Control Effect of a Novel Polyurethane (W-OH) on Colluvial Deposit Slope Erosion in the Benggang Area of Southern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Collection and Treatment of Soil Samples
2.3. Experimental Design and Setup
2.4. Indicator Calculation
- (1)
- Mean weight diameter
- (2)
- Shear strength
- (3)
- Soil detachment capacity
- (4)
- Hydrodynamic parameters
2.5. Data Analysis
3. Results
3.1. The Effects of W-OH on the Physical and Mechanical Properties of Colluvial Deposits
3.2. The Effects of W-OH on Soil Detachment Capacity
3.3. Relationship Among the Soil Detachment Capacity, Physical and Mechanical Properties, and Hydrodynamic Parameters
3.4. Magnitude of the Influences of the Flow Discharge and W-OH Concentration on the Soil Detachment Capacity
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nearing, M.A.; Polyakov, V.O.; Nichols, M.H.; Hernandez, M.; Li, L.; Zhao, Y.; Armendariz, G. Slope–velocity equilibrium and evolution of surface roughness on a stony hillslope. Hydrol. Earth Syst. Sci. 2017, 21, 3221–3229. [Google Scholar] [CrossRef]
- Ran, Q.; Wang, F.; Gao, J. The effect of storm movement on infiltration, runoff and soil erosion in a semi-arid catchment. Hydrol. Process. 2020, 34, 4526–4540. [Google Scholar] [CrossRef]
- Zhang, K.; Xu, X.; Iversen, B.V.; Weber, P.L.; de Jonge, L.W.; Wang, X.; Bai, Y. Effect of different underlying surfaces on hydraulic parameters of overland flow. Soil. Tillage Res. 2023, 232, 105776. [Google Scholar] [CrossRef]
- Di Stefano, C.; Ferro, V. Establishing soil loss tolerance: An overview. J. Agric. Eng. 2016, 47, 127–133. [Google Scholar] [CrossRef]
- Tian, P.; Pan, C.; Xu, X.; Wu, T.; Yang, T.; Zhang, L. A field investigation on rill development and flow hydrodynamics under different upslope inflow and slope gradient conditions. Hydrol. Res. 2020, 51, 1201–1220. [Google Scholar] [CrossRef]
- Poesen, J. Soil erosion in the Anthropocene: Research needs. Earth Surf. Process. Landforms 2018, 43, 64–84. [Google Scholar] [CrossRef]
- Li, Q.; Wang, G.; Wang, H.; Shrestha, S.; Xue, B.; Sun, W.; Yu, J. Macrozoobenthos variations in shallow connected lakes under the influence of intense hydrologic pulse changes. J. Hydrol. 2020, 584, 124755. [Google Scholar] [CrossRef]
- Nyssen, J.; Poesen, J.; Deckers, J. Land degradation and soil and water conservation in tropical highlands. Soil. Tillage Res. 2009, 103, 197–202. [Google Scholar] [CrossRef]
- Tefera, B.; Sterk, G. Land management, erosion problems and soil and water conservation in Fincha’a watershed, western Ethiopia. Land Use Policy 2010, 27, 1027–1037. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, Z.; Govers, G. Soil and water conservation measures reduce soil and water losses in China but not down to background levels: Evidence from erosion plot data. Geoderma 2019, 337, 729–741. [Google Scholar] [CrossRef]
- Qin, X.-C.; Ni, A.-C.; Zhang, N.; Chen, Z.-H. Erosion control and growth promotion of W-OH material on red clay highway slopes: A case study in South China. Sustainability 2021, 13, 1144. [Google Scholar] [CrossRef]
- Wu, S.F.; Wu, P.T.; Feng, H.; Bu, C.F. Influence of amendments on soil structure and soil loss under simulated rainfall China’s loess plateau. Afr. J. Biotechnol. 2010, 9, 6116–6121. [Google Scholar]
- Kumar, A.; Saha, A. Effect of polyacrylamide and gypsum on surface runoff, sediment yield and nutrient losses from steep slopes. Agric. Water Manag. 2011, 98, 999–1004. [Google Scholar] [CrossRef]
- Lentz, R.D. Polyacrylamide and biopolymer effects on flocculation, aggregate stability, and water seepage in a silt loam. Geoderma 2015, 241–242, 289–294. [Google Scholar] [CrossRef]
- Kebede, B.; Tsunekawa, A.; Haregeweyn, N.; Tsubo, M.; Mulualem, T.; Mamedov, A.I.; Meshesha, D.T.; Adgo, E.; Fenta, A.A.; Ebabu, K.; et al. Effect of Polyacrylamide integrated with other soil amendments on runoff and soil loss: Case study from northwest Ethiopia. Int. Soil Water Conserv. Res. 2022, 10, 487–496. [Google Scholar] [CrossRef]
- Wu, Z.; Iwashita, K.; Wu, Z.; Inagaki, H. Experimental study on evaluation and control of ultraviolet resistance of sand stabilized with organic slurry containing hydrophilic polyurethane. J. Soc. Mater. Sci. Jpn. 2008, 57, 1167–1172. [Google Scholar] [CrossRef]
- Gao, W.; Wu, Z.; Wu, Z. Study of Mechanism of the W-OH Sand Fixation. J. Environ. Prot. 2012, 3, 1025–1033. [Google Scholar] [CrossRef]
- Linag, Z.; Wu, Z.; Noori, M.; Yang, C.; Yao, W. A new ecological control method for Pisha sandstone based on hydrophilic polyurethane. J. Arid. Land 2017, 9, 790–796. [Google Scholar] [CrossRef]
- Zhu, X.; Liang, Y.; Tian, Z.; Wang, X.; Qiu, X. Effect of W-OH, a hydrophilic polyurethane polymer, in controlling erosion of two typical erodible soils in southern China. Arab. J. Geosci. 2020, 13, 1163. [Google Scholar] [CrossRef]
- Li, L.; Tang, C.-S.; Xu, J.-J.; Wei, Y.; Dong, Z.-H.; Liu, B.; Zhang, X.-Y.; Shi, B. Exploring an eco-friendly approach to improve soil tensile behavior and cracking resistance. J. Rock Mech. Geotech. Eng. 2024, 16, 4272–4284. [Google Scholar] [CrossRef]
- Liao, Y.; Yuan, Z.; Li, D.; Zheng, M.; Huang, B.; Xie, Z.; Wu, X.; Luo, X. What kind of gully can develop into benggang? CATENA 2023, 225, 107024. [Google Scholar] [CrossRef]
- Liao, Y.; Yuan, Z.; Zhuo, M.; Huang, B.; Nie, X.; Xie, Z.; Tang, C.; Li, D. Coupling effects of erosion and surface roughness on colluvial deposits under continuous rainfall. Soil. Tillage Res. 2019, 191, 98–107. [Google Scholar] [CrossRef]
- Jiang, F.-S.; Huang, Y.-H.; Wang, M.-K.; Lin, J.-S.; Zhao, G.; Ge, H.-L. Effects of rainfall intensity and slope gradient on steep colluvial deposit erosion in Southeast China. Soil Sci. Soc. Am. J. 2014, 78, 1741–1752. [Google Scholar] [CrossRef]
- Zhu, X.; Gao, L.; Wei, X.; Li, T.; Shao, M. Progress and prospect of studies of Benggang erosion in southern China. Geoderma 2023, 438, 116656. [Google Scholar] [CrossRef]
- Gao, C.; Li, P.; Hu, J.; Yan, L.; Latifi, H.; Yao, W.; Hao, M.; Gao, J.; Dang, T.; Zhang, S. Development of gully erosion processes: A 3D investigation based on field scouring experiments and laser scanning. Remote Sens. Environ. 2021, 265, 112683. [Google Scholar] [CrossRef]
- Ni, S.; Zhang, Z.; Wang, J.; Cai, C. Linking rill development characteristics to sediment production on different coarse-textured granite topsoils. CATENA 2022, 214, 106295. [Google Scholar] [CrossRef]
- Jiang, F.; Chen, P.; Zhang, L.; Zhang, Z.; Yang, Q.; Shuai, F.; Li, H.; Lin, J.; Zhang, Y.; Huang, Y. Modeling the sediment transport capacity of rill flow using a soil-rock mixture on steep slopes. J. Hydrol. Reg. Stud. 2023, 49, 101512. [Google Scholar] [CrossRef]
- Shuai, F.; Huang, M.; Zhan, Y.; Zhu, Q.; Li, X.; Zhang, Y.; Lin, J.; Huang, Y.; Jiang, F. Effects of herbaceous plant roots on the soil shear strength of the collapsing walls of benggang in Southeast China. Forests 2022, 13, 1843. [Google Scholar] [CrossRef]
- Zhang, Z.; Tao, C.; Ha, F.; Wang, H.; Shen, H.; Zhang, Y.; Lin, J.; Huang, Y.; Jiang, F. An Experimental Study on the Effects of Sediment Particle Characteristics on the Flow Velocity Correction Factor for Runoff in Steep Nonerodible Rills. Hydrol. Process. 2024, 38, e70010. [Google Scholar] [CrossRef]
- Zhang, L.-T.; Shuai, F.; Chen, L.-B.; Huang, Y.-H.; Lin, J.-S.; Zhang, Y.; Ge, H.-L.; Jiang, F.-S. Effect of gravel content on the detachment of colluvial deposits in Benggang. J. Mt. Sci. 2022, 19, 3088–3104. [Google Scholar] [CrossRef]
- Shen, N.; Wang, Z.; Zhang, Q.; Chen, H.; Wu, B. Modelling soil detachment capacity by rill flow with hydraulic variables on a simulated steep loessial hillslope. Hydrol. Res. 2019, 50, 85–98. [Google Scholar] [CrossRef]
- Dou, H.; Chen, Y.; Sun, Y.; Guo, C. Regional dynamic early warning model for rainfall-induced landslide in Fujian, China. Geomat. Nat. Hazards Risk 2024, 15, 2435510. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, B.; Nearing, M.A.; Huang, C.; Zhang, K. Soil detachment by shallow flow. Trans. ASAE 2002, 45, 351–357. [Google Scholar] [CrossRef]
- Li, G.; Abrahams, A.D.; Atkinson, J.F. Correction factors in the determination of mean velocity of overland flow. Earth Surf. Process. Landf. 1996, 21, 509–515. [Google Scholar] [CrossRef]
- Wu, B.; Wang, Z.; Shen, N.; Wang, S. Modelling sediment transport capacity of rill flow for loess sediments on steep slopes. CATENA 2016, 147, 453–462. [Google Scholar] [CrossRef]
- Garland, G.; Banerjee, S.; Edlinger, A.; Oliveira, E.M.; Herzog, C.; Wittwer, R.; Philippot, L.; Maestre, F.T.; van der Heijden, M.G.A. A closer look at the functions behind ecosystem multifunctionality: A review. J. Ecol. 2021, 109, 600–613. [Google Scholar] [CrossRef]
- Nimmo, J.R.; Perkins, K.S. 2.6 Aggregate stability and size distribution. Methods Soil Anal. Part 4 Phys. Methods 2002, 5, 317–328. [Google Scholar] [CrossRef]
- Yao, C.; Zhang, Q.; Chen, K.; Liu, L.; Wang, H.; Wang, C.; Wu, F. Response of seasonal variation in soil detachment capacity to straw incorporation in sloping farmland on the Loess Plateau. Land Degrad. Dev. 2023, 34, 1740–1751. [Google Scholar] [CrossRef]
- Govers, G.; Everaert, W.; Poesen, J.; Rauws, G.; De Ploey, J.; Lautridou, J.P. A long flume study of the dynamic factors affecting the resistance of a loamy soil to concentrated flow erosion. Earth Surf. Process. Landf. 1990, 15, 313–328. [Google Scholar] [CrossRef]
- Liu, J.-X.; Wang, B.; Duan, X.-W.; Yang, Y.-F.; Liu, G.-B. Seasonal variation in soil erosion resistance to overland flow in gully-filled farmland on the Loess Plateau, China. Soil. Tillage Res. 2022, 218, 105297. [Google Scholar] [CrossRef]
- Li, J.; Liu, Q.; Wang, Y.; Zhang, H.; Li, J.; Wang, K.; Geng, J.; Wang, L.; Fang, N. Systematic evaluation of the effects of the length, depth, and amount of incorporated maize straw on rill flow velocity. J. Hydrol. 2023, 621, 129550. [Google Scholar] [CrossRef]
- Ding, L.; Fu, S.; Liu, B.; Yu, B.; Zhang, G.; Zhao, H. Effects of Pinus tabulaeformis litter cover on the sediment transport capacity of overland flow. Soil. Tillage Res. 2020, 204, 104685. [Google Scholar] [CrossRef]
- Edlinger, A.; Garland, G.; Banerjee, S.; Degrune, F.; García-Palacios, P.; Herzog, C.; Pescador, D.S.; Romdhane, S.; Ryo, M.; Saghaï, A.; et al. The impact of agricultural management on soil aggregation and carbon storage is regulated by climatic thresholds across a 3000 km European gradient. Glob. Change Biol. 2023, 29, 3177–3192. [Google Scholar] [CrossRef]
- Asadi, H.; Moussavi, A.; Ghadiri, H.; Rose, C. Flow-driven soil erosion processes and the size selectivity of sediment. J. Hydrol. 2011, 406, 73–81. [Google Scholar] [CrossRef]
- Ma, W.; Zhao, Z.; Guo, S.; Zhao, Y.; Wu, Z.; Yang, C. Performance evaluation of the polyurethane-based composites prepared with recycled polymer concrete aggregate. Materials 2020, 13, 616. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.Y.; Cao, L.X.; Wu, Z.R.; Chen, C.; Liang, Y. Impact of W-OH on soil detachment rate of colluvial deposits in collapsing hill. Acta Pedol. Sin. 2017, 54, 73–80. [Google Scholar] [CrossRef]
Unit Flow Discharge (×10−3 m2 s−1) | Equation | R2 | p |
---|---|---|---|
0.33 | Dc = −0.007 + 0.053e−0.497C | 0.886 | 0.001 |
0.67 | Dc = −0.003 + 0.524e−1.084C | 0.994 | 0.001 |
1.00 | Dc = −0.061 + 0.909e−0.710C | 0.978 | 0.001 |
1.33 | Dc = −0.097 + 1.501e−0.723C | 0.971 | 0.001 |
2.00 | Dc = −0.219 + 2.434e−0.622C | 0.940 | 0.001 |
2.67 | Dc = −0.176 + 3.200e−0.724C | 0.987 | 0.001 |
W-OH Concentration (%) | ||||||
---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | |
Average soil detachment capacity (kg s−1 m−2) | 1.31 a | 0.7394 ab | 0.158 b | 0.013 b | 0.012 b | 0.007 b |
Reduction rate (%) | - | 42.068 b | 88.134 a | 99.022 a | 99.291 a | 99.555 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Chen, Y.; Zhu, Z.; Meng, Y.; Wu, W.; Zhou, Y.; Zhang, Y.; Lin, J.; Huang, Y.; Jiang, F. Control Effect of a Novel Polyurethane (W-OH) on Colluvial Deposit Slope Erosion in the Benggang Area of Southern China. Water 2025, 17, 548. https://doi.org/10.3390/w17040548
Zhang Z, Chen Y, Zhu Z, Meng Y, Wu W, Zhou Y, Zhang Y, Lin J, Huang Y, Jiang F. Control Effect of a Novel Polyurethane (W-OH) on Colluvial Deposit Slope Erosion in the Benggang Area of Southern China. Water. 2025; 17(4):548. https://doi.org/10.3390/w17040548
Chicago/Turabian StyleZhang, Zhenggang, Yuyang Chen, Zhehao Zhu, Ying Meng, Wei Wu, Yiyang Zhou, Yue Zhang, Jinshi Lin, Yanhe Huang, and Fangshi Jiang. 2025. "Control Effect of a Novel Polyurethane (W-OH) on Colluvial Deposit Slope Erosion in the Benggang Area of Southern China" Water 17, no. 4: 548. https://doi.org/10.3390/w17040548
APA StyleZhang, Z., Chen, Y., Zhu, Z., Meng, Y., Wu, W., Zhou, Y., Zhang, Y., Lin, J., Huang, Y., & Jiang, F. (2025). Control Effect of a Novel Polyurethane (W-OH) on Colluvial Deposit Slope Erosion in the Benggang Area of Southern China. Water, 17(4), 548. https://doi.org/10.3390/w17040548