Novel Hybrid rGO-BC@ZrO2 Composite: A Material for Methylene Blue Adsorption
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
The Chemicals Utilized in This Study Were as Follows
2.2. Preparation of rGO
2.3. Preparation of rGO-BC@ZrO2
2.4. Characterization
2.5. Zero-Point Charge Determination
2.6. Preparation of Stock Solution of MB Dye
2.7. Batch Adsorption Experiments
2.8. Thermodynamics of MB Adsorption on rGO-BC@ZrO2
2.9. Isotherms of MB Adsorption on rGO-BC@ZrO2
2.10. Kinetics of MB Adsorption on rGO-BC@ZrO2
3. Results and Discussion
3.1. Characterization of rGO-BC@ZrO2
3.1.1. pH-zpc Result
3.1.2. Fourier-Transform Infrared (FTIR) Analysis
3.1.3. X-Ray Diffraction (XRD) Analysis
3.1.4. Scanning Electron Microscopy (SEM) and Energy-Dispersive X-Ray (EDX) Analysis
3.1.5. Transmission Electron Microscopy (TEM) Analysis
3.2. Adsorption Analysis
3.2.1. Results of Batch Adsorption Experiments
3.2.2. Temperature Effect and Thermodynamics
3.2.3. Isotherm Analysis
3.2.4. Optimization of Contact Time and Adsorption Kinetics and Mechanism
3.3. Regeneration and Cyclic Use of rGO-BC@ZrO2
3.4. Performance Evaluation of rGO-BC@ZrO2 for MB Adsorption and Comparative Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahamad, A.; Siddiqui, S.I.; Singh, P. (Eds.) Contamination of Water: Health Risk Assessment and Treatment Strategies; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Das, S.; Cherwoo, L.; Singh, R. Decoding dye degradation: Microbial remediation of textile industry effluents. Biotechnol. Notes 2023, 4, 64–76. [Google Scholar] [CrossRef] [PubMed]
- Gajendra, B. Singh, Ankita Vinayak, Gaurav Mudgal, Kavindra Kumar Kesari, Azo dye bioremediation: An interdisciplinary path to sustainable fashion. Environ. Technol. Innov. 2024, 36, 103832. [Google Scholar]
- Al-Tohamy, R.; Ali, S.S.; Li, F.; Okasha, K.M.; Mahmoud, Y.A.-G.; Elsamahy, T.; Jiao, H.; Fu, Y.; Sun, J. A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicol. Environ. Saf. 2022, 231, 113160. [Google Scholar] [CrossRef]
- Dutta, S.; Adhikary, S.; Bhattacharya, S.; Roy, D.; Chatterjee, S.; Chakraborty, A.; Banerjee, D.; Ganguly, A.; Nanda, S.; Rajak, P. Contamination of textile dyes in aquatic environment: Adverse impacts on aquatic ecosystem and human health, and its management using bioremediation. J. Environ. Manag. 2024, 353, 120103. [Google Scholar] [CrossRef] [PubMed]
- Fatima, B.; Siddiqui, S.I.; Ahmad, R.; Linh, N.T.T.; Thai, V. CuO-ZnO-CdWO4: A sustainable and environmentally benign photocatalytic system for water cleansing. Environ. Sci. Pollut. Res. 2021, 28, 53793–53803. [Google Scholar] [CrossRef]
- Fatima, B.; Siddiqui, S.I.; Rajor, H.K.; Malik, M.A.; Narasimharao, K.; Ahmad, R.; Kumar, V.; Taejin, K.; Kim, K.H. Photocatalytic removal of organic dye using green synthesized zinc oxide coupled cadmium tungstate nanocomposite under natural solar light irradiation. Environ. Res. 2023, 216, 114534. [Google Scholar] [CrossRef]
- Fatima, B.; Alwan, B.A.; Siddiqui, S.I.; Ahmad, R.; Almesfer, M.; Khanna, M.K.; Mishra, R.; Ravi, R.; Oh, S. Facile synthesis of cu-zn binary oxide coupled cadmium tungstate (Cu-znbo-cp-ct) with enhanced performance of dye adsorption. Water 2021, 13, 3287. [Google Scholar] [CrossRef]
- Khan, I.; Saeed, K.; Zekker, I.; Zhang, B.; Hendi, A.H.; Ahmad, A.; Ahmad, S.; Zada, N.; Ahmad, H.; Shah, L.A.; et al. Review on Methylene Blue: Its Properties, Uses, Toxicity and Photodegradation. Water 2022, 14, 242. [Google Scholar] [CrossRef]
- Oladoye, P.O.; Ajiboye, T.O.; Omotola, E.O.; Oyewola, O.J. Methylene blue dye: Toxicity and potential elimination technology from wastewater. Res. Eng. 2022, 16, 100678. [Google Scholar] [CrossRef]
- Narasimharao, K.; Al-Thabaiti, S.; Rajor, H.K.; Mokhtar, M.; Alsheshri, A.; Alfaifi, S.Y.; Siddiqui, S.I.; Abdulla, N.K. Fe3O4@ date seeds powder: A sustainable nanocomposite material for wastewater treatment. J. Mater. Res. Technol. 2022, 18, 3581–3597. [Google Scholar] [CrossRef]
- Hamad, H.N.; Idrus, S. Recent developments in the application of bio-waste-derived adsorbents for the removal of methylene blue from wastewater: A review. Polymers 2022, 14, 783. [Google Scholar] [CrossRef]
- Hafeez, S. Chapter 27—Sulfur-based advance nanomaterials for water treatment. In Contamination of Water; Ahamad, A., Siddiqui, S.I., Singh, P., Eds.; Academic Press: Cambridge, MA, USA; Elsevier: Amsterdam, The Netherlands, 2021; pp. 405–416. [Google Scholar]
- Alardhi, S.M.; Ali, N.S.; Saady, N.M.C.; Zendehboudi, S.; Salih, I.K.; Alrubaye, J.M. Separation techniques in different configurations of hybrid systems via synergetic adsorption and membrane processes for water treatment: A review. J. Indus. Eng. Chem. 2024, 130, 91–104. [Google Scholar] [CrossRef]
- Ansari, N.; Ali, A.; Akhtar, M.S.; Hasan, S.; Khatoon, T.; Khan, A.R.; Rahman, Q.I. Green synthesis of zinc oxide marigold shaped clusters using Eucalyptus globulus leaf extract as robust photocatalyst for dyes degradation under sunlight. Mater. Sci. Semicond. Proc. 2024, 173, 108087. [Google Scholar] [CrossRef]
- Wang, X.; Bi, X.; Yao, N.; Elmaci, G.; Ertürk, A.S.; Lv, Q.; Zhao, P.; Meng, X. Doping strategy-tuned non-radical pathway on manganese oxide for catalytic degradation of parabens. Chem. Eng. J. 2022, 442, 136180. [Google Scholar] [CrossRef]
- Alqadami, A.A.; Wabaidur, S.M.; Jeon, B.H.; Khan, M.A. Co-hydrothermal valorization of food waste: Process optimization, characterization, and water decolorization application. Biomass Conv. Bioref. 2024, 14, 15757–15768. [Google Scholar] [CrossRef]
- Misran, E.; Bani, O.; Situmeang, E.M.; Purba, A.S. Banana stem based activated carbon as a low-cost adsorbent for methylene blue removal: Isotherm, kinetics, and reusability. Alex. Eng. J. 2022, 61, 1946–1955. [Google Scholar] [CrossRef]
- Gao, F. An overview of surface-functionalized magnetic nanoparticles: Preparation and application for wastewater treatment. Chem. Select 2019, 4, 6805–6811. [Google Scholar] [CrossRef]
- Hosny, N.M.; Gomaa, I.; Elmahgary, M.G. Adsorption of polluted dyes from water by transition metal oxides: A review. Appl. Surf. Sci. Adv. 2023, 15, 100395. [Google Scholar] [CrossRef]
- Millán-Ramos, B.; Morquecho-Marín, D.; Silva-Bermudez, P.; Ramírez-Ortega, D.; Depablos-Rivera, O.; García-López, J.; Fernández-Lizárraga, M.; Victoria-Hernández, J.; Letzig, D.; Almaguer-Flores, A.; et al. Biocompatibility and electrochemical evaluation of ZrO2 thin films deposited by reactive magnetron sputtering on MgZnCa alloy. J. Magnes. Alloy 2021, 9, 2019–2038. [Google Scholar] [CrossRef]
- Wang, W.; Bi, X.; Chai, T.; Zhao, P.; Yang, J.-L.; Meng, X. Adsorption of Rutin from Aqueous Solution over an OMS-2-Modified ZrO2 Nanocomposite. Chem. Select 2022, 7, e202200902. [Google Scholar] [CrossRef]
- Al-Mhyawi, S.R.; Bader, D.; Bajaber, M.A.; El Dayem, S.M.A.; Ragab, A.H.; El-Rahem, K.A.A.; Gado, M.A.; Atia, B.M.; Cheira, M.F. Zirconium oxide with graphene oxide anchoring for improved heavy metal ions adsorption: Isotherm and kinetic study. J. Mater. Res. Technol. 2023, 22, 3058–3074. [Google Scholar] [CrossRef]
- Martins da Silva, N.V.; Ladeira, A.C.Q.; Furtado, C.A. The use of carboxylated graphene oxides and related materials for the adsorption of metals and dyes: A review. J. Mol. Liq. 2024, 413, 26001. [Google Scholar]
- Ahmed, M.A.; Ahmed, M.A.; Mohamed, A.A. Facile adsorptive removal of dyes and heavy metals from wastewaters using magnetic nanocomposite of zinc ferrite@reduced graphene oxide. Inorg. Chem. Commun. 2022, 144, 109912. [Google Scholar] [CrossRef]
- Joshi, N.C.; Gururani, P. Advances of graphene oxide-based nanocomposite materials in the treatment of wastewater containing heavy metal ions and dyes. Curr. Res. Green Sustain. Chem. 2022, 5, 100306. [Google Scholar] [CrossRef]
- Sharma, G.; AlGarni, T.S.; Kumar, P.S.; Bhogal, S.; Kumar, A.; Sharma, S. Utilization of Ag2O–Al2O3–ZrO2 decorated onto rGO as adsorbent for the removal of Congo red from aqueous solution. Environ. Res. 2021, 197, 111179. [Google Scholar] [CrossRef]
- Javaid, H.; Mustafa, K.; Khan, M.; Iqbal, S.; Ahmad, S.; Rani, M. Fabrication and kinetic evaluation of dye adsorption capability of metal Oxide@RGO nanocomposites integrated cellulose triacetate membranes. Chem. Phys. 2023, 573, 112019. [Google Scholar] [CrossRef]
- Guo, X.; Qu, L.; Tian, M.; Zhu, S.; Zhang, X.; Tang, X.; Sun, K. Chitosan/Graphene Oxide Composite as an Effective Adsorbent for Reactive Red Dye Removal. Water Environ. Res. 2016, 88, 579–588. [Google Scholar] [CrossRef]
- Tara, N.; Siddiqui, S.I.; Bach, Q.V.; Chaudhry, S.A. Reduce graphene oxide-manganese oxide-black cumin-based hybrid composite (rGO-MnO2/BC): A novel material for water remediation. Mater Today Commun. 2020, 25, 101560. [Google Scholar] [CrossRef]
- Tara, N.; Abomuti, M.A.; Alshareef, F.M.; Abdullah, O.; Allehyani, E.S.; Chaudhry, S.A.; Oh, S. Nigella sativa-Manganese Ferrite-Reduced Graphene Oxide-Based Nanomaterial: A Novel Adsorbent for Water Treatment. Molecules 2023, 28, 5007. [Google Scholar] [CrossRef]
- Rathi, G.; Siddiqui, S.I.; Pham, Q. Nigella sativa seeds based antibacterial composites: A sustainable technology for water cleansing-A review. Sustain. Chem. Pharm. 2020, 18, 100332. [Google Scholar] [CrossRef]
- Lima, E.C.; Hosseini-Bandegharaei, A.; Moreno-Piraján, J.C.; Anastopoulos, I. A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption. J. Mol. Liq. 2019, 273, 425–434. [Google Scholar] [CrossRef]
- Jasper, E.E.; Ajibola, V.O.; Onwuka, J.C. Nonlinear regression analysis of the sorption of crystal violet and methylene blue from aqueous solutions onto an agro-waste derived activated carbon. Appl. Water Sci. 2020, 10, 132. [Google Scholar] [CrossRef]
- Aladeokin, O.; Fletcher, A. A novel activated carbon material from peanut shells for the removal of methyl orange and methylene blue dyes from wastewater: Kinetics, isotherms and mechanism. Ads. Sci. Technol. 2024, 42, 02636174241256843. [Google Scholar] [CrossRef]
- Coates, J. Interpretation of Infrared Spectra, A Practical Approach. In Encyclopedia of Analytical Chemistry; Meyers, R.A., McKelvy, M.L., Eds.; John Wiley & Sons, Inc.: Chichester, UK, 2006. [Google Scholar]
- Kenawy, E.R.; Ghfar, A.A.; Wabaidur, S.M.; Khan, M.A.; Siddiqui, M.R.; Alothman, Z.A.; Alqadami, A.A.; Hamid, M. Cetyltrimethylammonium bromide intercalated and branched polyhydroxystyrene functionalized montmorillonite clay to sequester cationic dyes. J. Environ. Manag. 2018, 219, 285–293. [Google Scholar] [CrossRef]
- Horti, N.C.; Kamatagi, M.D.; Nataraj, S.K.; Wari, M.N.; Inamdar, S.R. Structural and optical properties of zirconium oxide (ZrO2) nanoparticles: Effect of calcination temperature. Nano Express 2020, 1, 010022. [Google Scholar] [CrossRef]
- Gurushantha, K.; Anantharaju, K.S.; Renuka, L.; Sharma, S.C.; Nagaswarupa, H.P.; Prashantha, S.C.; Vidya, Y.S.; Nagabhushana, H. New green synthesized reduced graphene oxide–ZrO2 composite as high performance photocatalyst under sunlight. RSC Adv. 2017, 7, 12690. [Google Scholar] [CrossRef]
- Ding, S.; Zhao, J.; Yu, Q. Effect of Zirconia Polymorph on Vapor-Phase Ketonization of Propionic Acid. Catalysts 2019, 9, 768. [Google Scholar] [CrossRef]
- Wei, W.; Yang, L.; Zhong, W.; Cui, J.; Wei, Z. Mechanism of enhanced humic acid removal from aqueous solution using poorly crystalline hydroxyapatite nanoparticles. Digest J. Nanomater. Biostruct. 2015, 10, 663–680. [Google Scholar]
- Wang, X.; Du, X.; Guang, W.; Zhou, J.; Wang, G.; Zhang, D.; Zeng, M. Effect of three-dimensional surface roughness on CH4 adsorption and diffusion in coal nanopores. Phys. Fluids 2024, 36, 112033. [Google Scholar] [CrossRef]
- Radu, R.-D.; Drăgănescu, D. Present and Future of ZrO2 Nanostructure as Reservoir for Drug Loading and Release. Coatings 2023, 13, 1273. [Google Scholar] [CrossRef]
- Alothman, Z.A.; Bahkali, A.H.; Khiyami, M.A.; Alfadul, S.M.; Wabaidur, S.M.; Alam, M.; Alfarhan, B.Z. Low cost biosorbents from fungi for heavy metals removal from wastewater. Sep. Sci. Technol. 2020, 55, 1766–1775. [Google Scholar] [CrossRef]
- Aniyikaiye, T.E.; Oluseyi, T.; Odiyo, J.O.; Edokpayi, J.N. Physico-Chemical Analysis of Wastewater Discharge from Selected Paint Industries in Lagos, Nigeria. Int. J. Environ. Res. Public Health 2019, 16, 1235. [Google Scholar] [CrossRef] [PubMed]
- Chukwuma, O.U.; Uchenna, O.M.; Ogonna, U.S.; Chinedu, O.S. The Effects of Effluents’ Discharge from Some Paint Industries on Soil’s Physicochemical Properties and Bioattenuation of Polluted Soil. Indus. Domes. Waste Manag. 2022, 2, 46–60. [Google Scholar] [CrossRef]
- Sen, T.K. Adsorptive Removal of Dye (Methylene Blue) Organic Pollutant from Water by Pine Tree Leaf Biomass Adsorbent. Processes 2023, 11, 1877. [Google Scholar] [CrossRef]
- Saleh, A.M.; Mahdi, H.H.; Alias, A.B.; Abd Hadi, N.K.; Qarizada, D.; Jawad, A.H.; Saleh, N.M. Equilibrium and kinetic studies in adsorption of H2S using coconut shell activated carbon xerogel: Effect of mass adsorbent and temperature. Desalin. Water Treat. 2024, 317, 100149. [Google Scholar] [CrossRef]
- Nizam, N.U.M.; Hanafiah, M.M.; Mahmoudi, E.; Halim, A.A.; Mohammad, A.W. The removal of anionic and cationic dyes from an aqueous solution using biomass-based activated carbon. Sci. Rep. 2021, 11, 8623. [Google Scholar] [CrossRef]
- Yadav, M.; Singh, N.; Annu; Khan, S.A.; Raorane, C.J.; Shin, D.K. Recent Advances in Utilizing Lignocellulosic Biomass Materials as Adsorbents for Textile Dye Removal: A Comprehensive Review. Polymers 2024, 16, 2417. [Google Scholar] [CrossRef]
- Litefti, K.; Freire, M.S.; Stitou, M.; González-Álvarez, J. Adsorption of an anionic dye (Congo red) from aqueous solutions by pine bark. Sci. Rep. 2019, 9, 16530. [Google Scholar] [CrossRef]
- Saha, P.; Chowdhury, S. Insight into adsorption thermodynamics. Thermodynemics 2011, 16, 349–364. [Google Scholar]
- Horsfall Jnr, M.; Spiff, A.I. Effects of temperature on the sorption of Pb2+ and Cd2+ from aqueous solution by Caladium bicolor (Wild Cocoyam) biomass. Electron. J. Biotechnol. 2005, 8, 43–50. [Google Scholar] [CrossRef]
- Liu, B.; Luo, H.; Rong, H.; Zeng, X.; Wu, K.; Chen, Z.; Lu, H.; Xu, D. Temperature-induced adsorption and desorption of phosphate on poly (acrylic acid-co-N-[3-(dimethylamino) propyl] acrylamide) hydrogels in aqueous solutions. Desalin. Water Treat 2019, 160, 260–267. [Google Scholar] [CrossRef]
- Siddiqui, S.I.; Zohra, F.; Chaudhry, S.A. Nigella sativa seed based nanohybrid composite-Fe2O3–SnO2/BC: A novel material for enhanced adsorptive removal of methylene blue from water. Environ. Res. 2019, 178, 108667. [Google Scholar] [CrossRef]
- Siddiqui, S.I.; Manzoor, O.; Mohsin, M.; Chaudhry, S.A. Nigella sativa seed based nanocomposite-MnO2/BC: An antibacterial material for photocatalytic degradation, and adsorptive removal of Methylene blue from water. Environ. Res. 2019, 171, 328–340. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, S.I.; Chaudhry, S.A. Nigella sativa plant based nanocomposite-MnFe2O4/BC: A 936 non-toxic, antibacterial material for water purification application. J. Clean. Prod. 2018, 200, 996–1008. [Google Scholar] [CrossRef]
- Siddiqui, S.I.; Rathi, G.; Chaudhry, S.A. Acid washed black cumin seed powder preparation for adsorption of methylene blue dye from aqueous solution: Thermodynamic, kinetic and isotherm studies. J. Mol. Liq. 2018, 264, 275–284. [Google Scholar] [CrossRef]
- Abdulla, N.K.; Siddiqui, S.I.; Fatima, B.; Sultana, R.; Tara, N.; Hashmi, A.A.; Ahmad, R.; Mohsin, M.; Nirala, R.K.; Linh, N.T.; et al. Silver based hybrid nanocomposite: A novel antibacterial material for water cleansing. J. Clean. Prod. 2020, 284, 124746. [Google Scholar] [CrossRef]
- Tara, N.; Siddiqui, S.I.; Nirala, R.K.; Abdulla, N.K.; Chaudhry, S.A. Synthesis of antibacterial, antioxidant and magnetic Nigella sativa-graphene oxide based nanocomposite BC-GO@Fe3O4 for water treatment. Colloid Interface Sci. Commun. 2020, 37, 100281. [Google Scholar] [CrossRef]
Analysis | Characterization Techniques | Instrumentations (Model) | City/Country |
---|---|---|---|
Functional group analysis | Fourier-transform infrared (FT-IR) spectroscopy | Vertex 70V, Bruker Optik, FTIR Spectrometer | Ettlingen, Germany |
Crystal phase and size analysis | Powder X-ray diffraction analysis | Rigaku Smart Lab Guidance, Rigaku, X-ray Diffractometer | Tokyo, Japan |
Surface morphology analysis | Scanning electron microscopy (SEM) | SIGMA VP, Zeiss, SEM Microscope | Oberkochen, Germany |
Transmission electron microscopy (TEM) | F30 S-Twin, Tecnai, FEI, TEM Microscope | Hillsboro, OR, USA | |
Elemental composition | Energy-dispersive X-ray spectrometer (EDAX) | SIGMA VP, Zeiss | Oberkochen, Germany |
S. No. | Isotherm Model | Parameters | Temperature (K) | ||
---|---|---|---|---|---|
300 | 308 | 318 | |||
1. | Langmuir isotherm Qe = (Qmax.KLCe)/(1 + KLCe) (Equation (7a)) | Qmax (mg/g) | 23.391 | 24.622 | 25.435 |
2. | KL (L/mg) | 0.358 | 0.248 | 0.185 | |
3. | RL (dimensionless) (RL = 1/(1 + KLCo) (Equation (7b)) | 0.217 | 0.287 | 0.350 | |
4. | χ2 | 0.068 | 0.050 | 0.032 | |
5. | SSR | 5.613 | 4.083 | 2.528 | |
6. | Freundlich isotherm Qe = KFCe1/n (Equation (8)) | KF ((mg/g)(L/mg)n) | 7.482 | 6.602 | 5.603 |
7. | n (dimensionless) | 2.698 | 2.481 | 2.243 | |
8. | χ2 | 0.011 | 0.018 | 0.015 | |
9. | SSR | 0.921 | 1.459 | 1.240 | |
10. | Sips isotherm Qe = (QsKsCens)/(1 + KsCens) (Equation (9)) | Qs (mg/g) | 38.831 | 42.810 | 39.944 |
11. | Ks (L/mg) | 0.227 | 0.166 | 0.141 | |
12. | ns (dimensionless) | 0.575 | 0.599 | 0.675 | |
13. | χ2 | 0.001 | 0.005 | 0.003 | |
14. | SSR | 0.145 | 0.436 | 0.276 |
S. No. | Kinetic Model (Experimental Qe = 4.951 mg/g) | Parameter | MB |
---|---|---|---|
1. | PFO (Qt = Qe (1 − e−K1t)) (Equation (10)) | K1 (/min) | 0.057 |
2. | Qe (cal) (mg/g) | 4.950 | |
3. | SSR | 0.033 | |
4. | χ2 | 0.0009 | |
5 | PSO Qt = (k2Qe2t)/(1 + K2Qet) (Equation (11)) | K2 (g/mg/min) | 0.014 |
6. | Qe (cal) (mg/g) | 5.641 | |
7. | SSR | 0.070 | |
8. | χ2 | 0.002 | |
9. | Elovich Qt = 1/β ln(αβt + 1) (Equation (12)) | α (mg/g/min) | 1.686 |
10. | β (g/mg) | 1.021 | |
11. | SSR | 0.291 | |
12. | χ2 | 0.008 | |
13. | IPD Qt = Kipdt0. 5+ C (Equation (13)) | Kipd (mg/g/min0.5) | 0.440 |
14. | C (mg/g) | 0.913 | |
15. | SSR | 2.829 | |
16. | χ2 | 0.078 |
S. No. | Adsorbent | Initial Concentration (mg/L) | Adsorption Dose (g/L) | Equilibrium Adsorption Capacity (mg/g) | Maximum Adsorption (Langmuir) Capacity (mg/g) | PC (L/g) | Reference |
---|---|---|---|---|---|---|---|
1. | Fe2O3-SnO2/BC | 10 | 2 | 4.90 | 58.82 | 23.89 | [55] |
2. | MnO2/BC | 10 | 1 | 9.83 | 185.185 | 57.48 | [56] |
3. | MnFe2O4/BC | 10 | 3 | 3.31 | 10.07 | 52.57 | [57] |
4. | Acid washed BC | 10 | 1 | 9.81 | 73.53 | 51.63 | [58] |
5. | Ag-Ag2O/ZrO2/GL | 10 | 2 | 4.95 | 43.95 | 50.62 | [59] |
7. | BC-GO@Fe3O4 | 10 | 1 | 9.90 | 87.71 | 77.65 | [60] |
8. | MnFe2O4/rGO-BC | 10 | 1 | 9.86 | 74.62 | 72.03 | [30] |
9. | rGO-BC/MnO2 | 10 | 1 | 9.68 | 232.5 | 30.46 | [31] |
10. | rGO-BC@ZrO2 | 10 | 2 | 4.95 | 23.39 | 51.40 | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tara, N.; Alzahrani, E.A.; Alsebaii, N.M.; Dwivedi, P.; Al-Ghamdi, A.A.; Aldahiri, R.H.; Nguyen, H.T.; Oh, S.; Chaudhry, S.A. Novel Hybrid rGO-BC@ZrO2 Composite: A Material for Methylene Blue Adsorption. Water 2025, 17, 627. https://doi.org/10.3390/w17050627
Tara N, Alzahrani EA, Alsebaii NM, Dwivedi P, Al-Ghamdi AA, Aldahiri RH, Nguyen HT, Oh S, Chaudhry SA. Novel Hybrid rGO-BC@ZrO2 Composite: A Material for Methylene Blue Adsorption. Water. 2025; 17(5):627. https://doi.org/10.3390/w17050627
Chicago/Turabian StyleTara, Nusrat, Elham A. Alzahrani, Naha Meslet Alsebaii, Poonam Dwivedi, Azza A. Al-Ghamdi, Reema H. Aldahiri, Hiep T. Nguyen, Seungdae Oh, and Saif Ali Chaudhry. 2025. "Novel Hybrid rGO-BC@ZrO2 Composite: A Material for Methylene Blue Adsorption" Water 17, no. 5: 627. https://doi.org/10.3390/w17050627
APA StyleTara, N., Alzahrani, E. A., Alsebaii, N. M., Dwivedi, P., Al-Ghamdi, A. A., Aldahiri, R. H., Nguyen, H. T., Oh, S., & Chaudhry, S. A. (2025). Novel Hybrid rGO-BC@ZrO2 Composite: A Material for Methylene Blue Adsorption. Water, 17(5), 627. https://doi.org/10.3390/w17050627