Analysis of Precipitation Change and Its Influencing Factors Around the Lop Nor Salt Flat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Research Area
2.1.1. Geographic Location
2.1.2. Terrain and Geomorphology
2.1.3. Climatic Characteristics
2.1.4. Type of Land Use
2.1.5. Factors Affecting the Climate of the Research Area
- Geographic location: Lop Nor Eurasia, belonging to the high-latitude region.
- Frequent occurrence of sandstorms and dust storms: the western part of the research area is the Taklamakan Desert, so the frequency of sandstorms and dust storms in the study area is high. Dust storms bring extreme weather and threaten the survival of plants and animals in the region.
- Human activities: Water resources are scarce in the research area, vegetation growth is difficult and the ecosystem is extremely fragile. In such an environment, human activities have a great impact on its climate. Water resource misuse, agricultural expansion, and the pollution of water bodies would deteriorate the ecosystem and exacerbate the harshness of the climate.
2.2. Methods
2.2.1. Trend-Free Pre-Whitening Mann–Kendall Test
2.2.2. Theil–Sen Median
2.2.3. Partial Correlation Analysis
2.2.4. Research Flowchart
2.3. Materials
2.3.1. Growing Season Precipitation Data
2.3.2. Yearly Maximum Temperature Data
2.3.3. Yearly Evapotranspiration (ET) Data
2.3.4. Year-by-Year NDVI Data
2.3.5. Elevation Data
2.3.6. Land Use Data
3. Results
3.1. Precipitation Statistics for the Study Area
- Prior to the year 2002
- b.
- During the period from 2002 to 2022
3.2. Sen-Based Precipitation Trend Analysis
3.3. Significance Classification of Precipitation Trends
4. Discussion
4.1. Factors Affecting Precipitation in the Tarim Basin
4.2. Statistics on Factors Affecting Precipitation
4.3. Partial Correlation Coefficient and Significance Analysis
- Coefficient of partial correlation between temperature and precipitation and analysis of significance
- b.
- Coefficient of partial correlation between ET and precipitation and analysis of significance
- c.
- Coefficient of partial correlation between NDVI and precipitation and analysis of significance
5. Conclusions
6. Research Limitations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Paulo, A.A.; Pereira, L.S. Drought concepts and characterization: Comparing drought indices applied at local and regional scales. Water Int. 2006, 31, 37–49. [Google Scholar] [CrossRef]
- Quiring, S.M.; Papakryiakou, T.N. An evaluation of agricultural drought indices for the Canadian prairies. Agric. For. Meteorol. 2003, 118, 49–62. [Google Scholar] [CrossRef]
- Niu, B.; Li, Y.; Li Liu, D.; Xie, L.L.; Wang, L.; Jiang, X.H.; Feng, H.; Yu, Q.; He, J.Q.; Lin, H.X. Improved identification and monitoring of meteorological, agricultural, and hydrological droughts using the modified nonstationary drought indices in the Yellow River Basin of China. J. Hydrol. 2024, 643, 131788. [Google Scholar] [CrossRef]
- Heim, R.R. A review of twentieth-century drought indices used in the United States. Bullet. Am. Meteorol. Soc. 2002, 83, 1149–1166. [Google Scholar] [CrossRef]
- Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Gosling, S.N.; Arnell, N.W. A global assessment of the impact of climate change on water scarcity. Clim. Change 2016, 134, 371–385. [Google Scholar] [CrossRef]
- Mishra, V.; Cherkauer, K.A.; Shukla, S. Assessment of drought due to historic climate variability and projected future climate change in the midwestern United States. J. Hydrometeorol. 2010, 11, 46–68. [Google Scholar] [CrossRef]
- Sheffield, J.; Wood, E.F. Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Clim. Dyn. 2008, 31, 79–105. [Google Scholar] [CrossRef]
- Samaniego, L.; Thober, S.; Kumar, R.; Wanders, N.; Rakovec, O.; Pan, M.; Zink, M.; Sheffield, J.; Wood, E.F.; Marx, A. Anthropogenic warming exacerbates European soil moisture droughts. Nat. Clim. Change 2018, 8, 421–426. [Google Scholar] [CrossRef]
- Han, L.Y.; Zhang, Q.; Zhang, Z.C.; Jia, J.Y.; Wang, Y.H.; Huang, T.; Cheng, Y. Drought area, intensity and frequency changes in China under climate warming, 1961–2014. J. Arid Environ. 2021, 193, 104596. [Google Scholar] [CrossRef]
- Lee, J.H.; Kwon, H.H.; Jang, H.W.; Kim, T.W. Future changes in drought characteristics under extreme climate change over South Korea. Adv. Meteorol. 2016, 1, 9164265. [Google Scholar] [CrossRef]
- Palmer, W.C. Meteorological Drought, 1st ed.; U.S. Department of Commerce, Weather Bureau: Washington, DC, USA, 1965; pp. 1–58. [Google Scholar]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The Relationship of Drought Frequency and Duration to Time Scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993. [Google Scholar]
- Hayes, M.; Svoboda, M.; Wall, N.; Widhalm, M. The Lincoln declaration on drought indices: Universal meteorological drought index recommended. Bullet. Am. Meteorol. Soc. 2011, 92, 485–488. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Sepulcre-Canto, G.; Horion, S.; Singleton, A.; Carrao, H.; Vogt, J. Development of a Combined Drought Indicator to detect agricultural drought in Europe. Nat. Hazards Earth Syst. Sci. 2012, 12, 3519–3531. [Google Scholar] [CrossRef]
- Hao, Z.; AghaKouchak, A.; Nakhjiri, N.; Farahmand, A. Global integrated drought monitoring and prediction system. Sci. Data 2014, 1, 140001. [Google Scholar] [CrossRef]
- Silva, M.V.; Silva, J.L.B.; Ferreira, M.B.; Sousa, L.B.; Montenegro, A.A.; Isidoro, J.M.G.P.; Pandorfi, H.; Oliveira-Júnior, J.F.; Fernandez, H.M.N.P.V.; Granja-Martins, F.M.; et al. Geostatistical modeling of the rainfall patterns and monthly multiscale characterization of drought in the South Coast of the Northeast Brazilian via Standardized Precipitation Index. Atmos. Res. 2024, 311, 107668. [Google Scholar] [CrossRef]
- Mei, L.; Tong, S.Q.; Yin, S.; Bao, Y.H.; Wang, Y.F.; Guo, E.L.; Li, F.; Huang, X.J.; Alateng, T.Y.; Liu, D.W.; et al. Assessing water use efficiency reactivity to meteorological, hydrological, and agricultural droughts on the Mongolian Plateau. Int. J. Digit. Earth 2024, 17, 2398056. [Google Scholar] [CrossRef]
- Lotfirad, M.; Esmaeili-Gisavandani, H.; Adib, A. Drought monitoring and prediction using SPI, SPEI, and random forest model in various climates of Iran. J. Water Clim. Change 2021, 13, 383–406. [Google Scholar] [CrossRef]
- Edossa, D.C.; Woyessa, Y.E.; Welderufael, W.A. Analysis of droughts in the central region of South Africa and their association with SST anomalies. Int. J. Atm. Sci. 2014, 1, 508953. [Google Scholar] [CrossRef]
- Yilmaz, M.; Tosunoglu, F. Trend assessment of annual instantaneous maximum flows in Turkey. Hydrolog. Sci. J. 2019, 64, 820–834. [Google Scholar] [CrossRef]
- Nguyen, H.M.; Ouillon, S.; Vu, V.D. Sea level variation and trend analysis by comparing Mann–Kendall test and innovative trend analysis in front of the Red River Delta (1961–2020). Water 2022, 14, 1709. [Google Scholar] [CrossRef]
- Nury, A.H.; Hasan, K. Analysis of drought in Northwestern Bangladesh using standardized precipitation index and its relation to Southern oscillation index. Environ. Eng. Res. 2016, 21, 58–64. [Google Scholar] [CrossRef]
- Yao, L.; Sun, S.; Song, C.X.; Wang, Y.X.; Xu, Y. Recognizing surface urban heat ’island’ effect and its urbanization association in terms of intensity, footprint, and capacity: A case study with multi-dimensional analysis in Northern China. J. Clean. 2022, 372, 133720. [Google Scholar] [CrossRef]
- Akbas, A. Human or climate? Differentiating the anthropogenic and climatic drivers of lake storage changes on spatial perspective via remote sensing data. Sci. Total Environ. 2024, 912, 168982. [Google Scholar]
- Li, Y.L.; Qiao, X.N.; Wang, Y.; Liu, L. Spatiotemporal patterns and influencing factors of remotely sensed regional heat islands from 2001 to 2020 in Zhengzhou Metropolitan area. Ecol. Indic. 2023, 155, 111026. [Google Scholar] [CrossRef]
- Jee, O.P.; Bihari, D.S.; Kumar, D.P. Temporal variability study in rainfall and temperature over Varanasi and adjoining areas. Disaster Adv. 2019, 12, 1–7. [Google Scholar]
- Wang, H.; Zhang, H.Y.; Zhang, R.F.; Zhang, A.J.; Zhou, D.M. Effects of salt pan construction on surrounding soil and vegetation in coastal saline-alkaline area. Ecol. Environ. 2010, 19, 1242. [Google Scholar]
- Zhi, L.H.; Zhou, F.W.; Li, X.W.; Ma, T.T.; Shao, D.D.; Bai, J.H.; Cui, B.S.; Guo, W.H. Maximal multiple ecosystem services for coastal wetlands by integrating their conservation and restoration pattern in the Yellow River Delta, China. J. Nat. Resour. 2023, 38, 3150–3165. [Google Scholar] [CrossRef]
- Storch, H. Misuses of Statistical Analysis in Climate Research. In Proceedings of the Analysis of Climate Variability: Applications of Statistical Techniques, Elba, Italy, 30 October–6 November 1993. [Google Scholar]
- Yue, S.; Pilon, P.; Phinney, B.; Cavadias, G. The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrol. Process 2002, 16, 1807–1829. [Google Scholar] [CrossRef]
- Xu, Y.; Dai, Q.Y.; Huang, W.T.; Pan, Y.C.; Zheng, Z.W.; Guo, Z.D. Spatio-temporal variation in vegetation cover and its driving mechanism exploration in Southwest China from 2000 to 2020. Environ. Sci. 2023, 44, 323–335. [Google Scholar]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Theil, H. A rank-invariant method of linear and polynomial regression analysis. Nederl. Akad. Wetensch. Proc. 1992, 12, 345–381. [Google Scholar]
- Jie, Z.; Qiang, D.Z.; Tao, W.Z.; Hong, Z.; Na, G.; Ting, M.Z.; Jia, L.X. Seasonal variations of diurnal warming and its effects on vegetation dynamics in temperate zone of China. J. Geogr. 2018, 73, 395–404. [Google Scholar]
- Ma, C.; Wang, F.; Cao, Q.; Xia, X.; Li, S.; Li, X. Climate and environment reconstruction during the medieval warm period in Lop Nur of Xinjiang, China. Chin. Sci. Bull 2008, 53, 3016–3027. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, J.F.; Jiao, P.; Mischke, S. The Holocene history of Lop Nur and its palaeoclimate implications. Quat. Sci. Rev. 2016, 148, 163–175. [Google Scholar] [CrossRef]
- Marvel, K.; Cook, B.I.; Bonfils, C.J.W.; Durack, P.J.; Smerdon, J.E.; Williams, A.P. Twentieth-century hydroclimate changes consistent with human influence. Nature 2019, 569, 59–65. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhu, B.; Yang, J.; Ma, P.; Liu, X.; Lu, G.; Wang, Y.; Yu, H.; Liu, W.; Wang, D. New characteristics about the climate humidification trend in Northwest China. Chin. Sci. Bull 2021, 66, 3757–3771. [Google Scholar] [CrossRef]
- Zhao, Y.; Huang, A.N.; Zhou, Y.; Huang, D.Q.; Yang, Q.; Ma, Y.F.; Li, M.; Wei, G. Impact of the Middle and Upper Tropospheric Cooling over Central Asia on the Summer Rainfall in the Tarim Basin, China. J. Clim. 2014, 27, 4721–4732. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, P.F.; Tang, X.C. Sustainable utilization analysis of water resources under the background of climate warming in Tarim Basin. Sci. Geol. Sin. 2011, 31, 1403–1408. [Google Scholar]
- Lu, S.L.; Wang, Y.; Zhou, J.F.; Hughes, A.C.; Li, M.Y.; Du, C.; Yang, X.H.; Xiong, Y.T.; Zi, F.; Wang, W.Z.; et al. Active water management brings possibility restoration to degraded lakes in dryland regions: A case study of Lop Nur, China. Sci. Rep. 2022, 12, 18578. [Google Scholar] [CrossRef]
- Qian, B.; Hong, Y.J.; Jun, W.Z. Industrial advances of soluble potash resources in China and overseas. Resour. Ind. 2014, 16, 37–46. [Google Scholar]
- Zhao, Z.H.; Hou, G.C.; Cai, Q.Q.; Chang, Z.Y.; Gu, X.L. Metallogenic geological background of Lop Nur potassium brine deposit. Geol. Xinjiang 2002, 20, 210–213. [Google Scholar]
- Wang, B.J.; Huang, Y.X.; Tao, J.H.; Li, D.L.; Xiang, W.P. Regional distribution characteristics and variation of atmospheric water vapor in Northwest China. J. Glaciol. Geocryol. 2006, 28, 15–21. [Google Scholar]
- Yang, Z.; Fu, L.I.B.; Ning, C.Y. The temporal and spatial variation of water vapor content and its relationship with precipitation in the arid region of Northwest China from 1970 to 2013. J. Nat. Res. 2018, 33, 1043–1055. [Google Scholar]
- Wang, Z.L.; Sun, M.P.; Yao, X.J.; Zhang, L.; Zhang, H. Spatiotemporal variations of water vapor content and its relationship with meteorological elements in the Third Pole. Water 2021, 13, 1856. [Google Scholar] [CrossRef]
- Wang, M.; Fang, X.; Hu, S.X.; Hu, H.L.; Li, T.; Dou, X.K. Variation characteristics of water vapor distribution during 2000-2008 over Hefei (31.9°N, 117.2°E) observed by L625 lidar. Atmos. Res. 2015, 164, 1–8. [Google Scholar] [CrossRef]
- Lu, Y.R.; Gao, G.D. The Water Vapour Content and the Water Budget in the Atmosphere over China. Acta Meteorol. Sin. 2022, 42, 3. [Google Scholar]
- Xie, C.Y.; Li, M.J.; Zhang, X.Q.; Guan, X.F. Moisture transport features in summer and its rainfall effects over key region in Southern margin of Qinghai-Xizang Plateau. Plateau Meteorol. 2015, 34, 327–337. [Google Scholar]
- Omar, P.J.; Shivhare, N.; Dwivedi, S.B.; Gaur, S.; Dikshit, P.K.S. Study of Methods Available for Groundwater and Surfacewater Interaction: A Case Study on Varanasi, India. In The Ganga River Basin: A Hydrometeorological Approach; Chauhan, M.S., Ojha, C.S.P., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 67–83. ISBN 978-3-030-60869-9. [Google Scholar]
- Zhao, Y.; Huang, A.N.; Zhou, Y.; Yang, Q. The impacts of the summer plateau monsoon over the Tibetan Plateau on the rainfall in the Tarim Basin, China. Theor. Appl. Clim. 2016, 126, 265–272. [Google Scholar] [CrossRef]
- Qian, W.; Yong, Z.; Fei, C.; Huang, Y.Q.; Ning, A. Multimodal characteristics of South Asia high and its relationship with summer precipitation in Xinjiang. Plateau Meteorol. 2017, 36, 1209–1220. [Google Scholar]
- Qu, L.L.; Zhao, Y.; Zhou, Y.M.; Meng, L.X. Why has the summer rainfall increased prominently in the West Tarim Basin of Northwest China since 2010? Atmos. Res. 2023, 284, 106620. [Google Scholar] [CrossRef]
- Wang, Y.L.; Fan, G.Z.; Zhou, D.W.; Hua, W.; Huang, X.L. Study on the relationship between NDVI and temperature and precipitation in eastern China. J. Trop. Meteorol. 2009, 25, 725–732. [Google Scholar]
- Zhang, M.; Zeng, Y.N.; Ji, Y. Analysis of spatial and temporal changes of surface evapotranspiration in Dongting Lake Basin from 2000 to 2014 based on MOD16. Trans. Chin. Soc. Agric. Eng. 2018, 34, 160–168. [Google Scholar]
- Men, B.H.; Wu, Z.J.; Liu, H.L.; Tian, W.; Zhao, Y. Spatio-temporal analysis of precipitation and temperature: A case study over the Beijing–Tianjin–Hebei Region, China. Pure Appl. Geophys. 2020, 177, 3527–3541. [Google Scholar] [CrossRef]
Partial Correlation Coefficient | Area (km2) |
---|---|
<−0.3 | 0.50 |
−0.3~−0.2 | 22.81 |
−0.2~0 | 14,363.30 |
0~0.2 | 27,789.99 |
0.2~0.3 | 20,468.41 |
>0.3 | 17,405.02 |
Partial Correlation Coefficient | Area (km2) |
---|---|
<−0.3 | 5893.53 |
−0.3~−0.2 | 24,785.32 |
−0.2~0 | 47,019.00 |
0~0.2 | 2321.91 |
0.2~0.3 | 21.93 |
>0.3 | 0.53 |
Partial Correlation Coefficient | Area (km2) |
---|---|
<−0.3 | 14,462.57 |
−0.3~−0.2 | 8813.14 |
−0.2~0 | 20,105.57 |
0~0.2 | 22,550.27 |
0.2~0.3 | 8748.77 |
>0.3 | 5359.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Yao, F.; Liu, C.; Geng, X.; Shao, Y.; Jiang, N. Analysis of Precipitation Change and Its Influencing Factors Around the Lop Nor Salt Flat. Water 2025, 17, 770. https://doi.org/10.3390/w17050770
Wang Y, Yao F, Liu C, Geng X, Shao Y, Jiang N. Analysis of Precipitation Change and Its Influencing Factors Around the Lop Nor Salt Flat. Water. 2025; 17(5):770. https://doi.org/10.3390/w17050770
Chicago/Turabian StyleWang, Yuke, Fojun Yao, Chenglin Liu, Xinxia Geng, Yu Shao, and Nan Jiang. 2025. "Analysis of Precipitation Change and Its Influencing Factors Around the Lop Nor Salt Flat" Water 17, no. 5: 770. https://doi.org/10.3390/w17050770
APA StyleWang, Y., Yao, F., Liu, C., Geng, X., Shao, Y., & Jiang, N. (2025). Analysis of Precipitation Change and Its Influencing Factors Around the Lop Nor Salt Flat. Water, 17(5), 770. https://doi.org/10.3390/w17050770