Impact of Freeze–Thaw Action on Soil Erodibility in the Permafrost Regions of the Sanjiangyuan Area Affected by Thermokarst Landslides
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Research Methods
2.2.1. FT Experiment
2.2.2. Soil Parameter Measurement and Erodibility Factor Estimation
2.2.3. Statistical Analysis
3. Results
3.1. Impact of FTA on Soil Particle Composition
3.2. The Impact of FTA on Soil Organic Matter
3.3. The Impact of FTA on SE (K-Value)
4. Discussion
4.1. The Impact of FTA on Soil Particle Composition
4.2. The Impact of FTA on Soil Organic Matter
4.3. The Impact of FTA on SE
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, X.; Zhou, H. Eco-environmental degradation vegetation regeneration and sustainable development in the headwaters of Three Rivers on Tibetan Plateau. Bull. Chin. Acad. Sci. 2005, 20, 471–476. [Google Scholar]
- Li, H.; Yan, L.; Wen, T.; Feng, X. Characteristics of climate change and its impact assessment in the Three River Regions. Plateau Meteorol. 2022, 41, 306–316. [Google Scholar]
- Yao, T.; Liu, X.; Wang, N. The magnitude of climate change in Qinghai-Tibet Plateau. Chin. Sci. Bull. 2000, 45, 98–106. [Google Scholar] [CrossRef]
- Luo, D.L.; Jin, H.J.; He, R.X.; Wang, X.F.; Muskett, R.R.; Marchenko, S.S.; Romanovsky, V.E. Characteristics of water-heat exchanges and inconsistent surface temperature changes at an elevational permafrost site on the Qinghai-Tibet Plateau. J. Geophys. Res.-Atmos. 2018, 123, 10057–10075. [Google Scholar] [CrossRef]
- Luo, S.; Fang, X.; Lyu, S.; Jiang, Q.; Wang, J. Interdecadal changes in the freeze depth and period of frozen soil on the Three Rivers Source Region in China from 1960 to 2014. Adv. Meteorol. 2017, 2017, 5931467. [Google Scholar] [CrossRef]
- Jin, H.J.; Wang, S.L.; Lü, L.Z.; He, R.X.; Chang, X.L.; Luo, D.L. Features and degradation of frozen ground in the sources area of the Yellow River, China. J. Glaciol. Geocryol. 2010, 32, 10–17. [Google Scholar]
- Luo, J.; Niu, F.; Lin, Z.; Liu, M.; Yin, G. Recent acceleration of thaw slumping in permafrost terrain of Qinghai-Tibet Plateau: An example from the Beiluhe Region. Geomorphology 2019, 341, 79–85. [Google Scholar] [CrossRef]
- Niu, F.; Luo, J.; Lin, Z.; Fang, J.; Liu, M. Thaw-induced slope failures and stability analyses in permafrost regions of the Qinghai-Tibet Plateau, China. Landslides 2016, 13, 55–65. [Google Scholar] [CrossRef]
- Ferrick, M.; Gatto, L. Quantifying the effect of a freeze–thaw cycle on soil erosion: Laboratory experiments. Earth Surf. Process. Landf. 2005, 30, 1305–1326. [Google Scholar] [CrossRef]
- Williams, R.; Robinson, D. Experimental frost weathering of sandstone by various combinations of salts. Earth Surf. Process. Landf. 2001, 26, 811–818. [Google Scholar] [CrossRef]
- Wang, Q.; Qi, J.; Qiu, H.; Li, J.; Cole, J.; Waldhoff, S.; Zhang, X. Pronounced increases in future soil erosion and sediment deposition as influenced by Freeze–Thaw Cycles in the Upper Mississippi River Basin. Environ. Sci. Technol. 2021, 55, 9905–9915. [Google Scholar] [CrossRef] [PubMed]
- Chen, B. A Study of Land Surface Energy and Water in Soil Freezing and Thawing Process and Impact on Regional Climate of the Qinghai-Tibet Plateau. Master’s Thesis, University of Chinese Academy of Sciences, Lanzhou, China, 2014. [Google Scholar]
- Formanek, G.; Mccool, D.; Papendick, R. Freeze-thaw and consolidation effects on strength of a wet silt loam. Trans. ASAE 1984, 27, 1749–1752. [Google Scholar] [CrossRef]
- Dagesse, D. Freezing-induced bulk soil volume changes. Can. J. Soil Sci. 2010, 90, 389–401. [Google Scholar] [CrossRef]
- Kværnø, S.; Øygarden, L. The influence of freeze–thaw cycles and soil moisture on aggregate stability of three soils in Norway. Catena 2006, 67, 175–182. [Google Scholar] [CrossRef]
- Li, G.; Fan, H. Effect of freeze-thaw on water stability of aggregates in a black soil of Northeast China. Pedosphere 2014, 24, 285–290. [Google Scholar] [CrossRef]
- Chamberlain, E.; Gow, A. Effect of freezing and thawing on the permeability and structure of soils. Eng. Geol. 1979, 13, 73–92. [Google Scholar] [CrossRef]
- Barthès, B.; Roose, E. Aggregate stability as an indicator of soil susceptibility to runoff and erosion; validation at several levels. Catena 2002, 47, 133–149. [Google Scholar] [CrossRef]
- An, S.; Mentler, A.; Mayer, H.; Blum, W. Soil aggregation, aggregate stability, organic carbon and nitrogen in different soil aggregate fractions under forest and shrub vegetation on the Loess Plateau, China. Catena 2010, 81, 226–233. [Google Scholar] [CrossRef]
- Mostaghimi, S.; Young, R.; Wilts, A.; Kenimer, A. Effects of frost action on soil aggregate stability. Trans. ASAE 1987, 31, 0435–0439. [Google Scholar] [CrossRef]
- Oztas, T.; Fayetorbay, F. Effect of freezing and thawing processes on soil aggregate stability. Catena 2003, 52, 1–8. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, J.; Wang, G.; Zhou, W. Study on the relationship between freeze-thaw action and the physicochemical effects of soil. Geogr. Inf. Sci. 2007, 23, 91–96. [Google Scholar]
- Sahin, U.; Angin, I.; Kiziloglu, F. Effect of freezing and thawing processes on some physical properties of saline–sodic soils mixed with sewage sludge or fly ash. Soil Tillage Res. 2008, 99, 254–260. [Google Scholar] [CrossRef]
- Lehrsch, G.; Sojka, R.; Carter, D.; Jolley, P. Freezing Effects on Aggregate Stability Affected by Texture, Mineralogy, and Organic Matter. Soil Sci. Soc. Am. J. 1991, 55, 1401–1406. [Google Scholar] [CrossRef]
- Feng, X.; Nielsen, L.; Simpson, M. Responses of soil organic matter and microorganisms to freeze–thaw cycles. Soil Biol. Biochem. 2007, 39, 2027–2037. [Google Scholar] [CrossRef]
- Song, Y.; Yu, X.; Zou, Y.; Wang, G.; Zhang, L. Effects of freeze-thaw action on soil carbon, nitrogen, and phosphorus cycling. Soil Crops 2016, 5, 78–90. [Google Scholar]
- Mohanty, S.; Saiers, J.; Ryan, J. Colloid-facilitated mobilization of metals by freeze-thaw cycles. Environ. Sci. Technol. 2014, 48, 977–984. [Google Scholar] [CrossRef]
- Dang, Z.; Liu, C.; Haigh, M. Mobility of heavy metals associated with the natural weathering of coal mine spoils. Environ. Pollut. 2002, 118, 419. [Google Scholar] [CrossRef]
- Larsen, K.; Jonasson, S.; Michelsen, A. Repeated freeze–thaw cycles and their effects on biological processes in two arctic ecosystem types. Appl. Soil Ecol. 2002, 21, 187–195. [Google Scholar] [CrossRef]
- Joseph, G.; Henry, H. Soil nitrogen leaching losses in response to freeze–thaw cycles and pulsed warming in a temperate old field. Soil Biol. Biochem. 2008, 40, 1947–1953. [Google Scholar] [CrossRef]
- Slavik, I.; Müller, S.; Mokosch, R.; Azongbilla, J.; Uhl, W. Impact of shear stress and pH changes on floc size and removal of dissolved organic matter (DOM). Water Res. 2012, 46, 6543. [Google Scholar] [CrossRef]
- Grogan, P.; Michelsen, A.; Ambus, P.; Jonasson, S. Freeze-thaw regime effects on carbon and nitrogen dynamics in sub-arctic health tundra mesocosms. Soil Biol. Biochem. 2004, 36, 641–654. [Google Scholar] [CrossRef]
- Morley, C.; Trofymow, J.; Coleman, D.; Cambardella, C. Effects of freeze-thaw stress on bacterial populations in soil microcosms. Microb. Ecol. 1983, 9, 329–340. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Wang, Y.; Zhao, L.; Liu, J.; Qin, Z. Study on the changes in organic carbon quantity in black soil under freeze-thaw action. J. Agro-Environ. Sci. 2008, 27, 984–990. [Google Scholar]
- Fitzhugh, R.; Driscoll, C.; Groffman, P.; Tierney, G.; Fahey, T.; Hardy, J. Effects of soil freezing, disturbance on soil solution nitrogen, phosphorus, and carbon chemistry in a northern hardwood ecosystem. Biogeochemistry 2001, 56, 215–238. [Google Scholar] [CrossRef]
- Six, J.; Bossuyt, H.; Degryse, S.; Denef, K. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res. 2004, 79, 7–31. [Google Scholar] [CrossRef]
- Yu, S.; Huang, S.; Li, Y.; Liang, Z. Insights into the frost cracking mechanisms of concrete by using the coupled thermo-hydro-mechanical-damage meshless method. Theor. Appl. Fract. Mech. 2025, 136, 104814. [Google Scholar] [CrossRef]
- Yu, S.; Ren, X.; Zhang, J. Modeling the rock frost cracking processes using an improved ice–stress–damage coupling method. Theor. Appl. Fract. Mech. 2024, 131, 104421. [Google Scholar] [CrossRef]
- Lehrsch, G. Freeze-Thaw Cycles Increase Near-Surface Aggregate Stability. Soil Sci. 1998, 163, 63–70. [Google Scholar] [CrossRef]
- Zhang, Z.; Ma, W.; Feng, W.; Xiao, D.; Hou, X. Reconstruction of soil particle composition during freeze-thaw cycling: A review. Pedosphere 2016, 26, 167–179. [Google Scholar] [CrossRef]
- Zhang, Z.; Pendin, V.; Feng, W.; Zhang, Z. The influence of freeze-thaw cycles on the granulometric composition of Moscow morainic clay. Sci. Cold Arid Reg. 2015, 7, 199–205. [Google Scholar]
- Perfect, E.; Loon, W.; Kay, B.; Groenevelt, P. Influence of ice segregation and solutes on soil structural stability. Can. J. Soil Sci. 1990, 79, 571–581. [Google Scholar] [CrossRef]
- Wang, J.; Song, C.; Wang, X.; Song, Y. Changes in labile soil organic carbon fractions in wetland ecosystems along a latitudinal gradient in Northeast China. Catena 2012, 96, 83–89. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, J.; Wang, Q. Effects of freeze-thaw action on soil aggregates and organic carbon components. J. Ecol. Environ. Sci. 2013, 22, 1269–1274. [Google Scholar]
- Wang, Y.; Liu, J.; Wang, Q.; Liu, L. Effects of Seasonal Freeze-Thaw Processes on the Active Organic Matter in Cropland Black Soil. Adv. Mater. Res. 2013, 610, 2985–2988. [Google Scholar] [CrossRef]
- Zhang, H.; Xie, J.; Nan, H.; Han, J.; Wang, N.; Zhang, Y.; Wang, H. Interactive effects of freeze-thaw cycles on the structure of compounded soil aggregates and organic matter. J. Soil Water Conserv. 2016, 30, 273–278. [Google Scholar]
- Wei, P.; Ouyang, W.; Hao, F.; Gao, X.; Yu, Y. Combined impacts of precipitation and temperature on diffuse phosphorus pollution loading and critical source area identification in a freeze-thaw area. Sci. Total Environ. 2016, 553, 607–616. [Google Scholar] [CrossRef]
- Wu, H.; Xu, X.; Cheng, W.; Fu, P.; Li, F. Antecedent soil moisture prior to freezing can affect quantity, composition and stability of soil dissolved organic matter during thaw. Sci. Rep. 2017, 7, 6380. [Google Scholar] [CrossRef]
- Yanai, Y.; Toyota, K.; Okazaki, M. Effects of successive soil freeze-thaw cycles on soil microbial biomass and organic matter decomposition potential of soils. Soil Sci. Plant Nutr. 2004, 50, 821–829. [Google Scholar] [CrossRef]
- Elliott, J. Evaluating the potential contribution of vegetation as a nutrient source in snowmelt runoff. Can. J. Soil Sci. 2013, 93, 435–443. [Google Scholar] [CrossRef]
- Sorensen, P.; Finzi, A.; Giasson, M.; Reinmann, A.; Sanders-DeMott, R.; Templer, P. Winter soil freeze-thaw cycles lead to reductions in soil microbial biomass and activity not compensated for by soil warming. Soil Biol. Biochem. 2018, 116, 39–47. [Google Scholar] [CrossRef]
- Li, F.; Zang, S.; Liu, Y.; Li, L.; Ni, H. Effect of freezing–thawing cycle on soil active organic carbon fractions and enzyme activities in the wetland of Sanjiang Plain, northeast China. Wetlands 2020, 40, 167–177. [Google Scholar] [CrossRef]
- Wei, N.; Wei, X.; Huang, C. Effects of alternating freeze-thaw on soil critical shear strength and soil rill erodibility. Res. Soil Water Conserv. 2021, 28, 19–24. [Google Scholar]
FTC Count (Time) | Median Particle Size d50 (μm) | Clay Particles (<0.002 mm) (%) | Silt Particles (0.002–0.05 mm) (%) | Sand Particles (0.05–1 mm) (%) | Volumetric Fractal Dimension D |
---|---|---|---|---|---|
0 | 19.467 | 19.377 | 63.713 | 16.910 | 2.910 |
1 | 19.967 | 19.210 | 63.130 | 17.660 | 2.910 |
3 | 21.167 | 18.533 | 61.770 | 19.697 | 2.909 |
5 | 22.400 | 17.466 | 63.197 | 19.337 | 2.908 |
7 | 22.767 | 16.873 | 63.634 | 19.453 | 2.908 |
9 | 22.367 | 19.150 | 58.840 | 22.010 | 2.908 |
12 | 36.167 | 14.110 | 49.800 | 36.090 | 2.901 |
15 | 40.533 | 14.300 | 51.140 | 34.560 | 2.901 |
Soil Moisture Rate (%) | Median Particle Size d50 (μm) | Clay Particles (<0.002 mm) (%) | Silt Particles (0.002–0.05 mm) (%) | Sand Particles (0.05–1 mm) (%) | Volumetric Fractal Dimension D |
---|---|---|---|---|---|
12 | 34.663 | 13.585 | 56.303 | 30.119 | 0.098 |
16 | 24.700 | 17.278 | 59.225 | 23.495 | 0.093 |
20 | 17.450 | 21.269 | 62.695 | 16.036 | 0.089 |
Factor | Sum of Squares | Degrees of Freedom | Mean Square | F-Value | Significance |
---|---|---|---|---|---|
Initial soil moisture content | 0.04 | 2 | 0.02 | 10 | p < 0.01 |
FTC count | 2.01 | 7 | 0.29 | 145 | p < 0.01 |
Soil layer depth | 4.56 | 3 | 1.52 | 760 | p < 0.01 |
Soil Moisture Content | FTC Count | Mean | Standard Deviation | |||||||
---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 3 | 5 | 7 | 9 | 12 | 15 | |||
12% | 5.66 | 5.46 | 5.62 | 5.87 | 5.88 | 6.57 | 6.78 | 6.92 | 6.09 a | 0.54 |
16% | 5.33 | 5.62 | 5.72 | 5.92 | 5.99 | 6.18 | 6.62 | 6.76 | 6.02 a | 0.46 |
20% | 5.16 | 5.43 | 5.45 | 5.15 | 5.88 | 6.07 | 6.52 | 6.66 | 5.79 b | 0.55 |
Soil Depth | FTC Count | Mean | Standard Deviation | |||||||
---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 3 | 5 | 7 | 9 | 12 | 15 | |||
0–10 cm | 6.08 | 6.29 | 6.73 | 6.61 | 6.98 | 7.40 | 7.67 | 7.78 | 6.94 a | 0.57 |
10–20 cm | 5.81 | 6.22 | 6.21 | 6.23 | 6.27 | 6.80 | 7.25 | 7.40 | 6.53 a | 0.52 |
20–30 cm | 4.91 | 4.80 | 4.93 | 5.02 | 5.69 | 5.60 | 6.02 | 6.10 | 5.38 b | 0.54 |
30–40 cm | 4.72 | 4.69 | 4.50 | 4.73 | 4.72 | 5.30 | 5.60 | 5.84 | 5.01 b | 0.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Gu, Y.; Zhou, K.; Li, S.; Zheng, C.; Lu, Y. Impact of Freeze–Thaw Action on Soil Erodibility in the Permafrost Regions of the Sanjiangyuan Area Affected by Thermokarst Landslides. Water 2025, 17, 818. https://doi.org/10.3390/w17060818
Wang B, Gu Y, Zhou K, Li S, Zheng C, Lu Y. Impact of Freeze–Thaw Action on Soil Erodibility in the Permafrost Regions of the Sanjiangyuan Area Affected by Thermokarst Landslides. Water. 2025; 17(6):818. https://doi.org/10.3390/w17060818
Chicago/Turabian StyleWang, Bihui, Yidong Gu, Kexin Zhou, Shengnan Li, Ce Zheng, and Yudong Lu. 2025. "Impact of Freeze–Thaw Action on Soil Erodibility in the Permafrost Regions of the Sanjiangyuan Area Affected by Thermokarst Landslides" Water 17, no. 6: 818. https://doi.org/10.3390/w17060818
APA StyleWang, B., Gu, Y., Zhou, K., Li, S., Zheng, C., & Lu, Y. (2025). Impact of Freeze–Thaw Action on Soil Erodibility in the Permafrost Regions of the Sanjiangyuan Area Affected by Thermokarst Landslides. Water, 17(6), 818. https://doi.org/10.3390/w17060818