [Google Scholar] [CrossRef]
- Guo, W.; Zhao, G.; Lou, G.; Wang, S. A new method of predicting the height of the fractured water-conducting zone due to high-intensity longwall coal mining in China. Rock Mech. Rock. Eng. 2019, 52, 2789–2802. [Google Scholar] [CrossRef]
- Zhu, T.; Li, W.; Wang, Q.; Hu, Y.; Fan, K.; Du, J. Study on the height of the mining-induced water-conducting fracture zone under the Q2l loess cover of the Jurassic coal seam in northern Shaanxi, China. Mine Water Environ. 2020, 39, 57–67. [Google Scholar] [CrossRef]
- Wu, F.; Gao, Z.; Liu, H.; Yu, X.; Gu, H. Theoretical Discrimination Method of Water-Flowing Fractured Zone Development Height Based on Thin Plate Theory. Appl. Sci. 2024, 14, 6284. [Google Scholar] [CrossRef]
- Miao, X.; Cui, X.; Xu, J. The height of fractured water-conducting zone in undermined rock strata. Eng. Geol. 2011, 120, 32–39. [Google Scholar] [CrossRef]
- Wang, F.; Xu, J.; Chen, S.; Ren, M. Method to predict the height of the water -conducting fractured zone based on bearing structures in the overlying strata. Mine Water Environ. 2019, 38, 767–779. [Google Scholar] [CrossRef]
- Bai, E.; Guo, W.; Tan, Y.; Guo, M.; Wen, P.; Liu, Z.; Ma, Z.; Yang, W. Regional division and its criteria of mining fractures based on overburden critical failure. Sustainability 2022, 14, 5161. [Google Scholar] [CrossRef]
- State Administration of Work Safety; National Coal Mine Safety Administration; National Energy Administration. Specifications for Coal Pillar Retention and Compressed Coal Min. In Buildings, Water Bodies, Railways, and Main Shafts; China Coal Industry Publishing House: Beijing, China, 2017. [Google Scholar]
- Guo, X.; Liu, Y.; Gu, Z. Detection and calculation of the height of the water flowing fractured zone of coal roof in Binchang mining area. J. Min. Strata Control Eng. 2023, 5, 91–100. [Google Scholar]
- Li, B.; Wu, H.; Li, T. Height prediction of water-conducting fractured zone under fully mechanized mining based on weighted multivariate nonlinear regression. J. Min. Saf. Eng. 2022, 39, 536. [Google Scholar]
- Feng, D.; Hou, E.; Xie, X.; Hou, P. Research on Water-conducting Fractured Zone height under the condition of large mining height in Yushen mining area, China. Lithosphere 2023, 2023, 8918348. [Google Scholar] [CrossRef]
- Teng, Y.; Yi, S.; Zhu, W.; Jing, S. Development patterns of fractured water-conducting zones under fully mechanized mining in wet-collapsible loess areas. Water 2022, 15, 22. [Google Scholar] [CrossRef]
- Tan, Y.; Xu, H.; Yan, W.; Guo, W.; Sun, Q.; Yin, D.; Zhang, Y.; Zhang, X.; Jing, X.; Li, X.; et al. Development law of water-conducting fracture zone in the fully mechanized caving face of gob-side entry driving: A case study. Minerals 2022, 12, 557. [Google Scholar] [CrossRef]
- Cao, J.; Su, H.; Wang, C.; Li, J. Research on the evolution and height prediction of WCFZ in shallow close coal seams mining. Geomech. Geophys. Geo-Energy Geo-Resour. 2023, 9, 128. [Google Scholar] [CrossRef]
- Zhou, Y.; Yu, X. Study of the evolution of Water-Conducting Fracture Zone in overlying rock of a fully mechanized caving face in gently inclined extra-thick coal seams. Appl. Sci. 2022, 12, 9057. [Google Scholar] [CrossRef]
- Zhang, X.; Hu, B.; Zou, J.; Liu, C.; Ji, Y. Quantitative characterization of overburden rock development pattern in the goaf at different key stratum locations based on DEM. Adv. Civ. Eng. 2021, 1, 8011350. [Google Scholar] [CrossRef]
- Li, M.; Zhang, J.; Huang, Y.; Gao, R. Measurement and numerical analysis of influence of key stratum breakage on mine pressure in top-coal caving face with super great mining height. J. Cent. South Univ. 2017, 24, 1881–1888. [Google Scholar] [CrossRef]
- Li, J.; Huang, Y.; Zhang, J.; Li, M.; Qiao, M.; Wang, F. The influences of key strata compound breakage on the overlying strata movement and strata pressure behavior in fully mechanized caving mining of shallow and extremely thick seams: A case study. Adv. Civ. Eng. 2019, 1, 5929635. [Google Scholar] [CrossRef]
- Song, Z.; Wang, Y.; Wang, J.; Huan, H.; Li, H. Design of Pump-and-Treat Strategies for Contaminated Groundwater Remediation Using Numerical Modeling: A Case Study. Water 2024, 16, 3665. [Google Scholar] [CrossRef]
- Alberti, L.; Antelmi, M.; Oberto, G.; La Licata, I.; Mazzon, P. Evaluation of fresh groundwater Lens Volume and its possible use in Nauru island. Water 2022, 14, 3201. [Google Scholar] [CrossRef]
- Li, X.; Li, Q.; Xu, X.; Zhao, Y.; Li, P. Multiple Influence Factor Sensitivity Analysis and Height Prediction of Water-conducting fracture zone. Geofluids 2021, 2021, 8825906. [Google Scholar] [CrossRef]
- Xu, C.; Zhou, K.; Xiong, X.; Gao, F.; Zhou, J. Research on height prediction of water-conducting fracture zone in coal mining based on intelligent algorithm combined with extreme boosting machine. Expert Syst. Appl. 2024, 249, 123669. [Google Scholar] [CrossRef]
- Gao, Z.; Jin, L.; Liu, P.; Wei, J. Height Prediction of Water-Conducting Fracture Zone in Jurassic Coalfield of Ordos Basin Based on Improved Radial Movement Optimization Algorithm Back-Propagation Neural Network. Mathematics 2024, 12, 1602. [Google Scholar] [CrossRef]
- Li, J.; He, Z.; Piao, C.; Chi, W.; Lu, Y. Research on Subsidence Prediction Method of Water-Conducting Fracture Zone of Overlying Strata in Coal Mine Based on Grey Theory Model. Water 2023, 15, 4177. [Google Scholar] [CrossRef]
- Prokhorenkova, L.; Gusev, G.; Vorobev, A.; Dorogush, A.V.; Gulin, A. CatBoost: Unbiased Boosting with Categorical Features. In Proceedings of the Neural Information Processing Systems 31 (NeurIPS 2018), Montréal, QC, Canada, 3–8 December 2018; Volume 31. [Google Scholar]
- Freund, Y.; Schapire, R.E. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 1997, 55, 119–137. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. Xgboost: A Scalable Tree Boosting System. In Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Xue, J.; Shen, B. A novel swarm intelligence optimization approach: Sparrow search algorithm. Syst. Sci. Control Eng. 2020, 8, 22–34. [Google Scholar] [CrossRef]
- Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris hawks optimization: Algorithm and applications. Future Gener. Comput. Syst. 2019, 97, 849–872. [Google Scholar] [CrossRef]
- Dalirinia, E.; Jalali, M.; Yaghoobi, M.; Tabatabaee, H. Lotus effect optimization algorithm (LEA): A lotus nature-inspired algorithm for engineering design optimization. J. Supercomput. 2024, 80, 761–799. [Google Scholar] [CrossRef]
- Fang, J.; Huang, H.; Jin, T.; Bai, J.B. Movement rules of overlying strata around longwall mining in thin bedrock with thick surface soil. Chin. J. Rock. Mech. Eng. 2008, 27, 2700–2706. [Google Scholar]
- Liu, Q.; Liang, Z.; Zi, J. A SMOGN-based MPSO-BP model to predict the height of a hydraulically conductive fracture zone. Coal Geol. Explor. 2024, 52, 72–85. [Google Scholar]
- Guo, W.; Lou, G. Definition and distinguishing method of critical mining degree of overburden failure. China Coal Soc. 2019, 44, 755–766. [Google Scholar]
- Cao, Z.; Yang, X.; Li, Z.; Du, F. Evolution mechanism of water-conducting fractures in overburden under the influence of water-rich fault in underground coal mining. Sci. Rep. 2024, 14, 5081. [Google Scholar]
- Wang, X.; Zhu, S.; Yu, H.; Liu, Y. Comprehensive analysis control effect of faults on the height of fractured water-conducting zone in longwall mining. Nat. Hazards 2021, 108, 2143–2165. [Google Scholar] [CrossRef]
- Du, F.; Gao, R. Development Patterns of Fractured Water-Conducting Zones in Longwall Mining of Thick Coal Seams—A Case Study on Safe Mining Under the Zhuozhang River. Energies 2017, 10, 11. [Google Scholar] [CrossRef]
Rock Type | USC/MPa | Water Conductivity | Representative Rock | Calculation Formula (liu) [2] | Calculation Formula (1) |
---|---|---|---|---|---|
Hard and strong | >40 | High or good | Quartz sandstone, limestone, sandy shale, conglomerate | ||
Medium hard | 20–40 | Medium or worse | Sandstone, argillaceous limestone, sandy shale, shale | ||
Soft and weak | 10–20 | Low or bad | Mudstone, argillaceous sandstone | ||
Weathered soft and weak | <10 | Low or bad | Bauxitic rock, weathered mudstone, clay, sandy clay | - |
Hyperparameters | Min | Max |
---|---|---|
n_estimators | 100 | 1000 |
learning_rate | 0.01 | 0.2 |
max_depth | 3 | 10 |
subsample | 0.5 | 1 |
Model | learning_rate | n_estimators | subsample | max_depth |
---|---|---|---|---|
CAT-HHO | 0.1817 | 275 | 0.6744 | 8 |
CAT-SSA | 0.1055 | 354 | 0.4950 | 5 |
CAT-LEA | 0.0963 | 199 | 0.6472 | 9 |
XG-LEA | 0.1391 | 285 | 0.5290 | 3 |
XG-HHO | 0.0450 | 458 | 0.6382 | 4 |
XG-SSA | 0.1133 | 141 | 0.5474 | 7 |
ADA-LEA | 0.0277 | 588 | ||
ADA-SSA | 0.1209 | 367 | ||
ADA-HHO | 0.1770 | 120 |
Model | Score | Rank | ||||
---|---|---|---|---|---|---|
CAT-HHO | 0.9498 | 5.4110 | 6.0564 | 4.80% | 1.2251 | 1 |
CAT-SSA | 0.9504 | 5.5320 | 5.9807 | 5.01% | 1.2065 | 2 |
CAT-LEA | 0.9469 | 5.6284 | 6.7283 | 4.69% | 1.1894 | 3 |
XG-LEA | 0.9352 | 6.2956 | 7.1946 | 5.62% | 1.0373 | 4 |
XG-HHO | 0.9309 | 6.2587 | 7.7799 | 5.27% | 1.023 | 5 |
ADA-LEA | 0.9386 | 7.0475 | 8.8222 | 6.55% | 0.9428 | 6 |
XG-SSA | 0.9229 | 7.1573 | 8.8989 | 6.01% | 0.8494 | 7 |
ADA-SSA | 0.9242 | 7.8036 | 9.2554 | 6.64% | 0.7901 | 8 |
ADA-HHO | 0.9112 | 8.7173 | 11.0537 | 7.79% | 0.4976 | 9 |
Empirical formula | −0.4147 | 44.4269 | 59.4667 | 28.64% | −8.7611 | 10 |
m/m | s | sl | Fully Subsidence Angle/° | DK/m | TK/m | tanβ | L/m |
---|---|---|---|---|---|---|---|
6 | 325 | 45 | 40.2° | 215 | 13.25 | 4.35 | 350 |
Model | score | ||||
---|---|---|---|---|---|
CAT-SSA | 0.950426 | 5.532034 | 5.980704 | 5.01% | 2.2688 |
XG-HHO | 0.930867 | 6.258662 | 7.779931 | 5.27% | 0.9759 |
ADA-LEA | 0.938585 | 7.04749 | 8.822191 | 5.55% | 0.4534 |
CAT-SSA-1 | 0.927963 | 7.778905 | 8.135209 | 8.01% | −0.0167 |
XG-HHO-1 | 0.922523 | 6.83779 | 9.399699 | 10.27% | −0.8649 |
ADA-LEA-1 | 0.898977 | 9.432286 | 11.31085 | 8.55% | −1.1664 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Che, Y.; Cui, X.; Wang, Y.; Li, P. Machine Learning Model for Predicting the Height of the Water-Conducting Fracture Zone Considering the Influence of Key Stratum and Dip Mining Intensity. Water 2025, 17, 234. https://doi.org/10.3390/w17020234
Che Y, Cui X, Wang Y, Li P. Machine Learning Model for Predicting the Height of the Water-Conducting Fracture Zone Considering the Influence of Key Stratum and Dip Mining Intensity. Water. 2025; 17(2):234. https://doi.org/10.3390/w17020234
Chicago/Turabian StyleChe, Yuhang, Ximin Cui, Yuanjian Wang, and Peixian Li. 2025. "Machine Learning Model for Predicting the Height of the Water-Conducting Fracture Zone Considering the Influence of Key Stratum and Dip Mining Intensity" Water 17, no. 2: 234. https://doi.org/10.3390/w17020234
APA StyleChe, Y., Cui, X., Wang, Y., & Li, P. (2025). Machine Learning Model for Predicting the Height of the Water-Conducting Fracture Zone Considering the Influence of Key Stratum and Dip Mining Intensity. Water, 17(2), 234. https://doi.org/10.3390/w17020234