Empowering Regional Rainfall-Runoff Modeling Through Encoder–Decoder Based on Convolutional Neural Networks
Abstract
:1. Introduction
2. Related Approaches of Rainfall–Runoff Modelling
3. Methods
3.1. TimesBlock
3.2. TimesNet
3.3. ED-TimesNet
3.4. Evaluation Metrics
4. Experimental Setup
4.1. The NCAR CAMELS Dataset
4.2. Benckmark Models
- Traditional Hydrological Models: To enhance the credibility of our proposed model, traditional hydrological models have been included for comparative analysis. These models are VIC [45] and mHM [46]. Both models have been developed as individual basin models as well as regional rainfall-runoff models, with a primary focus in this study on evaluating their regional modeling capabilities.
4.3. Regional Rainfall-Runoff Modeling
5. Result and Discussion
5.1. Comparison Between TimesNet and ED-TimesNet
5.2. Modeling Capabilities of ED-TimesNet for Rainfall-Runoff
5.3. Limitations of Our Model
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Clark, M.P.; Nijssen, B.; Lundquist, J.D.; Kavetski, D.; Rupp, D.E.; Woods, R.A.; Freer, J.E.; Gutmann, E.D.; Wood, A.W.; Brekke, L.D.; et al. A Unified Approach for Process-Based Hydrologic Modeling: 1. Modeling Concept. Water Resour. Res. 2015, 51, 2498–2514. [Google Scholar] [CrossRef]
- Clark, M.P.; Slater, A.G.; Rupp, D.E.; Woods, R.A.; Vrugt, J.A.; Gupta, H.V.; Wagener, T.; Hay, L.E. Framework for Understanding Structural Errors (FUSE): A Modular Framework to Diagnose Differences between Hydrological Models. Water Resour. Res. 2008, 44, W00B02. [Google Scholar] [CrossRef]
- Zhao, R.J. The Xinanjiang Model Applied in China. J. Hydrol. 1992, 135, 371–381. [Google Scholar]
- Fenicia, F.; Kavetski, D.; Savenije, H.H.G.; Clark, M.P.; Schoups, G.; Pfister, L.; Freer, J. Catchment Properties, Function, and Conceptual Model Representation: Is There a Correspondence? Hydrol. Process. 2014, 28, 2451–2467. [Google Scholar] [CrossRef]
- Jehanzaib, M.; Ajmal, M.; Achite, M.; Kim, T.-W. Comprehensive Review: Advancements in Rainfall-Runoff Modelling for Flood Mitigation. Climate 2022, 10, 147. [Google Scholar] [CrossRef]
- Prieto, C.; Le Vine, N.; Kavetski, D.; García, E.; Medina, R. Flow Prediction in Ungauged Catchments Using Probabilistic Random Forests Regionalization and New Statistical Adequacy Tests. Water Resour. Res. 2019, 55, 4364–4392. [Google Scholar] [CrossRef]
- Kratzert, F.; Gauch, M.; Klotz, D.; Nearing, G. HESS Opinions: Never Train a Long Short-Term Memory (LSTM) Network on a Single Basin. Hydrol. Earth Syst. Sci. 2024, 28, 4187–4201. [Google Scholar] [CrossRef]
- Kratzert, F.; Klotz, D.; Shalev, G.; Klambauer, G.; Hochreiter, S.; Nearing, G. Towards Learning Universal, Regional, and Local Hydrological Behaviors via Machine Learning Applied to Large-Sample Datasets. Hydrol. Earth Syst. Sci. 2019, 23, 5089–5110. [Google Scholar] [CrossRef]
- Kratzert, F.; Klotz, D.; Brenner, C.; Schulz, K.; Herrnegger, M. Rainfall–runoff modelling using Long Short-Term Memory (LSTM) networks. Hydrol. Earth Syst. Sci. 2018, 22, 6005–6022. [Google Scholar] [CrossRef]
- Xiang, Z.; Yan, J.; Demir, I. A Rainfall-Runoff Model With LSTM-Based Sequence-to-Sequence Learning. Water Resour. Res. 2020, 56, e2019WR025326. [Google Scholar] [CrossRef]
- Xu, Y.; Hu, C.; Wu, Q.; Jian, S.; Li, Z.; Chen, Y.; Zhang, G.; Zhang, Z.; Wang, S. Research on Particle Swarm Optimization in LSTM Neural Networks for Rainfall-Runoff Simulation. J. Hydrol. 2022, 608, 127553. [Google Scholar] [CrossRef]
- Yao, Z.; Wang, Z.; Wang, D.; Wu, J.; Chen, L. An Ensemble CNN-LSTM and GRU Adaptive Weighting Model Based Improved Sparrow Search Algorithm for Predicting Runoff Using Historical Meteorological and Runoff Data as Input. J. Hydrol. 2023, 625, 129977. [Google Scholar] [CrossRef]
- Yin, H.; Zhang, X.; Wang, F.; Zhang, Y.; Xia, R.; Jin, J. Rainfall-Runoff Modeling Using LSTM-Based Multi-State-Vector Sequence-to-Sequence Model. J. Hydrol. 2021, 598, 126378. [Google Scholar] [CrossRef]
- Yin, H.; Guo, Z.; Zhang, X.; Chen, J.; Zhang, Y. RR-Former: Rainfall-Runoff Modeling Based on Transformer. J. Hydrol. 2022, 609, 127781. [Google Scholar] [CrossRef]
- Luo, D.; Wang, X. ModernTCN: A Modern Pure Convolution Structure for General Time Series Analysis. In Proceedings of the Twelfth International Conference on Learning Representations, Vienna, Austria, 7–11 May 2024. [Google Scholar]
- Nourani, V.; Behfar, N. Multi-Station Runoff-Sediment Modeling Using Seasonal LSTM Models. J. Hydrol. 2021, 601, 126672. [Google Scholar] [CrossRef]
- Zeng, A.; Chen, M.; Zhang, L.; Xu, Q. Are Transformers Effective for Time Series Forecasting? In Proceedings of the 37th AAAI Conference on Artificial Intelligence, Washington, DC, USA, 7–14 February 2023; pp. 1121–11128. [Google Scholar] [CrossRef]
- Wu, H.; Hu, T.; Liu, Y.; Zhou, H.; Wang, J.; Long, M. TimesNet: Temporal 2D-Variation Modeling for General Time Series Analysis. In Proceedings of the Eleventh International Conference on Learning Representations, Kigali, Rwanda, 1–5 May 2023. [Google Scholar]
- Finnerty, B.D.; Smith, M.B.; Seo, D.-J.; Koren, V.; Moglen, G.E. Space-Time Scale Sensitivity of the Sacramento Model to Radar-Gage Precipitation Inputs. J. Hydrol. 1997, 203, 21–38. [Google Scholar] [CrossRef]
- Koren, V.; Smith, M.; Cui, Z. Physically-Based Modifications to the Sacramento Soil Moisture Accounting Model. Part A: Modeling the Effects of Frozen Ground on the Runoff Generation Process. J. Hydrol. 2014, 519, 3475–3491. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large Area Hydrologic Modeling and Assessment Part I: Model Development1. JAWRA J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Newman, A.J.; Mizukami, N.; Clark, M.P.; Wood, A.W.; Nijssen, B.; Nearing, G. Benchmarking of a Physically Based Hydrologic Model. J. Hydrometeor. 2017, 18, 2215–2225. [Google Scholar] [CrossRef]
- Mizukami, N.; Rakovec, O.; Newman, A.J.; Clark, M.P.; Wood, A.W.; Gupta, H.V.; Kumar, R. On the Choice of Calibration Metrics for “High-Flow” Estimation Using Hydrologic Models. Hydrol. Earth Syst. Sci. 2019, 23, 2601–2614. [Google Scholar] [CrossRef]
- Seibert, J.; Vis, M.J.P. Teaching Hydrological Modeling with a User-Friendly Catchment-Runoff-Model Software Package. Hydrol. Earth Syst. Sci. 2012, 16, 3315–3325. [Google Scholar] [CrossRef]
- Seibert, J.; Vis, M.J.P.; Lewis, E.; Van Meerveld, H.J. Upper and Lower Benchmarks in Hydrological Modelling. Hydrol. Process. 2018, 32, 1120–1125. [Google Scholar] [CrossRef]
- Nearing, G.S.; Kratzert, F.; Sampson, A.K.; Pelissier, C.S.; Klotz, D.; Frame, J.M.; Prieto, C.; Gupta, H.V. What Role Does Hydrological Science Play in the Age of Machine Learning? Water Resour. Res. 2021, 57, e2020WR028091. [Google Scholar] [CrossRef]
- Kratzert, F.; Klotz, D.; Herrnegger, M.; Sampson, A.K.; Hochreiter, S.; Nearing, G.S. Toward Improved Predictions in Ungauged Basins: Exploiting the Power of Machine Learning. Water Resour. Res. 2019, 55, 11344–11354. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, X.; Khan, A.; Zhang, Y.; Kuang, X.; Liang, X.; Taccari, M.L.; Nuttall, J. Daily Runoff Forecasting by Deep Recursive Neural Network. J. Hydrol. 2021, 596, 126067. [Google Scholar] [CrossRef]
- Zhang, B.; Ouyang, C.; Cui, P.; Xu, Q.; Wang, D.; Zhang, F.; Li, Z.; Fan, L.; Lovati, M.; Liu, Y.; et al. Deep Learning for Cross-Region Streamflow and Flood Forecasting at a Global Scale. Innovation 2024, 5, 100617. [Google Scholar] [CrossRef]
- Van, S.P.; Le, H.M.; Thanh, D.V.; Dang, T.D.; Loc, H.H.; Anh, D.T. Deep Learning Convolutional Neural Network in Rainfall–Runoff Modelling. J. Hydroinform. 2020, 22, 541–561. [Google Scholar] [CrossRef]
- Song, C.M. Data Construction Methodology for Convolution Neural Network Based Daily Runoff Prediction and Assessment of Its Applicability. J. Hydrol. 2022, 605, 127324. [Google Scholar] [CrossRef]
- Wu, H.; Xu, J.; Wang, J.; Long, M. Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting. In Proceedings of the 35th International Conference on Neural Information Processing Systems, New York, NY, USA, 6–14 December 2021; Volume 34, pp. 22419–22430. [Google Scholar]
- Wang, Y.; Wu, H.; Dong, J.; Liu, Y.; Qiu, Y.; Zhang, H.; Wang, J.; Long, M. TimeXer: Empowering Transformers for Time Series Forecasting with Exogenous Variables. arXiv 2024, arXiv:2402.19072. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention Is All You Need. In Proceedings of the 31st International Conference on Neural Information Processing Systems, New York, NY, USA, 4–9 December 2017; pp. 6000–6010. [Google Scholar]
- Zhou, T.; Ma, Z.; Wen, Q.; Wang, X.; Sun, L.; Jin, R. FEDformer: Frequency Enhanced Decomposed Transformer for Long-Term Series Forecasting. In Proceedings of the 39th International Conference on Machine Learning, Baltimore, MD, USA, 17–23 July 2022; pp. 27268–27286. [Google Scholar]
- Xie, S.; Girshick, R.; Dollar, P.; Tu, Z.; He, K. Aggregated Residual Transformations for Deep Neural Networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 1492–1500. [Google Scholar]
- Liu, Z.; Mao, H.; Wu, C.-Y.; Feichtenhofer, C.; Darrell, T.; Xie, S. A ConvNet for the 2020s. In Proceedings of the 2022 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 19–23 June 2022; pp. 11976–11986. [Google Scholar]
- Press, O.; Wolf, L. Using the Output Embedding to Improve Language Models. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics, Valencia, Spain, 3–7 April 2017; pp. 157–163. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778. [Google Scholar]
- Nash, J.E.; Sutcliffe, J.V. River Flow Forecasting through Conceptual Models Part I—A Discussion of Principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Addor, N.; Newman, A.J.; Mizukami, N.; Clark, M.P. The CAMELS Data Set: Catchment Attributes and Meteorology for Large-Sample Studies. Hydrol. Earth Syst. Sci. 2017, 21, 5293–5313. [Google Scholar] [CrossRef]
- Newman, A.J.; Clark, M.P.; Sampson, K.; Wood, A.; Hay, L.E.; Bock, A.; Viger, R.J.; Blodgett, D.; Brekke, L.; Arnold, J.R.; et al. Development of a Large-Sample Watershed-Scale Hydrometeorological Data Set for the Contiguous USA: Data Set Characteristics and Assessment of Regional Variability in Hydrologic Model Performance. Hydrol. Earth Syst. Sci. 2015, 19, 209–223. [Google Scholar] [CrossRef]
- Liang, X.; Lettenmaier, D.P.; Wood, E.F.; Burges, S.J. A Simple Hydrologically Based Model of Land Surface Water and Energy Fluxes for General Circulation Models. J. Geophys. Res. 1994, 99, 14415–14428. [Google Scholar] [CrossRef]
- Samaniego, L.; Kumar, R.; Attinger, S. Multiscale Parameter Regionalization of a Grid-Based Hydrologic Model at the Mesoscale. Water Resour. Res. 2010, 46, W05523. [Google Scholar] [CrossRef]
- Mizukami, N.; Clark, M.P.; Newman, A.J.; Wood, A.W.; Gutmann, E.D.; Nijssen, B.; Rakovec, O.; Samaniego, L. Towards Seamless Large-Domain Parameter Estimation for Hydrologic Models. Water Resour. Res. 2017, 53, 8020–8040. [Google Scholar] [CrossRef]
- Rakovec, O.; Mizukami, N.; Kumar, R.; Newman, A.J.; Thober, S.; Wood, A.W.; Clark, M.P.; Samaniego, L. Diagnostic Evaluation of Large-Domain Hydrologic Models Calibrated Across the Contiguous United States. J. Geophys. Res. 2019, 124, 13991–14007. [Google Scholar] [CrossRef]
- Xu, T.; Liang, F. Machine Learning for Hydrologic Sciences: An Introductory Overview. WIREs Water 2021, 8, e1533. [Google Scholar] [CrossRef]
- De la Fuente, L.A.; Ehsani, M.R.; Gupta, H.V.; Condon, L.E. Toward Interpretable LSTM-Based Modeling of Hydrological Systems. Hydrol. Earth Syst. Sci. 2024, 28, 945–971. [Google Scholar] [CrossRef]
Categories | Characteristics | Models | Strengths | Weaknesses |
---|---|---|---|---|
Traditional methods |
| SAC-SMA, SWAT, VIC, mHM, HBV |
|
|
Data-driven methods |
| CNNs, LSTMs, Transformers |
|
Category | Attribute | Description |
---|---|---|
Climate | p-mean | Mean daily precipitation. |
pet-mean | Mean daily potential evapotranspiration. | |
aridity | Ratio of mean PET to mean precipitation. Seasonality and timing of precipitation. Estimated by representing annual precipitation and temperature as sin waves. Positive (negative) values. | |
p-seasonality | Seasonality and timing of precipitation. The positive (negative) values indicate that precipitation peaks in summer (winter), values close to 0 indicate uniform precipitation throughout the year. | |
frac-snow-daily | Fraction of precipitation falling on days with temperatures below 0 °C | |
high-prec-freq | Frequency of high precipitation days (⩾5 times mean daily precipitation). | |
high-prec-dur | Average duration of high precipitation events (number of consecutive days with ⩾5 times mean daily precipitation). | |
low-prec-freq | Frequency of dry days (<1 mm/day). | |
low-prec-dur | Average duration of dry periods (number of consecutive days with precipitation < 1 mm/day). | |
Topography | elev_mean | Catchment mean elevation. |
slope-mean | Catchment mean slope. | |
area-gages2 | Catchment area. | |
Vegetation | forest-frac | Forest fraction. |
lai-max | Maximum monthly mean of leaf area index. | |
lai-diff | Difference between the max. and min. mean of the leaf area index. | |
gvf-max | Maximum monthly mean of green vegetation fraction. | |
gvf-diff | Difference between the maximum and minimum monthly mean of the green vegetation fraction. | |
Soil | soil-depth-pelletier | Depth to bedrock (maximum 50 m). |
soil-depth-statsgo | Soil depth (maximum 1.5 m). | |
soil-porosity | Volumetric porosity. | |
soil-conductivity | Saturated hydraulic conductivity. | |
max-water-content | Maximum water content of the soil. | |
sand-frac | Fraction of sand in the soil. | |
silt-frac | Fraction of silt in the soil. | |
clay-frac | Fraction of clay in the soil. | |
Geology | carb-rocks-frac | Fraction of the catchment area characterized as “Carbonate sedimentary rocks”. |
geol-permeability | Surface permeability (log10). |
Hyperparameters | Value |
---|---|
K | 3 |
Epoch | 30 |
Batch size | 512 |
Dropout rate | 0.1 |
Initial learning rate | 0.001 |
Sequence length (Meteorology) | 22 |
Label length (Streamflow) | 15 |
Predict length (Streamflow) | 7 |
Dimension of the model inputs | 32 |
Dimension of the hidden layers | 64 |
Number of encoder and decoder layers | 2 |
Number of inception blocks’ kernels | 6 |
Evaluation Metric | 1st-day-ahead | 2nd-day-ahead | 3rd-day-ahead | ||||||||||||
E1 1 | E2 2 | T1 3 | T2 4 | E1 | E2 | T1 | T2 | E1 | E2 | T1 | T2 | ||||
Mean of NSE | 0.781 6 | 0.700 7 | 0.751 | 0.677 | 0.740 | 0.636 | 0.720 | 0.613 | 0.724 | 0.608 | 0.687 | 0.581 | |||
Median of NSE | 0.805 | 0.729 | 0.787 | 0.721 | 0.759 | 0.671 | 0.746 | 0.651 | 0.743 | 0.655 | 0.717 | 0.637 | |||
Failures 5 | 0 | 2 | 0 | 6 | 1 | 8 | 1 | 10 | 1 | 11 | 1 | 12 | |||
4td-day-ahead | 5td-day-ahead | 6td-day-ahead | 7td-day-ahead | ||||||||||||
E1 | E2 | T1 | T2 | E1 | E2 | T1 | T2 | E1 | E2 | T1 | T2 | E1 | E2 | T1 | T2 |
0.711 | 0.597 | 0.682 | 0.567 | 0.706 | 0.588 | 0.677 | 0.564 | 0.699 | 0.595 | 0.673 | 0.556 | 0.691 | 0.580 | 0.661 | 0.550 |
0.735 | 0.637 | 0.707 | 0.622 | 0.728 | 0.639 | 0.701 | 0.616 | 0.725 | 0.627 | 0.698 | 0.606 | 0.714 | 0.613 | 0.686 | 0.599 |
2 | 8 | 1 | 10 | 3 | 11 | 1 | 10 | 4 | 6 | 1 | 12 | 2 | 8 | 1 | 10 |
Nth-Day-Ahead | Attributes | Model | NSE | RMSE | ATPE-2% | KGE | ||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | Median | Mean | Median | Mean | Median | Mean | Median | |||
1 | with | ED-TimesNet | 0.781 2 | 0.805 | 1.306 | 1.105 | 0.311 | 0.308 | 0.812 | 0.844 |
RR-Former | 0.769 | 0.808 | 1.310 | 1.108 | 0.323 | 0.311 | 0.768 | 0.832 | ||
LSTM | 0.692 | 0.730 | 1.498 | 1.280 | 0.387 | 0.358 | 0.720 | 0.770 | ||
VIC 1 | 0.168 | 0.306 | 2.403 | 2.071 | 0.670 | 0.681 | 0.140 | 0.256 | ||
mHM 1 | 0.441 | 0.527 | 1.993 | 1.702 | 0.565 | 0.550 | 0.402 | 0.468 | ||
without | ED-TimesNet | 0.700 3 | 0.729 | 1.500 | 1.315 | 0.378 | 0.376 | 0.737 | 0.765 | |
RR-Former | 0.687 | 0.752 | 1.417 | 1.240 | 0.354 | 0.345 | 0.749 | 0.818 | ||
2 | with | ED-TimesNet | 0.740 | 0.759 | 1.416 | 1.216 | 0.357 | 0.353 | 0.764 | 0.796 |
RR-Former | 0.717 | 0.758 | 1.421 | 1.225 | 0.356 | 0.343 | 0.759 | 0.807 | ||
without | ED-TimesNet | 0.636 | 0.671 | 1.623 | 1.451 | 0.427 | 0.428 | 0.765 | 0.717 | |
RR-Former | 0.607 | 0.697 | 1.547 | 1.363 | 0.403 | 0.397 | 0.699 | 0.761 | ||
3 | with | ED-TimesNet | 0.724 | 0.743 | 1.458 | 1.255 | 0.378 | 0.375 | 0.744 | 0.771 |
RR-Former | 0.702 | 0.745 | 1.450 | 1.253 | 0.364 | 0.353 | 0.739 | 0.793 | ||
without | ED-TimesNet | 0.608 | 0.655 | 1.664 | 1.488 | 0.439 | 0.436 | 0.682 | 0.707 | |
RR-Former | 0.568 | 0.686 | 1.595 | 1.412 | 0.419 | 0.410 | 0.681 | 0.747 | ||
4 | with | ED-TimesNet | 0.711 | 0.735 | 1.486 | 1.284 | 0.387 | 0.377 | 0.740 | 0.770 |
RR-Former | 0.693 | 0.733 | 1.486 | 1.288 | 0.374 | 0.363 | 0.728 | 0.778 | ||
without | ED-TimesNet | 0.597 | 0.637 | 1.699 | 1.498 | 0.449 | 0.448 | 0.675 | 0.702 | |
RR-Former | 0.523 | 0.668 | 1.630 | 1.435 | 0.425 | 0.407 | 0.679 | 0.752 | ||
5 | with | ED-TimesNet | 0.706 | 0.728 | 1.498 | 1.302 | 0.384 | 0.375 | 0.740 | 0.778 |
RR-Former | 0.694 | 0.732 | 1.501 | 1.285 | 0.385 | 0.373 | 0.704 | 0.755 | ||
without | ED-TimesNet | 0.588 | 0.639 | 1.719 | 1.505 | 0.460 | 0.454 | 0.663 | 0.691 | |
RR-Former | 0.523 | 0.665 | 1.647 | 1.459 | 0.432 | 0.413 | 0.670 | 0.743 | ||
6 | with | ED-TimesNet | 0.699 | 0.725 | 1.518 | 1.315 | 0.394 | 0.387 | 0.728 | 0.761 |
RR-Former | 0.690 | 0.730 | 1.497 | 1.304 | 0.380 | 0.363 | 0.727 | 0.778 | ||
without | ED-TimesNet | 0.595 | 0.627 | 1.735 | 1.545 | 0.470 | 0.470 | 0.649 | 0.668 | |
RR-Former | 0.500 | 0.657 | 1.665 | 1.483 | 0.444 | 0.428 | 0.640 | 0.718 | ||
7 | with | ED-TimesNet | 0.691 | 0.714 | 1.542 | 1.320 | 0.399 | 0.387 | 0.723 | 0.760 |
RR-Former | 0.682 | 0.725 | 1.520 | 1.321 | 0.373 | 0.356 | 0.714 | 0.766 | ||
without | ED-TimesNet | 0.580 | 0.613 | 1.763 | 1.559 | 0.470 | 0.471 | 0.644 | 0.672 | |
RR-Former | 0.463 | 0.640 | 1.694 | 1.520 | 0.450 | 0.434 | 0.636 | 0.719 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, W.; Dang, X.; Zhang, R. Empowering Regional Rainfall-Runoff Modeling Through Encoder–Decoder Based on Convolutional Neural Networks. Water 2025, 17, 339. https://doi.org/10.3390/w17030339
Jiang W, Dang X, Zhang R. Empowering Regional Rainfall-Runoff Modeling Through Encoder–Decoder Based on Convolutional Neural Networks. Water. 2025; 17(3):339. https://doi.org/10.3390/w17030339
Chicago/Turabian StyleJiang, Wei, Xupeng Dang, and Rui Zhang. 2025. "Empowering Regional Rainfall-Runoff Modeling Through Encoder–Decoder Based on Convolutional Neural Networks" Water 17, no. 3: 339. https://doi.org/10.3390/w17030339
APA StyleJiang, W., Dang, X., & Zhang, R. (2025). Empowering Regional Rainfall-Runoff Modeling Through Encoder–Decoder Based on Convolutional Neural Networks. Water, 17(3), 339. https://doi.org/10.3390/w17030339