Carbonization of N/P Co-Doped Resin for Metal-Free Catalytic Ozonation of Oxalic Acid
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Synthesis of NPCR
2.3. Characterization Methods
2.4. Catalytic Ozonation for Mineralization of OA
3. Results and Discussion
3.1. Characterization of Synthesized NPCR Catalysts
3.2. Performance of NPCR in Catalytic Ozonation
3.2.1. OA Degradation in NPCR/O3 System
3.2.2. Effects of Operational Parameters on OA Degradation via the NPCR/O3 Process
3.2.3. Salt Tolerance and Stability
3.3. Mechanism
3.3.1. Identification of Generated ROS
3.3.2. Radical Quantification
3.3.3. Catalytic Active Sites
4. Conclusions
- (1)
- In the presence of the optimum NPCR-800 catalyst, OA degradation efficiency substantially increased by around 70% compared to that of sole ozonation within 40 min. Furthermore, the kobs value of the NPCR-800/O3 process is nearly three times higher than that of the GAC/O3 process.
- (2)
- The performance of NPCR displayed noticeable dependency on initial pH, which might be owing to the change of electrostatic force between OA and NPCR under various pH conditions. Fortunately, a significant promotion of NPCR was still observed under neutral conditions compared to the O3 process alone. Additionally, the NPCR catalyst displayed high salinity tolerance and exhibited superior activity after utilizing it five times.
- (3)
- An insight into the mechanism of the NPCR/O3 system was also obtained via analyzing the results of EPR and radical quantification tests. NPCR was verified to be able to promote O3 decomposition to produce •OH, •O2− and 1O2. Except •O2−, both •OH and 1O2 played vital roles in OA degradation.
- (4)
- According to the results of the structure–activity relationship analysis, graphitic N, the defect site and carbonyl/carboxyl groups were affirmed as the major active sites towards OA degradation.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
NPCR | Catalyst by carbonization of the N/P-doped resin |
ROS | Reactive oxygen species |
OA | Oxalic acid |
XRD | X-ray diffraction |
XPS | X-ray photoelectron spectroscopy |
SEM | Scanning electron microscope |
EDS | Energy dispersive spectrometer |
EPR | Electron paramagnetic resonance |
NBT | Nitrotetrazolium blue chloride |
7HC | 7-hydroxycoumarin |
COU | Coumarin |
References
- Yu, Y.; Zhao, Y.; Wang, H.; Tao, P.; Zhang, X.; Shao, M.; Sun, T. Implications of hydrogen peroxide on bromate depression during seawater ozonation. Chemosphere 2021, 280, 130669. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Zhang, Y.; Yin, H.; Wang, J.; Li, A.; Corvini, P.F.-X. Efficient catalytic ozonation over Co-ZFO@Mn-CN for oxalic acid degradation: Synergistic effect of oxygen vacancies and HOO-Mn-NX bonds. Appl. Catal. B 2023, 322, 122085. [Google Scholar] [CrossRef]
- López-Francés, A.; Bernat-Quesada, F.; Cabrero-Antonino, M.; Ferrer, B.; Dhakshinammorthy, A.; Baldoví, H.G.; Navalón, S. Nanographite: A highly active and durable metal-free ozonation catalyst with application in natural waters. Appl. Catal. B 2023, 336, 122924. [Google Scholar] [CrossRef]
- Wang, J.; Chen, H. Catalytic ozonation for water and wastewater treatment: Recent advances and perspective. Sci. Total Environ. 2020, 704, 135249. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yuan, S.; Dai, X.; Dong, B. Application, mechanism and prospects of Fe-based/ Fe-biochar catalysts in heterogenous ozonation process: A review. Chemosphere 2023, 319, 138018. [Google Scholar] [CrossRef] [PubMed]
- Shahmahdi, N.; Dehghanzadeh, R.; Aslani, H.; Bakht Shokouhi, S. Performance evaluation of waste iron shavings (Fe0) for catalytic ozonation in removal of sulfamethoxazole from municipal wastewater treatment plant effluent in a batch mode pilot plant. Chem. Eng. J. 2020, 383, 123093. [Google Scholar] [CrossRef]
- Cai, C.; Duan, X.; Xie, X.; Kang, S.; Liao, C.; Dong, J.; Liu, Y.; Xiang, S.; Dionysiou, D.D. Efficient degradation of clofibric acid by heterogeneous catalytic ozonation using CoFe2O4 catalyst in water. J. Hazard. Mater. 2021, 410, 124604. [Google Scholar] [CrossRef]
- Liu, Z.; Teng, Y.; Xu, Y.; Zheng, Y.; Zhang, Y.; Zhu, M.; Sun, Y. Ozone catalytic oxidation of biologically pretreated semi-coking wastewater (BPSCW) by spinel-type MnFe2O4 magnetic nanoparticles. Sep. Purif. Technol. 2021, 278, 118277. [Google Scholar] [CrossRef]
- Li, P.; Zhan, S.; Yao, L.; Xiong, Y.; Tian, S. Highly porous α-MnO2 nanorods with enhanced defect accessibility for efficient catalytic ozonation of refractory pollutants. J. Hazard. Mater. 2022, 437, 129235. [Google Scholar] [CrossRef]
- Liu, H.; Gao, Y.; Wang, J.; Pan, J.; Gao, B.; Yue, Q. Catalytic ozonation performance and mechanism of Mn-CeO(x)@gamma-Al2O3/O3 in the treatment of sulfate-containing hypersaline antibiotic wastewater. Sci. Total Environ. 2022, 807, 150867. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.L.; Hu, H.Y.; Liu, X.; Shi, H.X.; Zhou, T.H.; Wang, C.; Huo, Z.Y.; Wu, Q.Y. Combination of catalytic ozonation by regenerated granular activated carbon (rGAC) and biological activated carbon in the advanced treatment of textile wastewater for reclamation. Chemosphere 2019, 231, 369–377. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Restivo, J.; Órfão, J.J.M.; Pereira, M.F.R.; Lapkin, A.A. The role of multiwalled carbon nanotubes (MWCNTs) in the catalytic ozonation of atrazine. Chem. Eng. J. 2014, 241, 66–76. [Google Scholar] [CrossRef]
- Zhang, F.; Wu, K.; Zhou, H.; Hu, Y.; Sergei, P.; Wu, H.; Wei, C. Ozonation of aqueous phenol catalyzed by biochar produced from sludge obtained in the treatment of coking wastewater. J. Environ. Manage. 2018, 224, 376–386. [Google Scholar] [CrossRef]
- Wang, J.; Chen, S.; Quan, X.; Yu, H. Fluorine-doped carbon nanotubes as an efficient metal-free catalyst for destruction of organic pollutants in catalytic ozonation. Chemosphere 2018, 190, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Yin, R.; Guo, W.; Du, J.; Zhou, X.; Zheng, H.; Wu, Q.; Chang, J.; Ren, N. Heteroatoms doped graphene for catalytic ozonation of sulfamethoxazole by metal-free catalysis: Performances and mechanisms. Chem. Eng. J. 2017, 317, 632–639. [Google Scholar] [CrossRef]
- Soares, O.S.G.P.; Rocha, R.P.; Gonçalves, A.G.; Figueiredo, J.L.; Órfão, J.J.M.; Pereira, M.F.R. Highly active N-doped carbon nanotubes prepared by an easy ball milling method for advanced oxidation processes. Appl. Catal. B 2016, 192, 296–303. [Google Scholar] [CrossRef]
- Chen, J.; Yang, C.; Wu, T.; Wang, J.; Yang, L.; Sun, W.; Li, W.; Wang, A.; Lv, S. Metal-free N-doped spongy carbon recycled from waste MOF for enhanced catalytic ozonation: Mechanistic insights and practical applications. J. Water Process Eng. 2023, 55, 104044. [Google Scholar] [CrossRef]
- Wang, D.; Dong, S.; Fu, S.; Shen, Y.; Zeng, T.; Yu, W.; Lu, X.; Wang, L.; Song, S.; Ma, J. Catalytic ozonation for imazapic degradation over kelp-derived biochar: Promotional role of N- and S-based active sites. Sci. Total Environ. 2023, 860, 160473. [Google Scholar] [CrossRef]
- Niu, J.; Yuan, R.; Chen, H.; Zhou, B.; Luo, S. Heterogeneous catalytic ozonation for the removal of antibiotics in water: A review. Environ. Res. 2024, 262, 119889. [Google Scholar] [CrossRef]
- Graça, C.A.L.; Zema, R.; Orge, C.A.; Restivo, J.; Sousa, J.; Pereira, M.F.R.; Soares, O.S.G.P. Temperature and nitrogen-induced modification of activated carbons for efficient catalytic ozonation of salicylic acid as a model emerging pollutant. J. Environ. Manage. 2023, 344, 118639. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Wang, B.; Yan, P.; Shen, J.; Kang, J.; Zhao, S.; Zhu, X.; Shen, L.; Wang, S.; Shen, Y.; et al. In-situ formation of surface reactive oxygen species on defective sites over N-doped biochar in catalytic ozonation. Chem. Eng. J. 2023, 454, 140232. [Google Scholar] [CrossRef]
- Qu, G.; Jia, P.; Zhang, T.; Tang, S.; Pervez, M.N.; Pang, Y.; Li, B.; Cao, C.; Zhao, Y. Synergistic activation of peroxymonosulfate by intrinsic defect and graphitic N of N, P co-doped carbon microspheres for BPA degradation. Chem. Eng. J. 2023, 475, 145888. [Google Scholar] [CrossRef]
- Zhang, F.; Wei, C.; Wu, K.; Zhou, H.; Hu, Y.; Preis, S. Mechanistic evaluation of ferrite AFe2O4 (A = Co, Ni, Cu, and Zn) catalytic performance in oxalic acid ozonation. Appl. Catal. A 2017, 547, 60–68. [Google Scholar] [CrossRef]
- Cazetta, A.L.; Zhang, T.; Silva, T.L.; Almeida, V.C.; Asefa, T. Bone char-derived metal-free N- and S-co-doped nanoporous carbon and its efficient electrocatalytic activity for hydrazine oxidation. Appl. Catal. B 2018, 225, 30–39. [Google Scholar] [CrossRef]
- Liu, H.; Han, Q.; Zhang, X.; Zhang, H.; Wang, H.; Wei, J. Fabrication of easily separated biochar balls and their catalytic mechanism for PMS. J. Anal. Appl. Pyrolysis 2024, 177, 106293. [Google Scholar] [CrossRef]
- Shen, B.; Liu, Y.; Liu, S.; Tan, X.; Zhang, P.; Du, L.; Wen, J. Catalytic degradation of sulfamethoxazole by persulfate activated with magnetic graphitized biochar: Multiple mechanisms and variables effects. Process Saf. Environ. Prot. 2020, 144, 143–157. [Google Scholar] [CrossRef]
- Hu, Y.; Chen, D.; Zhang, R.; Ding, Y.; Ren, Z.; Fu, M.; Cao, X.; Zeng, G. Singlet oxygen-dominated activation of peroxymonosulfate by passion fruit shell derived biochar for catalytic degradation of tetracycline through a non-radical oxidation pathway. J. Hazard. Mater. 2021, 419, 126495. [Google Scholar] [CrossRef] [PubMed]
- Tang, R.; Gong, D.; Deng, Y.; Xiong, S.; Zheng, J.; Li, L.; Zhou, Z.; Su, L.; Zhao, J. π-π stacking derived from graphene-like biochar/g-C3N4 with tunable band structure for photocatalytic antibiotics degradation via peroxymonosulfate activation. J. Hazard. Mater. 2022, 423, 126944. [Google Scholar] [CrossRef]
- Mian, M.M.; Liu, G.; Zhou, H. Preparation of N-doped biochar from sewage sludge and melamine for peroxymonosulfate activation: N-functionality and catalytic mechanisms. Sci. Total Environ. 2020, 744, 140862. [Google Scholar] [CrossRef]
- Zhao, Y.; Dai, H.; Ji, J.; Yuan, X.; Li, X.; Jiang, L.; Wang, H. Resource utilization of luffa sponge to produce biochar for effective degradation of organic contaminants through persulfate activation. Sep. Purif. Technol. 2022, 288, 120650. [Google Scholar] [CrossRef]
- Feng, Y.; Liu, M.; Shi, Q.; Song, Y.; Yang, L.; Zhang, J.; Li, Z.; Zhu, W. Sludge-derived biochar applied in peroxymonosulfate (PMS) activation: Reactive oxygen species (ROS) dominated process and characteristics. J. Environ. Chem. Eng. 2023, 11, 111365. [Google Scholar] [CrossRef]
- Byambaa, B.; Kim, E.-J.; Seid, M.G.; An, B.-M.; Cho, J.; Aung, S.L.; Song, K.G. Synthesis of N-doped sludge biochar using the hydrothermal route-enabled carbonization method for the efficient degradation of organic pollutants by peroxymonosulfate activation. Chem. Eng. J. 2023, 456, 141037. [Google Scholar] [CrossRef]
- Lin, Z.; Waller, G.; Liu, Y.; Liu, M.; Wong, C.-P. Facile Synthesis of Nitrogen-Doped Graphene via Pyrolysis of Graphene Oxide and Urea, and its Electrocatalytic Activity toward the Oxygen-Reduction Reaction. Adv. Energy Mater. 2012, 2, 884–888. [Google Scholar] [CrossRef]
- Xiao, J.; Xie, Y.; Cao, H.; Wang, Y.; Guo, Z.; Chen, Y. Towards effective design of active nanocarbon materials for integrating visible-light photocatalysis with ozonation. Carbon 2016, 107, 658–666. [Google Scholar] [CrossRef]
- Zhang, J.; Xin, B.; Shan, C.; Zhang, W.; Dionysiou, D.D.; Pan, B. Roles of oxygen-containing functional groups of O-doped g-C3N4 in catalytic ozonation: Quantitative relationship and first-principles investigation. Appl. Catal. B 2021, 292, 120155. [Google Scholar] [CrossRef]
- Tan, J.; Chen, X.; Shang, M.; Cui, J.; Li, D.; Yang, F.; Zhang, Z.; Zhang, H.; Wu, Q.; Li, Y.; et al. N-doped biochar mediated peroxydisulfate activation for selective degradation of bisphenol A: The key role of potential difference-driven electron transfer mechanism. Chem. Eng. J. 2023, 468, 143476. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, W.; Ren, L.; Li, Y.; Wang, J.; Wang, C. Hierarchically cobalt phosphide nanostructures embedded in N, P co-doped porous carbon networks assembled by ultrathin sheets for high-performance Li/Na-ion batteries. Chem. Eng. Sci. 2023, 280, 119089. [Google Scholar] [CrossRef]
- Lin, L.; Pei, C.; Ding, R.; Li, Y.; Park, H.S.; Yu, X. Ru nanoclusters coupling with hierarchical phosphorus and oxygen dual-doped carbon nanotube architectures for effective hydrogen evolution reaction. Int. J. Hydrogen Energy 2023, 48, 20350–20358. [Google Scholar] [CrossRef]
- Song, X.; Xing, B.; Feng, J.; Yuan, J.; Ma, X.; Liu, X.; Yang, G. Degradation of organic dyes by persulfate using liquor grain-derived N,P-codoped mesoporous carbon as metal-free catalyst. J. Water Process Eng. 2020, 37, 101407. [Google Scholar] [CrossRef]
- Gumus, D.; Akbal, F. A comparative study of ozonation, iron coated zeolite catalyzed ozonation and granular activated carbon catalyzed ozonation of humic acid. Chemosphere 2017, 174, 218–231. [Google Scholar] [CrossRef]
- Bernat-Quesada, F.; Vallés-García, C.; Montero-Lanzuela, E.; López-Francés, A.; Ferrer, B.; Baldoví, H.G.; Navalón, S. Hybrid sp2/sp3 nanodiamonds as heterogeneous metal-free ozonation catalysts in water. Appl. Catal. B 2021, 299, 120673. [Google Scholar] [CrossRef]
- Chen, F.; Huang, G.-X.; Yao, F.-B.; Yang, Q.; Zheng, Y.-M.; Zhao, Q.-B.; Yu, H.-Q. Catalytic degradation of ciprofloxacin by a visible-light-assisted peroxymonosulfate activation system: Performance and mechanism. Water Res. 2020, 173, 115559. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.; Liang, J.; Jiang, L.; Shen, Q.; Zhang, Q.; Liu, C.; Zheng, H.; Liao, Y.; Cao, X.; Dong, H.; et al. Removal of micro organic pollutants in high salinity wastewater by comproportionation system of Fe(VI)/Fe(III): Enhancement of chloride and bicarbonate. Water Res. 2022, 214, 118182. [Google Scholar] [CrossRef]
- Levanov, A.V.; Isaikina, O.Y.; Gasanova, R.B.; Uzhel, A.S.; Lunin, V.V. Kinetics of chlorate formation during ozonation of aqueous chloride solutions. Chemosphere 2019, 229, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Garg, S.; Wang, Y.; Li, W.; Chen, G.; Gao, M.; Zhong, J.; Wang, J.; Waite, T.D. Influence of salinity on the heterogeneous catalytic ozonation process: Implications to treatment of high salinity wastewater. J. Hazard. Mater. 2022, 423, 127255. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.; Cao, P.; Qin, X.; Wu, S.; Bai, H.; Chen, S.; Yu, H.; Su, Y.; Quan, X. Oxygen vacancies-driven nonradical oxidation pathway of catalytic ozonation for efficient water decontamination. Appl. Catal. B 2023, 325, 122321. [Google Scholar] [CrossRef]
- Chen, F.; Liu, L.-L.; Chen, J.-J.; Li, W.-W.; Chen, Y.-P.; Zhang, Y.-J.; Wu, J.-H.; Mei, S.-C.; Yang, Q.; Yu, H.-Q. Efficient decontamination of organic pollutants under high salinity conditions by a nonradical peroxymonosulfate activation system. Water Res. 2021, 191, 116799. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; He, H.; Liang, J.; Wei, X.; Li, X.; Wang, J.; Li, L. A comprehensive review on metal based active sites and their interaction with O3 during heterogeneous catalytic ozonation process: Types, regulation and authentication. J. Hazard. Mater. 2023, 443, 130302. [Google Scholar] [CrossRef]
- Yuan, X.; Xie, R.; Zhang, Q.; Sun, L.; Long, X.; Xia, D. Oxygen functionalized graphitic carbon nitride as an efficient metal-free ozonation catalyst for atrazine removal: Performance and mechanism. Sep. Purif. Technol. 2019, 211, 823–831. [Google Scholar] [CrossRef]
- Wang, J.; Quan, X.; Chen, S.; Yu, H.; Liu, G. Enhanced catalytic ozonation by highly dispersed CeO2 on carbon nanotubes for mineralization of organic pollutants. J. Hazard. Mater. 2019, 368, 621–629. [Google Scholar] [CrossRef] [PubMed]
- Mohebali, H.; Moussavi, G.; Karimi, M.; Giannakis, S. Development of a magnetic Ce-Zr bimetallic MOF as an efficient catalytic ozonation mediator: Preparation, characterization, and catalytic activity. Sep. Purif. Technol. 2023, 315, 123670. [Google Scholar] [CrossRef]
- Zeng, Y.; Zhuo, Q.; Dai, L.; Guan, B. Mn anchored zeolite molecular nest for enhanced catalytic ozonation of cephalexin. Chemosphere 2023, 335, 139058. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Zhang, Y.; Yu, G.; Wang, Y. Revisiting the role of reactive oxygen species for pollutant abatement during catalytic ozonation: The probe approach versus the scavenger approach. Appl. Catal. B 2021, 280, 119418. [Google Scholar] [CrossRef]
- Guo, Y.; Long, J.; Huang, J.; Yu, G.; Wang, Y. Can the commonly used quenching method really evaluate the role of reactive oxygen species in pollutant abatement during catalytic ozonation? Water Res. 2022, 215, 118275. [Google Scholar] [CrossRef]
- Hu, Q.; Zhang, M.; Xu, L.; Wang, S.; Yang, T.; Wu, M.; Lu, W.; Li, Y.; Yu, D. Unraveling timescale-dependent Fe-MOFs crystal evolution for catalytic ozonation reactivity modulation. J. Hazard. Mater. 2022, 431, 128575. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Zhang, Y.; Liu, C.; Xu, B.; Qi, F.; Yuan, D.; Pu, S. Insight into OH and O2− formation in heterogeneous catalytic ozonation by delocalized electrons and surface oxygen-containing functional groups in layered-structure nanocarbons. Chem. Eng. J. 2019, 357, 655–666. [Google Scholar] [CrossRef]
- Buxton, G.V.; Greenstock, C.L.; Helman, W.P.; Ross, A.B. Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O− in Aqueous Solution. J. Phys. Chem. Ref. Data 1988, 17, 513–886. [Google Scholar] [CrossRef]
- Bielski, B.H.J.; Cabelli, D.E.; Arudi, R.L.; Ross, A.B. Reactivity of HO2/O−2 Radicals in Aqueous Solution. J. Phys. Chem. Ref. Data 1985, 14, 1041–1100. [Google Scholar] [CrossRef]
- Fang, C.; Gao, X.; Zhang, X.; Zhu, J.; Sun, S.P.; Wang, X.; Wu, W.D.; Wu, Z. Facile synthesis of alkaline-earth metal manganites for the efficient degradation of phenolic compounds via catalytic ozonation and evaluation of the reaction mechanism. J. Colloid Interface Sci. 2019, 551, 164–176. [Google Scholar] [CrossRef]
- Song, Z.; Li, J.; Xu, H.; Li, Y.; Zeng, Y.; Guan, B. Heterogeneous catalytic ozonation by amorphous boron for degradation of atrazine in water. Chin. Chem. Lett. 2023, 34, 107876. [Google Scholar] [CrossRef]
- Koppenol, W.H. Reactions involving singlet oxygen and the superoxide anion. Nature 1976, 262, 420–421. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, F.; Helman, W.; Ross, A. Rate Constants for the Decay and Reactions of the Lowest Electronically Excited Singlet State of Molecular Oxygen in Solution. An Expanded and Revised Compilation. J. Phys. Chem. Ref. Data 1995, 24, 663–1021. [Google Scholar] [CrossRef]
- Wei, X.; Zhang, H.; Wang, J.; Tian, Y.; Lu, M. Nanocarbon shells with self-inherent N, P derived from chlorella pyrenoidosa for aqueous catalytic ozonation: Nonradical-dominated mechanisms. Chem. Eng. J. 2023, 459, 140873. [Google Scholar] [CrossRef]
- Wang, D.; Dong, S.; Hu, H.; He, Z.; Dong, F.; Tang, J.; Lu, X.; Wang, L.; Song, S.; Ma, J. Catalytic ozonation of atrazine with stable boron-doped graphene nanoparticles derived from waste polyvinyl alcohol film: Performance and mechanism. Chem. Eng. J. 2023, 455, 140316. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, H.; Chen, C.; Xie, Y.; Sun, H.; Duan, X.; Wang, S. Metal-free catalytic ozonation on surface-engineered graphene: Microwave reduction and heteroatom doping. Chem. Eng. J. 2019, 355, 118–129. [Google Scholar] [CrossRef]
- Wang, Y.; Duan, X.; Xie, Y.; Sun, H.; Wang, S. Nanocarbon-Based Catalytic Ozonation for Aqueous Oxidation: Engineering Defects for Active Sites and Tunable Reaction Pathways. ACS Catal. 2020, 10, 13383–13414. [Google Scholar] [CrossRef]
- Sun, Z.; Ma, J.; Liu, Y.; Wang, H.; Cao, W.; Zhu, N.; Lou, Z. Mineralization of refractory organics in oil refinery wastewater by the catalytic ozonation with magnetic praseodymium-catalysts: Catalytic performances and mechanisms. Sep. Purif. Technol. 2021, 277, 119506. [Google Scholar] [CrossRef]
- Jin, X.; Wu, Z.; Wan, C.; Zuo, J.; Zhou, Y.; Tian, X.; Wang, P.; Sun, C.; Wu, C. Magnetic nano-size normal spinel-ZnFe2O4 and inverse spinel-MnFe2O4 for catalytic ozonation: Performance and mechanism. Sep. Purif. Technol. 2023, 313, 123535. [Google Scholar] [CrossRef]
- Goto, H.; Hanada, Y.; Ohno, T.; Matsumura, M. Quantitative analysis of superoxide ion and hydrogen peroxide produced from molecular oxygen on photoirradiated TiO2 particles. J. Catal. 2004, 225, 223–229. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, H.; Chen, L.; Chen, C.; Duan, X.; Xie, Y.; Song, W.; Sun, H.; Wang, S. Tailored synthesis of active reduced graphene oxides from waste graphite: Structural defects and pollutant-dependent reactive radicals in aqueous organics decontamination. Appl. Catal. B 2018, 229, 71–80. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, L.; Chen, C.; Xi, J.; Cao, H.; Duan, X.; Xie, Y.; Song, W.; Wang, S. Occurrence of both hydroxyl radical and surface oxidation pathways in N-doped layered nanocarbons for aqueous catalytic ozonation. Appl. Catal. B 2019, 254, 283–291. [Google Scholar] [CrossRef]
- Wang, Y.; Xi, J.; Duan, X.; Lv, W.; Cao, H.; Chen, C.; Guo, Z.; Xie, Y.; Wang, S. The duet of surface and radical-based carbocatalysis for oxidative destructions of aqueous contaminants over built-in nanotubes of graphite. J. Hazard. Mater. 2020, 384, 121486. [Google Scholar] [CrossRef]
Sample | Carbon Content on the Surface (at.%) | Distribution (%) | C=O/COOH Content on the Surface (at.%) | SBET (m2/g) | Relative Amount of Surface C=O/COOH (SBET × Surface Content) | |
---|---|---|---|---|---|---|
C=O | COOH | |||||
NPCR-600 | 81.5 | 19.0 | 11.2 | 24.6 | 284.7 | 70.0 |
NPCR-700 | 84.1 | 16.1 | 10.7 | 22.5 | 397.1 | 76.1 |
NPCR-800 | 88.0 | 20.0 | 14.3 | 30.2 | 557.2 | 168.3 |
Sample | N Content (at.%) | Distribution (%) | Absolute (at. %) | ||||
---|---|---|---|---|---|---|---|
Pyrrolic N | Graphitic N | Pyridinc N | Pyrrolic N | Graphitic N | Pyridinic N | ||
NPCR-600 | 3.06 | 47.8 | 19.8 | 32.4 | 1.46 | 0.61 | 0.99 |
NPCR-700 | 3.49 | 39.3 | 34.5 | 26.2 | 1.37 | 1.20 | 0.91 |
NPCR-800 | 2.76 | 32.1 | 60.3 | 7.6 | 0.89 | 1.66 | 0.21 |
Sample | P Content (at. %) | Distribution (%) | Absolute (at. %) | ||
---|---|---|---|---|---|
C-O-P | C-P-O | C-O-P | C-P-O | ||
NPCR-600 | 0.58 | 62.5 | 37.5 | 0.36 | 0.22 |
NPCR-700 | 0.52 | 50.8 | 49.2 | 0.26 | 0.26 |
NPCR-800 | 0.24 | 0 | 100 | 0.00 | 0.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pang, Y.; Pan, Y.; Kong, L.; Diao, Z.; Li, B. Carbonization of N/P Co-Doped Resin for Metal-Free Catalytic Ozonation of Oxalic Acid. Water 2025, 17, 710. https://doi.org/10.3390/w17050710
Pang Y, Pan Y, Kong L, Diao Z, Li B. Carbonization of N/P Co-Doped Resin for Metal-Free Catalytic Ozonation of Oxalic Acid. Water. 2025; 17(5):710. https://doi.org/10.3390/w17050710
Chicago/Turabian StylePang, Yixiong, Yu Pan, Lingjun Kong, Zenghui Diao, and Bin Li. 2025. "Carbonization of N/P Co-Doped Resin for Metal-Free Catalytic Ozonation of Oxalic Acid" Water 17, no. 5: 710. https://doi.org/10.3390/w17050710
APA StylePang, Y., Pan, Y., Kong, L., Diao, Z., & Li, B. (2025). Carbonization of N/P Co-Doped Resin for Metal-Free Catalytic Ozonation of Oxalic Acid. Water, 17(5), 710. https://doi.org/10.3390/w17050710