An Overview of Historical Development, Current Situation, and Future Prospects of Managed Aquifer Recharge in Türkiye
Abstract
:1. Introduction
2. MAR Definition and Classification
3. Historical Development of MAR in the World
4. The Water Potential and Aquifer Types in Türkiye
5. Managed Aquifer Recharge in Türkiye
5.1. Historical Development of MAR in Türkiye
5.2. Current Situation and Future Potential of MAR in Türkiye
6. Limitations and Opportunities in MAR
7. Historical Development of Water Policy and Legal Framework
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Korkut, M.; Hartog, N.; Yavuz, V.; Öztaş, T. Managed Aquifer Recharge (MAR) in Turkey: Historical Evolution, Current Status, and Future Prospects. In Proceedings of the American Geophysical Union (AGU), Washington, DC, USA, 9–13 December 2024; Available online: https://agu24.ipostersessions.com/Default.aspx?s=50-B8-7D-A4-FB-5B-21-E9-A4-72-AD-25-A3-3D-39-FB&pdfprint=true&guestview=true (accessed on 20 January 2025).
- Zheng, Y.; Vanderzalm, J.; Hartog, N.; Escalante, E.F.; Stefan, C. The 21st Century Water Quality Challenges for Managed Aquifer Recharge: Towards a Risk-Based Regulatory Approach. Hydrogeol. J. 2023, 31, 31–34. [Google Scholar] [CrossRef] [PubMed]
- Gale, I. Strategies for Managed Aquifer Recharge (MAR) in Semi-Arid Areas; UNESCO: Paris, France, 2005. [Google Scholar]
- Dillon, P. Future Management of Aquifer Recharge. Hydrogeol. J. 2005, 13, 313–316. [Google Scholar] [CrossRef]
- Dillon, P.; Pavelic, P.; Page, D.; Beringen, H.; Ward, J. Managed Aquifer Recharge: An Introduction, Waterlines Report Series No. 13; National Water Commission: Canberra, Australia, 2009; 65p. [Google Scholar]
- Hartog, N.; Stuyfzand, P.J. Water Quality Considerations on the Rise as the Use of Managed Aquifer Recharge Systems Widens. Water 2017, 9, 808. [Google Scholar] [CrossRef]
- MAR Portal. Available online: https://ggis.un-igrac.org/catalogue/#/map/1233 (accessed on 19 December 2024).
- Sprenger, C.; Hartog, N.; Hernández, M.; Vilanova, E.; Grützmacher, G.; Scheibler, F.; Hannappel, S. Inventory of Managed Aquifer Recharge Sites in Europe: Historical Development, Current Situation and Perspectives. Hydrogeol. J. 2017, 25, 1909. [Google Scholar] [CrossRef]
- Dillon, P.; Stuyfzand, P.; Grischek, T.; Lluria, M.; Pyne, R.; Jain, R.; Bear, J.; Schwarz, J.; Wang, W.; Fernandez, E. Sixty Years of Global Progress in Managed Aquifer Recharge. Hydrogeol. J. 2019, 27, 1–30. [Google Scholar] [CrossRef]
- Stefan, C.; Ansems, N. Web-Based Global Inventory of Managed Aquifer Recharge Applications. Sustain. Water Resour. Manag. 2018, 4, 153–162. [Google Scholar] [CrossRef]
- Bonilla Valverde, J.P.; Stefan, C.; Palma Nava, A.; Bernardo da Silva, E.; Pivaral Vivar, H.L. Inventory of Managed Aquifer Recharge Schemes in Latin America and the Caribbean. Sustain. Water Resour. Manag. 2018, 4, 163–178. [Google Scholar] [CrossRef]
- Pavelic, P.; Brindha, K.; Amarnath, G.; Eriyagama, N.; Muthuwatta, L.; Smakhtin, V.; Gangopadhyay, P.K.; Malik, R.P.S.; Mishra, A.; Sharma, B.R. Controlling Floods and Droughts through Underground Storage: From Concept to Pilot Implementation in the Ganges River Basin; International Water Management Institute (IWMI): Colombo, Sri Lanka, 2015; Volume 165, ISBN 92-9090-831-9. [Google Scholar]
- Margot, J.; van der Gun, J. Groundwater Around the World; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Bouwer, H. Artificial Recharge of Groundwater: Hydrogeology and Engineering. Hydrogeol. J. 2002, 10, 121–142. [Google Scholar] [CrossRef]
- Tuinhof, A.; Heederik, J.P. Management of Aquifer Recharge and Subsurface Storage: Making Better Use of Our Largest Reservoir: Seminar, Wageningen, 18–19 December 2002; Netherlands National Committee: Amsterdam, The Netherlands, 2003; ISBN 90-808258-1-6. [Google Scholar]
- Topper, R.E.; Barkmann, P.E.; Bird, D.A.; Sares, M.A.; Young, G.; Keller, J.; Duchene, H.; Carlson, J.; Wait, T.; Greenman, C. Artificial Recharge of Ground Water in Colorado: A Statewide Assessment; Colorado Geological Survey Publications: Golden, CO, USA, 2004. [Google Scholar]
- Asano, T. Artificial Recharge of Groundwater; Elsevier: Amsterdam, The Netherlands, 2016; ISBN 1-4831-6320-2. [Google Scholar]
- Maliva, R.; Missimer, T. Arid Lands Water Evaluation and Management; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; ISBN 3-642-29104-X. [Google Scholar]
- Pyne, R.D.G. Aquifer Storage Recovery: A Guide to Groundwater Recharge through Wells; ASR Systems: Bristol, TN, USA, 2005. [Google Scholar]
- Rambags, F.; Raat, K.J.; Zuurbier, K.G.; van den Berg, G.A.; Hartog, N. Aquifer Storage and Recovery (ASR). Design and Operational Experiences for Water Storage. Geochemistry 2013, 27, 2435–2452. [Google Scholar]
- Maliva, R.G.; Maliva, R.G. Anthropogenic Aquifer Recharge and Water Quality; Springer: Berlin/Heidelberg, Germany, 2020; ISBN 3-030-11083-4. [Google Scholar]
- Manual, A. Manual on Artificial Recharge of Groundwater Central Ground Water Board; Ministry of Water Resources, Government of India: New Delhi, India, 2007; pp. 1–198. [Google Scholar]
- Todd, D.K.; Mays, L.W. Groundwater Hydrology; John Wiley & Sons: Hoboken, NJ, USA, 2004; ISBN 0-471-05937-4. [Google Scholar]
- Asano, T.; Cotruvo, J.A. Groundwater Recharge with Reclaimed Municipal Wastewater: Health and Regulatory Considerations. Water Res. 2004, 38, 1941–1951. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Xu, Y.; Kanyerere, T. A Review of the Managed Aquifer Recharge: Historical Development, Current Situation and Perspectives. Phys. Chem. Earth Parts A/B/C 2020, 118, 102887. [Google Scholar] [CrossRef]
- Rinck-Pfeiffer, S.; Pitman, C.; Dillon, P. Stormwater ASR in Practice and ASTR (Aquifer Storage Transfer and Recovery) under Investigation in Salisbury, South Australia. In Proceedings of the 5th International Symposium on Management of Aquifer Recharge ISMAR5, Berlin, Germany, 11–16 June 2005. [Google Scholar]
- Escalante, E.F. DINA-MAR: La Gestión de La Recarga de Acuíferos en el Marco del Desarrollo Sostenible: Desarrollo Tecnológico; GRAFINAT: Boston, MA, USA, 2010; ISBN 84-614-5123-6. [Google Scholar]
- Baurne, G. “Trap-Dams”: Artificial Subsurface Storage of Water. Water Int. 1984, 9, 2–9. [Google Scholar] [CrossRef]
- Nilsson, Å. Groundwater Dams for Small-Scale Water Supply; Intermediate Technology Publications: London, UK, 1988; ISBN 1-85339-050-X. [Google Scholar]
- Van Haveren, B.P. Dependable Water Supplies from Valley Alluvium in Arid Regions. Environ. Monit. Assess. 2004, 99, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Aerts, J.; Lasage, R.; Beets, W.; de Moel, H.; Mutiso, G.; Mutiso, S.; de Vries, A. Robustness of Sand Storage Dams under Climate Change. Vadose Zone J. 2007, 6, 572–580. [Google Scholar] [CrossRef]
- Bhalerao, S.A.; Kelkar, T.S. Artificial Recharge of Groundwater: A Novel Technique for Replenishment of an Aquifer with Water from the Land Surface. Int. J. Geol. Earth Environ. Sci. 2013, 3, 165–183. [Google Scholar]
- Wang, W.; Zhou, Y.; Sun, X.; Wang, W. Development of Managed Aquifer Recharge in China. Bol Geol Min 2014, 125, 227–233. [Google Scholar]
- Gammie, G.; De Bievre, B.; Guevara, O. Assessing Green Interventions for the Water Supply of Lima, Peru; Forest Trends: Washington, DC, USA, 2015. [Google Scholar]
- Fernandez-Escalante, A.; Garcia, M.; Villarroya, F. The “Careos” from Alpujarra (Granada, Spain), a Historical Example of Artificial Recharge Previous to XIII Century Applicable to the XXI Century. Characterization and Inventory. In Proceedings of the InISMAR 5 Proceedings, 5th International Symposium on Management of Aquifer Recharge, Berlin, Germany, 11–16 June 2005. [Google Scholar]
- Martos-Rosillo, S.; Ruiz-Constán, A.; González-Ramón, A.; Mediavilla, R.; Martín-Civantos, J.M.; Martínez-Moreno, F.J.; Jódar, J.; Marín-Lechado, C.; Medialdea, A.; Galindo-Zaldívar, J. The Oldest Managed Aquifer Recharge System in Europe: New Insights from the Espino Recharge Channel (Sierra Nevada, Southern Spain). J. Hydrol. 2019, 578, 124047. [Google Scholar] [CrossRef]
- Ray, C.; Melin, G.; Linsky, R. Riverbank Filtration: Improving Source-Water Quality, v. 43; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2003; 365p. [Google Scholar]
- Innern, B. Künstliche Grundwasseranreicherung: Stand der Technik und des Wissens in der Bundesrepublik Deutschland; Erich Schmidt Verlag: Berlin, Germany, 1985. [Google Scholar]
- Weeks, E. A Historical Overview of Hydrologic Studies of Artificial Recharge in the US Geological Survey. In Proceedings of the U.S. Geological Survey Artificial Recharge Workshop Proceedings, Sacramento, CA, USA, 2–4 April 2002; pp. 2–4. [Google Scholar]
- Charlesworth, P.; Narayan, K.; Bristow, K.; Lowis, B.; Laidlow, G.; McGowan, R. The Burdekin Delta—Australia’s Oldest Artificial Recharge Scheme. In Management of Aquifer Recharge for Sustainability; CRC Press: Boca Raton, FL, USA, 2020; pp. 347–352. [Google Scholar]
- Wang, W.; Sun, X.; Xu, Y. Recent Advances in Managed Aquifer Recharge in China; IEEE: New York, NY, USA, 2010; Volume 2, pp. 516–519. [Google Scholar]
- Liu, P. Recharge Water. Recharge Water Has Not Polluted Mineral Water for Drinking in Shanghai. Shanghai Geol. 2000, 3, 62. [Google Scholar]
- Zaisheng, H.; Jiurong, L.; Kun, W. Rejection of Geothermal Water in Beijing and Tianjing Areas of China. In Proceedings of the China-Australia Managed Aquifer Recharge Training Workshop, Jinan, China, 27–31 October 2008; pp. 149–160. [Google Scholar]
- Republic of Türkiye Ministry of Agriculture and Forestry. DSİ 2024 Yılı Performans Program; Republic of Türkiye Ministry of Agriculture and Forestry: Ankara, Turkey, 2024; p. 88. [Google Scholar]
- Brown, A.; Matlock, M.D. A Review of Water Scarcity Indices and Methodologies. White Pap. 2011, 106, 19. [Google Scholar]
- Altinbilek, D.; Hatipoglu, M.A. Water Resources Development. In Water Resources of Turkey; Springer: Berlin/Heidelberg, Germany, 2020; pp. 61–84. [Google Scholar]
- Zhang, Z.; Chen, X.; Huang, Y.; Zhang, Y. Effect of Catchment Properties on Runoff Coefficient in a Karst Area of Southwest China. Hydrol. Process. 2014, 28, 3691–3702. [Google Scholar] [CrossRef]
- Liu, W.; Li, Z.; Zhu, J.; Xu, C.; Xu, X. Dominant Factors Controlling Runoff Coefficients in Karst Watersheds. J. Hydrol. 2020, 590, 125486. [Google Scholar] [CrossRef]
- DSI. 2023 Yılı Resmi Su Kaynakları İstatistikleri 2023. Available online: https://www.dsi.gov.tr/Sayfa/Detay/1916 (accessed on 20 January 2025).
- Yazicigil, H.; Ekmekci, M. Groundwater. In Water Resources of Turkey; Springer: Berlin/Heidelberg, Germany, 2020; pp. 159–201. [Google Scholar]
- Ekmekçi, M. Review of Turkey Karst with Emphasis on Tentonic and Paleogeoraphic Controls. Acta Corsologica 2003, 32, 2. [Google Scholar]
- Ross, A.; Hasnain, S. Factors Affecting the Cost of Managed Aquifer Recharge (MAR) Schemes. Sustain. Water Resour. Manag. 2018, 4, 179–190. [Google Scholar] [CrossRef]
- Parise, M.; Ravbar, N.; Živanović, V.; Mikszewski, A.; Kresic, N.; Mádl-Szőnyi, J.; Kukurić, N.; Parise, M.; Ravbar, N.; Živanović, V. Hazards in Karst and Managing Water Resources Quality. In Karst Aquifers—Characterization and Engineering; Springer: Berlin/Heidelberg, Germany, 2015; pp. 601–687. [Google Scholar]
- Öztaş, T. Hızlı Kentleşmenin Yüzeysuları ve Yeraltısuları Üzerindeki Etkilerinin İstanbul Bakırköy Su Havzası Örneğinde İncelenmesi ve Bakırköy Sutaşırındaki Sorunların Çözümünde Yapay Besleme Yönteminin Yeri. In Proceedings of the Su ve Çevre Sempozyumu, TMMOB Jeoloji Mühendisleri Odası, İstanbul, Turkey, 2–5 June 1997; pp. 19–36. [Google Scholar]
- Turner, R.K. Economic Valuation of Water Resources in Agriculture: From the Sectoral to a Functional Perspective of Natural Resource Management; Food & Agriculture Org.: Rome, Italy, 2004; Volume 27, ISBN 92-5-105190-9. [Google Scholar]
- Ross, A. Groundwater Governance in Australia, the European Union and the Western USA. In Integrated Groundwater Management: Concepts, Approaches and Challenges; Springer: Cham, Switzerland, 2016; pp. 145–171. [Google Scholar]
- Turan, E.; Bayrakdar, E. Türkiye’nin Su Yönetim Politikaları: Ulusal Güvenlik Açısından Bir Değerlendirme. Uluslararası Polit. Araştırmalar Derg. 2020, 6, 1–19. [Google Scholar] [CrossRef]
- Erguvanlı, K.; Yüzer, E. Yeraltısuları Jeolojisi (Hidrojeoloji); İstanbul Teknik Üniversitesi Kütüphanesi: İstanbul, Turkey, 1973. [Google Scholar]
- Peksezer, A. Artificial Recharge of Groundwater in Küçük Menderes River Basin, Turkey. Master’s Thesis, Middle East Technical University, Ankara, Turkey, 2010. [Google Scholar]
- Sayit, A.P.; Yazicigil, H. Assessment of Artificial Aquifer Recharge Potential in the Kucuk Menderes River Basin, Turkey. Hydrogeol. J. 2012, 4, 755–766. [Google Scholar] [CrossRef]
- Sahin, Y.; Tayfur, G. 3D Modelling of Surface Spreading and Underground Dam Groundwater Recharge: Egri Creek Subbasin, Turkey. Environ. Monit. Assess. 2023, 195, 688. [Google Scholar] [CrossRef] [PubMed]
- Sakiyan, J.; Yazicigil, H. Sustainable Development and Management of an Aquifer System in Western Turkey. Hydrogeol. J. 2004, 12, 66–80. [Google Scholar] [CrossRef]
- Öztaş, T.; Dumlu, O.; Vardar, M. İstanbul’da Yitirilmiş Akiferlerin Yeniden Kazanılması—Akiferlerin Yenilenebilmesine Bir Yaklaşım. İstanbul. 1995, pp. 125–132. Available online: https://www.jmo.org.tr/yayinlar/dergi_goster.php?kodu=61&dergi=HABER%20B%DCLTEN%DD (accessed on 20 January 2025).
- Mouhoumed, R.M.; Ekmekcioğlu, Ö.; Özger, M. An Integrated Groundwater Vulnerability and Artificial Recharge Site Suitability Assessment Using GIS Multi-Criteria Decision Making Approach in Kayseri Region, Turkey. Environ. Sci. Pollut. Res. 2024, 31, 39794–39822. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, M. Control of Groundwater by Underground Dams. Master’s Thesis, Middle East Technical University, Ankara, Turkey, 2003. [Google Scholar]
- Apaydın, A.; Demirci Aktaş, S.; Ekinci, O. Su Kaynaklarının Değerlendirilmesinde Farklı Bir Yaklaşım: Yeraltı Barajları. In Proceedings of the II. Ulusal Su Mühendisliği Sempozyumu Bildiriler Kitabı, İzmir, Turkey, 21–24 September 2005; pp. 153–165. [Google Scholar]
- Apaydın, A.; Aktaş, S.D.; Kaya, S. Orta Anadolu Bölgesinde Kuraklıkla Mücadelede Alternatif Öneri: Yeraltı Barajları. İklim Değişikliği Çevre 2009, 2, 13–25. [Google Scholar]
- Apaydın, A. Yer Seçiminden Işletmeye Yeraltı Barajları; DSİ Genel Müdürlüğü: İstanbul, Turkey, 2014. [Google Scholar]
- Kolay, E.; Öztürk, B. Underground Dams in Water Supply: A Case Study. Electron. Lett. Sci. Eng. 2021, 17, 76–88. [Google Scholar]
- Çavdar, P.S. A Tool of Sustainable Control of Groundwater Resources: Underground Dams. Arch. Adv. Eng. Sci. 2024, 1–7. [Google Scholar] [CrossRef]
- Tanık, A.; Öztürk, İ.; Cüceloğlu, G. Arıtılmış Atıksuların Yeniden Kullanımı ve Yağmur Suyu Hasadı Sistemleri; 2. Baskı, Türkiye Belediyeler Birliği, Ankara, Türkiye; April 2016; pp. 1–125. Available online: https://www.researchgate.net/publication/280599382_Aritilmis_Atiksularin_yeniden_Kullanimi_ve_Yagmur_Suyu_Hasadi_Sistemleri_El_Kitabi (accessed on 20 January 2025).
- İrtem, E. Kıyı Akiferlerinde Tuzlanma ve Kıyı Akiferlerinin Yönetimi. In Proceedings of the 6. Ulusal Kıyı Mühendisliği Sempozyumu, İzmir, Turkey, 25–28 October 2007; pp. 25–28. [Google Scholar]
- Apaydın, A. Türkiye’de Yeralti Barajlarinin Uygulanabilirliği ve “Yeralti Barajlari Eylem Plani” Nin Değerlendirilmesi. Konya J. Eng. Sci. 2022, 10, 130–146. [Google Scholar] [CrossRef]
- Republic of Türkiye Ministry of Agriculture and Forestry. DSİ 2023 Yılı Yeraltı Beslemesi Raporu (Report); Republic of Türkiye Ministry of Agriculture and Forestry: Ankara, Turkey, 2023. [Google Scholar]
- Kitiş, M.; Şahinkaya, E.; Köseoğlu, H.; Öztürk, E.; Öztaş, T. Kullanılmış Suların Yeniden Kullanım Uygulamalarına İlişkin Rehber Doküma, Tarım ve Orman Bakanlığı Su Yönetimi Genel Müdürlüğü Ankara, Turkey. 2019. Available online: https://www.tarimorman.gov.tr/SYGM/Belgeler/covid%20-19%20arde%20duyuru/Rehber%20Doküman.pdf (accessed on 20 January 2025).
- Misra, A.K. Rainwater Harvesting and Artificial Recharge of Groundwater. In Groundwater Development and Management: Issues and Challenges in South Asia; Springer: Cham, Switzerland, 2019; pp. 421–439. [Google Scholar]
- Nieder, R.; Benbi, D.K.; Reichl, F.X.; Nieder, R.; Benbi, D.K.; Reichl, F.X. Reactive Water-Soluble Forms of Nitrogen and Phosphorus and Their Impacts on Environment and Human Health. In Soil Components and Human Health; Springer: Dordrecht, The Netherlands, 2018; pp. 223–255. [Google Scholar]
- Mordechay, E.B.; Chefetz, B. Wastewater-Derived Contaminants of Emerging Concern in the Water-Soil-Plant Continuum. In Sample Handling and Trace Analysis of Pollutants; Elsevier: Amsterdam, The Netherlands, 2025; pp. 477–506. [Google Scholar]
- Alam, S.; Borthakur, A.; Ravi, S.; Gebremichael, M.; Mohanty, S.K. Managed Aquifer Recharge Implementation Criteria to Achieve Water Sustainability. Sci. Total Environ. 2021, 768, 144992. [Google Scholar] [CrossRef] [PubMed]
- Said, A.; Mzee, M.A.; Forson, E.D. Modeling Groundwater Vulnerability to Pollution on the Southern Slopes of Kilimanjaro, Tanzania. 2024. Available online: https://ssrn.com/abstract=4921411 (accessed on 20 January 2025).
- Okoli, E.; Akaolisa, C.C.Z.; Ubechu, B.O.; Agbasi, O.E.; Szafarczyk, A. Using VES and GIS-Based DRASTIC Analysis to Evaluate Groundwater Aquifer Contamination Vulnerability in Owerri, Southeastern Nigeria. Ecol. Quest. 2024, 35, 1–27. [Google Scholar] [CrossRef]
- Jasechko, S.; Perrone, D.; Seybold, H.; Fan, Y.; Kirchner, J. Groundwater Level Observations in 250,000 Coastal US Wells Reveal Scope of Potential Seawater Intrusion. Nat. Commun. 2020, 11, 3229. [Google Scholar] [CrossRef]
- Armanuos, A.M.; Al-Ansari, N.; Yaseen, Z.M. Assessing the Effectiveness of Using Recharge Wells for Controlling the Saltwater Intrusion in Unconfined Coastal Aquifers with Sloping Beds: Numerical Study. Sustainability 2020, 12, 2685. [Google Scholar] [CrossRef]
- El-Rawy, M.; Al-Maktoumi, A.; Zekri, S.; Abdalla, O.; Al-Abri, R. Hydrological and Economic Feasibility of Mitigating a Stressed Coastal Aquifer Using Managed Aquifer Recharge: A Case Study of Jamma Aquifer, Oman. J. Arid Land 2019, 11, 148–159. [Google Scholar] [CrossRef]
- Russo, T.A.; Fisher, A.T.; Lockwood, B.S. Assessment of Managed Aquifer Recharge Site Suitability Using a GIS and Modeling. Groundwater 2015, 53, 389–400. [Google Scholar] [CrossRef]
- Abdel Monem, M.A.; Ghandour, I.A.E.; Abdel-Sabour, M. Advancing Groundwater Management and Seawater Intrusion Monitoring in the Middle East and North Africa: Exploring the Potential of Nuclear Tracer Techniques. In Managed Aquifer Recharge in MENA Countries: Developments, Applications, Challenges, Strategies, and Sustainability; Springer: Berlin/Heidelberg, Germany, 2024; pp. 29–45. [Google Scholar]
- Smith, R.G.; Knight, R.; Chen, J.; Reeves, J.A.; Zebker, H.A.; Farr, T.; Liu, Z. Estimating the Permanent Loss of Groundwater Storage in the Southern S an J Oaquin V Alley, C Alifornia. Water Resour. Res. 2017, 53, 2133–2148. [Google Scholar] [CrossRef]
- Seidl, C.; Page, D.; Wheeler, S.A. Using Managed Aquifer Recharge to Address Land Subsidence: Insights from a Global Literature Review. Water Secur. 2024, 23, 100184. [Google Scholar] [CrossRef]
- Smith, R.; Knight, R.; Fendorf, S. Overpumping Leads to California Groundwater Arsenic Threat. Nat. Commun. 2018, 9, 2089. [Google Scholar] [CrossRef] [PubMed]
- Galloway, D.L.; Jones, D.R.; Ingebritsen, S.E. Land Subsidence in the United States; Geological Survey (USGS): Reston, VA, USA, 1999; Volume 1182, ISBN 0-607-92696-1. [Google Scholar]
- Lixin, Y.; Jie, W.; Chuanqing, S.; Guo, J.-W.; Yanxiang, J.; Liu, B. Land Subsidence Disaster Survey and Its Economic Loss Assessment in Tianjin, China. Nat. Hazards Rev. 2010, 11, 35–41. [Google Scholar] [CrossRef]
- Palma Nava, A.; Parker, T.K.; Carmona Paredes, R.B. Challenges and Experiences of Managed Aquifer Recharge in the Mexico City Metropolitan Area. Groundwater 2022, 60, 675–684. [Google Scholar] [CrossRef] [PubMed]
- Faunt, C.C.; Sneed, M.; Traum, J.; Brandt, J.T. Water Availability and Land Subsidence in the Central Valley, California, USA. Hydrogeol. J. 2016, 24, 675. [Google Scholar] [CrossRef]
- Karatzas, G.P. Developments on Modeling of Groundwater Flow and Contaminant Transport. Water Resour. Manag. 2017, 31, 3235–3244. [Google Scholar] [CrossRef]
- Perdikaki, M.; Pouliaris, C.; Makropoulos, C.; Kallioras, A. Simulation of Horizontal Injection Wells in Managed Aquifer Recharge Facilities Using the Conduit Flow Process (CFP) Code for MODFLOW-2005. Environ. Model. Softw. 2022, 148, 105289. [Google Scholar] [CrossRef]
- Ringleb, J.; Sallwey, J.; Stefan, C. Assessment of Managed Aquifer Recharge through Modeling—A Review. Water 2016, 8, 579. [Google Scholar] [CrossRef]
- Meles, M.B.; Bradford, S.; Casillas-Trasvina, A.; Chen, L.; Osterman, G.; Hatch, T.; Ajami, H.; Crompton, O.; Levers, L.; Kisekka, I. Uncovering the Gaps in Managed Aquifer Recharge for Sustainable Groundwater Management: A Focus on Hillslopes and Mountains. J. Hydrol. 2024, 639, 131615. [Google Scholar] [CrossRef]
- Zhou, P.; Qiao, X.; Li, X. Numerical Modeling of the Effects of Pumping on Tide-Induced Groundwater Level Fluctuation and on the Accuracy of the Aquifer’s Hydraulic Parameters Estimated via Tidal Method: A Case Study in Donghai Island, China. J. Hydroinform. 2017, 19, 607–619. [Google Scholar] [CrossRef]
- Sadeghi-Tabas, S.; Samadi, S.Z.; Akbarpour, A.; Pourreza-Bilondi, M. Sustainable Groundwater Modeling Using Single-and Multi-Objective Optimization Algorithms. J. Hydroinform. 2017, 19, 97–114. [Google Scholar] [CrossRef]
- Deng, X.; Li, F.; Zhao, Y.; Li, S. Regulation of Deep Groundwater Based on MODFLOW in the Water Intake Area of the South-to-North Water Transfer Project in Tianjin, China. J. Hydroinform. 2018, 20, 989–1007. [Google Scholar] [CrossRef]
- Elçi, A.; Karadaş, D.; Fıstıkoğlu, O. The Combined Use of MODFLOW and Precipitation-Runoff Modeling to Simulate Groundwater Flow in a Diffuse-Pollution Prone Watershed. Water Sci. Technol. 2010, 62, 180–188. [Google Scholar] [CrossRef]
- Ayvaz, M.T.; Elçi, A. A Groundwater Management Tool for Solving the Pumping Cost Minimization Problem for the Tahtali Watershed (Izmir-Turkey) Using Hybrid HS-Solver Optimization Algorithm. J. Hydrol. 2013, 478, 63–76. [Google Scholar] [CrossRef]
- Kibaroglu, A. The Role of Irrigation Associations and Privatization Policies in Irrigation Management in Turkey. Water Int. 2020, 45, 83–90. [Google Scholar] [CrossRef]
- Yücel, Ç.; Koç, Ü.; Morkoç, A.; Toklu, M.M.; Özmen, M. Developments in the Last 5 Years in Water Management and Protection in the State Water Work of Türkiye; İstanbul Technical University Publications: Istanbul, Turkey, 2021; pp. 595–603. [Google Scholar]
- Kibaroglu, A.; Baskan, A. Turkey’s Water Policy Framework. In Turkey’s Water Policy: National Frameworks and International Cooperation; Springer: Berlin/Heidelberg, Germany, 2011; pp. 3–25. [Google Scholar]
- Sargın, A.H. Yeraltısuları; Ankara; 2010. Available online: https://cdniys.tarimorman.gov.tr/api/File/GetFile/425/KonuIcerik/767/1115/DosyaGaleri/yeraltisulari-kitabi.pdf (accessed on 20 January 2025).
Aim | Main MAR Type | Specific MAR Type |
---|---|---|
Techniques referring primarily to water infiltration | Spreading methods | Infiltration ponds and basins |
Soil Aquifer Treatment (SAT) | ||
Flooding | ||
Ditch, Furrow and Drainage | ||
Excess irrigation | ||
Induced bank infiltration | ||
Well, shaft and borehole recharge | Deep well injection (ASR/ASTR) | |
Dug well/shaft/pit injection | ||
Techniques referring primarily to interception of the water | In-channel modifications | Recharge dams |
Subsurface dams | ||
Sand dams | ||
Channel spreading | ||
Runoff and rainwater harvesting | Barriers and bunds | |
Trenches |
Index (m3/Capita/Year) | Category |
---|---|
>1700 | No stress |
1000–1700 | Stress |
500–1000 | Scarcity |
<500 | Absolute scarcity |
Basin/Basin No. | Catchment Area (km2) | Average Annual Runoff (mm/y) | Average Annual Rainfall (mm/y) | Average Annual Runoff Area (mm/y/km2) | Average Annual Rainfall Area (mm/y/km2) | Runoff/ Rainfall Ratio |
---|---|---|---|---|---|---|
Antalya (9) | 20,081.8 | 617.1 | 768.6 | 0.031 | 0.038 | 0.8 |
Eastern Black Sea (22) | 23,215 | 687.9 | 1000.1 | 0.030 | 0.043 | 0.7 |
Eastern Mediterranean (17) | 21,550.8 | 403.3 | 582.0 | 0.019 | 0.027 | 0.7 |
Seyhan (18) | 21,600.8 | 317.5 | 576.2 | 0.015 | 0.027 | 0.6 |
Western Mediterranean (8) | 21,008.7 | 347.2 | 739.9 | 0.017 | 0.035 | 0.5 |
Çoruh (23) | 20,135.4 | 338.0 | 705.5 | 0.017 | 0.035 | 0.5 |
Ceyhan (20) | 21,609.8 | 345.4 | 649.1 | 0.016 | 0.030 | 0.5 |
Marmara (2) | 23,388.4 | 330.1 | 693.9 | 0.014 | 0.030 | 0.5 |
Western Black Sea (13) | 29,092.9 | 354.2 | 761.1 | 0.012 | 0.026 | 0.5 |
Euphrates-Tigris (21) | 178,775.4 | 307.3 | 565.3 | 0.002 | 0.003 | 0.5 |
Asi (19) | 7864.3 | 202.0 | 829.5 | 0.026 | 0.105 | 0.3 |
North Aegean (4) | 9926.1 | 191.4 | 606.9 | 0.019 | 0.061 | 0.3 |
Van Lake (5) | 18,347.4 | 134.3 | 518.7 | 0.007 | 0.028 | 0.3 |
Susurluk (3) | 23,745.6 | 206.6 | 649.8 | 0.009 | 0.027 | 0.3 |
Aras (24) | 27,774.8 | 161.1 | 483.5 | 0.006 | 0.017 | 0.3 |
Yeşilırmak (14) | 38,557.3 | 170.3 | 538.7 | 0.004 | 0.014 | 0.3 |
Küçük Menderes (6) | 6965.5 | 109.9 | 611.1 | 0.016 | 0.088 | 0.2 |
Meriç Ergene (1) | 14,499.8 | 109.8 | 591.7 | 0.008 | 0.041 | 0.2 |
Gediz (5) | 17,375.3 | 100.7 | 578.5 | 0.006 | 0.033 | 0.2 |
Büyük Menderes (7) | 25,699.4 | 116.6 | 598.7 | 0.005 | 0.023 | 0.2 |
Sakarya (12) | 61,771.1 | 99.5 | 463.8 | 0.002 | 0.008 | 0.2 |
Kızılırmak (15) | 80,984 | 81.7 | 451.3 | 0.001 | 0.006 | 0.2 |
Burdur Lake (10) | 6320.4 | 50.1 | 476.0 | 0.008 | 0.075 | 0.1 |
Akarçay (11) | 7875.5 | 50.8 | 476.3 | 0.006 | 0.060 | 0.1 |
Konya Closed (16) | 51,127.6 | 60.0 | 390.1 | 0.001 | 0.008 | 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korkut, M.; Hartog, N.; Yavuz, V. An Overview of Historical Development, Current Situation, and Future Prospects of Managed Aquifer Recharge in Türkiye. Water 2025, 17, 439. https://doi.org/10.3390/w17030439
Korkut M, Hartog N, Yavuz V. An Overview of Historical Development, Current Situation, and Future Prospects of Managed Aquifer Recharge in Türkiye. Water. 2025; 17(3):439. https://doi.org/10.3390/w17030439
Chicago/Turabian StyleKorkut, Mehmet, Niels Hartog, and Vural Yavuz. 2025. "An Overview of Historical Development, Current Situation, and Future Prospects of Managed Aquifer Recharge in Türkiye" Water 17, no. 3: 439. https://doi.org/10.3390/w17030439
APA StyleKorkut, M., Hartog, N., & Yavuz, V. (2025). An Overview of Historical Development, Current Situation, and Future Prospects of Managed Aquifer Recharge in Türkiye. Water, 17(3), 439. https://doi.org/10.3390/w17030439