Performance and Mechanism of a Novel Composite Ecological Ditch System for Nitrogen and Phosphorus Interception in Agricultural Drainage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design
2.3. Sampling and Analysis
2.4. Data Treatment and Statistical Analysis
- The formula for calculating the adsorption capacity (Qt) of zeolite for N and P is as follows:
- The formula for calculating the nutrient interception rate (I) in the eco-ditch is as follows:
3. Results
3.1. Concentrations Variation of Nitrogen, Phosphorus, and Their Fractions
3.2. Interception Rates of Nitrogen and Phosphorus in the CEDS
3.3. Zeolite Adsorption Performance for Nitrogen and Phosphorus
3.4. Nitrogen and Phosphorus Absorption Capacity of Plants
4. Discussion
4.1. Mechanism of Nitrogen and Phosphorus Removal by Zeolite
4.2. Mechanism of Nutrient Removal by Plants
4.3. CEDS’s Nutrient Interception Performance Evaluation and Influencing Factors Analysis
4.4. Prospects and Considerations for the Application of Ecological Ditches
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, H.; Liu, C.; Wang, X.F. The spatial spillover effect and impact paths of agricultural industry agglomeration on agricultural non-point source pollution: A case study in Yangtze River Delta, China. J. Clean. Prod. 2023, 401, 136600. [Google Scholar] [CrossRef]
- Zou, L.; Liu, Y.; Wang, Y.; Hu, X. Assessment and analysis of agricultural non-point source pollution loads in China: 1978–2017. J. Clean. Prod. 2020, 263, 110400. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Jiang, T.; Mao, Y.; Wang, F.; Yu, J.; Zhu, C. Current Situation of Agricultural Non-Point Source Pollution and Its Control. Water Air Soil Pollut. 2023, 234, 471. [Google Scholar] [CrossRef]
- Ministry of Ecology and Environment in China. National Bureau of Statistics in China. Ministry of Agriculture and Rural Affairs in China. The Second National Pollution Source Census Bulletin. 2020. Available online: http://www.mee.gov.cn/xxgk2018/xxgk/xxgk01/202006/t20200610_783547.html (accessed on 15 January 2025).
- Wu, X.; Quan, W.; Chen, Q.; Gong, W.; Wang, A. Efficient Adsorption of Nitrogen and Phosphorus in Wastewater by Biochar. Molecules 2024, 29, 1005. [Google Scholar] [CrossRef]
- Jia, H.; Sun, Z.; Li, G. A four-stage constructed wetland system for treating polluted water from an urban river. Ecol. Eng. 2014, 71, 48–55. [Google Scholar] [CrossRef]
- Prosser, R.S.; Hoekstra, P.F.; Gene, S.; Truman, C.; White, M.; Hanson, M.L. A review of the effectiveness of vegetated buffers to mitigate pesticide and nutrient transport into surface waters from agricultural areas. J. Environ. Manag. 2020, 261, 110210. [Google Scholar] [CrossRef]
- Wang, J.; Chen, G.; Fu, Z.; Song, X.; Yang, L.; Liu, F. Application performance and nutrient stoichiometric variation of ecological ditch systems in treating non-point source pollutants from paddy fields. Agric. Ecosyst. Environ. 2020, 299, 106989. [Google Scholar] [CrossRef]
- Xue, L.; Duan, J.; Hou, P.; He, S.; Yu, Y.; Feng, Y.; Liu, F.; Yang, L. Full time-space governance strategy and technology for cropland non-point pollution control in China. Front. Agric. Sci. Eng. 2023, 10, 593–606. [Google Scholar] [CrossRef]
- Kumwimba, M.N.; Zhu, B.; Muyembe, D.K. Estimation of the removal efficiency of heavy metals and nutrients from ecological drainage ditches treating town sewage during dry and wet seasons. Environ. Monit. Assess. 2017, 189, 434. [Google Scholar] [CrossRef]
- Li, X.-N.; Zhang, W.-W.; Wu, J.-Y.; Li, H.-J.; Zhao, T.-K.; Zhao, C.-Q.; Shi, R.-S.; Li, Z.-S.; Wang, C.; Li, C. Loss of nitrogen and phosphorus from farmland runoff and the interception effect of an ecological drainage ditch in the North China Plain—A field study in a modern agricultural park. Ecol. Eng. 2021, 169, 106310. [Google Scholar] [CrossRef]
- Muñoz, J.-A.; Guzmán, G.; Soriano, M.-A.; Gómez, J.A. Appraising trapping efficiency of vegetative barriers in agricultural landscapes: Strategy based on a probabilistic approach based on a review of available information. Int. Soil Water Conserv. Res. 2024, 12, 615–634. [Google Scholar] [CrossRef]
- Shen, Y.-T.; Hou, S.-N.; Hu, S.-L.; Miao, Y.-Q.; Cui, H.; Zhu, H. Water purification capacity of ecological ditch: A systematic review and meta-analysis of influencing factors. Ecol. Eng. 2024, 204, 107280. [Google Scholar] [CrossRef]
- Bai, J.; Qin, Y.; Zhao, J.; Song, Y. Investigation of agricultural nutrient removal by ecological ditches using meta-analysis. Agric. Ecosyst. Environ. 2025, 380, 109401. [Google Scholar] [CrossRef]
- Nsenga Kumwimba, M.; Meng, F.; Iseyemi, O.; Moore, M.T.; Zhu, B.; Tao, W.; Liang, T.J.; Ilunga, L. Removal of non-point source pollutants from domestic sewage and agricultural runoff by vegetated drainage ditches (VDDs): Design, mechanism, management strategies, and future directions. Sci. Total Environ. 2018, 639, 742–759. [Google Scholar] [CrossRef]
- Baldovi, A.A.; de Barros Aguiar, A.R.; Benassi, R.F.; Vymazal, J.; de Jesus, T.A. Phosphorus removal in a pilot scale free water surface constructed wetland: Hydraulic retention time, seasonality and standing stock evaluation. Chemosphere 2021, 266, 128939. [Google Scholar] [CrossRef]
- Cui, N.; Zhang, X.; Cai, M.; Zhou, L.; Chen, G.; Zou, G. Roles of vegetation in nutrient removal and structuring microbial communities in different types of agricultural drainage ditches for treating farmland runoff. Ecol. Eng. 2020, 155, 105941. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, X.; Li, J.; Dai, Y.; Cheng, X.; Jiang, L.; Luo, C.; Zhang, G. A novel mechanism of enhanced PCBs degradation associated with nitrogen in the rhizosphere of the wetland plant Myriophyllum aquaticum. J. Hazard. Mater. 2024, 461, 132466. [Google Scholar] [CrossRef]
- Zak, D.; Kronvang, B.; Carstensen, M.V.; Hoffmann, C.C.; Kjeldgaard, A.; Larsen, S.E.; Audet, J.; Egemose, S.; Jorgensen, C.A.; Feuerbach, P.; et al. Nitrogen and Phosphorus Removal from Agricultural Runoff in Integrated Buffer Zones. Environ. Sci. Technol. 2018, 52, 6508–6517. [Google Scholar] [CrossRef]
- Bai, G.; Pang, S.; Bi, D.; Wang, S.; Cai, M.; Kong, L.; Shen, Z.; Zhang, Y. Added Biochars Promoted Nitrogen and Phosphorus Removal from Ecological Ditches at Low Temperature. Water 2024, 16, 1191. [Google Scholar] [CrossRef]
- Pan, X.; Gu, Z.; Chen, W.; Li, Q. Preparation of biochar and biochar composites and their application in a Fenton-like process for wastewater decontamination: A review. Sci. Total Environ. 2021, 754, 142104. [Google Scholar] [CrossRef]
- Cai, M.; Zhang, X.; Abdelhafez, A.A.; Zhou, L.; Chen, G.; Zou, G.; Cui, N. Feasibility of improving nitrogen removal by integrating the rice straw and zeolite with drainage ditches for farmland runoff control. Environ. Technol. Innov. 2021, 21, 101359. [Google Scholar] [CrossRef]
- Ma, R.; Ma, J.; Chen, Y.; Zhuo, Y.; Cheng, L.; Jiang, L.; Mao, Y.; Shen, Q.; Liu, C.; Ji, F. Efficient removal of nitrogen from tidal flow constructed wetlands based on the in-situ zeolite regeneration: Measures and mechanisms. Chem. Eng. J. 2023, 458, 141298. [Google Scholar] [CrossRef]
- Jin, J.; Tian, X.; Liu, G.; Huang, J.; Zhu, H.; Qiu, S.; Fu, X.; Wu, Y.; Bing, H. Novel ecological ditch system for nutrient removal from farmland drainage in plain area: Performance and mechanism. J. Environ. Manag. 2022, 318, 115638. [Google Scholar] [CrossRef]
- Chen, L.; Liu, F.; Wang, Y.; Li, X.; Zhang, S.; Li, Y.; Wu, J. Nitrogen removal in an ecological ditch receiving agricultural drainage in subtropical central China. Ecol. Eng. 2015, 82, 487–492. [Google Scholar] [CrossRef]
- Zhang, T.; Xu, Q.; Liu, X.; Lei, Q.; Luo, J.; An, M.; Du, X.; Qiu, W.; Zhang, X.; Wang, F.; et al. Sources, fate and influencing factors of nitrate in farmland drainage ditches of the irrigation area. J. Environ. Manag. 2024, 367, 122113. [Google Scholar] [CrossRef]
- Shen, W.; Li, S.; Mi, M.; Zhuang, Y.; Zhang, L. What makes ditches and ponds more efficient in nitrogen control? Agric. Ecosyst. Environ. 2021, 314, 107409. [Google Scholar] [CrossRef]
- Qian, L.; Duan, H.; Yan, J.; Tsang, Y.F.; Qiao, J.; Fu, X.; Wang, L. Can multiple harvests of plants improve nitrogen removal from the point-bar soil of lake? J. Environ. Manag. 2019, 249, 109371. [Google Scholar] [CrossRef]
- You, Z.; Zhang, L.; Pan, S.-Y.; Chiang, P.-C.; Pei, S.; Zhang, S. Performance evaluation of modified bioretention systems with alkaline solid wastes for enhanced nutrient removal from stormwater runoff. Water Res. 2019, 161, 61–73. [Google Scholar] [CrossRef]
- Cai, G.; Su, X.; Li, Y.; Wang, X. Comparisons between diversified multicropping systems in terms of crop productivity, economic benefits and carbon footprint in the Pearl River Delta region of South China. Farming Syst. 2023, 1, 100051. [Google Scholar] [CrossRef]
- GB 3838-2002; Environmental Quality Standards for Surface Water. National Standard of the People’s Republic of China: Beijing, China, 2002.
- Eberle, S.; Börnick, H.; Stolte, S. Granular Natural Zeolites: Cost-Effective Adsorbents for the Removal of Ammonium from Drinking Water. Water 2022, 14, 939. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, C.; Chen, Z.; Deng, Z.; Wang, Q.; Zou, Q.; Li, J.; Zhang, Y.; Wang, X. Achieving nitrite shunt using in-situ free ammonia enriched by natural zeolite: Pilot-scale mainstream anammox with flexible nitritation strategy. Water Res. 2024, 265, 122314. [Google Scholar] [CrossRef] [PubMed]
- Barya, M.P.; Gupta, D.; Thakur, T.K.; Shukla, R.; Singh, G.; Mishra, V.K. Phytoremediation performance of Acorus calamus and Canna indica for the treatment of primary treated domestic sewage through vertical subsurface flow constructed wetlands: A field-scale study. Water Pract. Technol. 2020, 15, 528–539. [Google Scholar] [CrossRef]
- Sun, J.; Ji, L.; Liu, J.; Yang, H.; Dong, T.; Liu, T. Zeolite-like algal biochar nanoparticles for enhanced antibiotics removal: Sorption mechanisms and theoretical calculations. Colloids Surf. B Biointerfaces 2025, 248, 114475. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, Y.; Song, J.; Zheng, K.; Zhang, H.; Li, J. A recyclable self-supporting flexible ZIF-8@aminated PAN-PVP material for highly selective phosphate removal from wastewater. Colloids Surf. A Physicochem. Eng. Asp. 2025, 707, 135958. [Google Scholar] [CrossRef]
- Barczyk, K.; Mozgawa, W.; Król, M. Studies of anions sorption on natural zeolites. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 133, 876–882. [Google Scholar] [CrossRef]
- Wei, M.; Tang, X.; Wang, Y.; Bai, X.; Wang, X.; Wang, X.; Wang, P.; Fang, X.; Li, J.; Yang, J. Significant improvement in CH4/N2 selectivity achieved through ammonium exchange in mordenite. Sep. Purif. Technol. 2024, 340, 126799. [Google Scholar] [CrossRef]
- Oyinade, A.; Kovo, A.S.; Hill, P. Synthesis, characterization and ion exchange isotherm of zeolite Y using Box–Behnken design. Adv. Powder Technol. 2016, 27, 750–755. [Google Scholar] [CrossRef]
- Luo, H.; He, B.; Zhang, W.; Jing, Z. Removal of Nitrogen and Phosphorus in Synthetic Stormwater Runoff by a Porous Asphalt Pavement System with Modified Zeolite Powder Porous Microsphere as a Filter Column. Appl. Sci. 2021, 11, 10810. [Google Scholar] [CrossRef]
- Challand, M.; Vismara, P.; de Tourdonnet, S. Combining constraint programming and a participatory approach to design agroecological cropping systems. Agric. Syst. 2025, 222, 104154. [Google Scholar] [CrossRef]
- Yang, T.; Samarakoon, U.; Altland, J. Growth, phytochemical concentration, nutrient uptake, and water consumption of butterhead lettuce in response to hydroponic system design and growing season. Sci. Hortic. 2024, 332, 113201. [Google Scholar] [CrossRef]
- Adomako, M.O.; Wu, J.; Lu, Y.; Adu, D.; Seshie, V.I.; Yu, F.-H. Potential synergy of microplastics and nitrogen enrichment on plant holobionts in wetland ecosystems. Sci. Total Environ. 2024, 915, 170160. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Han, Y.; Xie, E.; Wang, X.; Yang, Y.; Jia, F. Phytoremediation performance of mixed planting patterns and the associated rhizosphere microbial community in pilot-scale constructed wetlands. Chemosphere 2024, 361, 142482. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Guo, Q.; Wang, Y.; Xu, J.; Wei, Q.; Chen, L.; Liao, L. Enhancing Nitrogen and Phosphorus Removal by Applying Effective Microorganisms to Constructed Wetlands. Water 2020, 12, 2443. [Google Scholar] [CrossRef]
- Liu, M.; Chen, Y.; Wu, Y.; Guo, J.; Sun, P.; Zhang, Z. Synergistic Action of Plants and Microorganism in Integrated Floating Bed on Eutrophic Brackish Water Purification in Coastal Estuary Areas. Front. Mar. Sci. 2021, 8, 619087. [Google Scholar] [CrossRef]
- Morini, L.; Ferrari, C.; Bartoli, M.; Zilius, M.; Broman, E.; Visioli, G. Vallisneria spiralis L. adaptive capacity improves pore water chemistry and increases potential nitrification in organic polluted sediments. Ecol. Process. 2024, 13, 26. [Google Scholar] [CrossRef]
- Zhu, Y.; Dai, H.; Yuan, S. The competition between heterotrophic denitrification and DNRA pathways in hyporheic zone and its impact on the fate of nitrate. J. Hydrol. 2023, 626, 130175. [Google Scholar] [CrossRef]
- Zhang, J.; Yan, M.; Lu, X.; Wang, T. Nutrient removal performance from agricultural drainage by strengthening ecological ditches in hilly areas. Agric. Water Manag. 2024, 291, 108623. [Google Scholar] [CrossRef]
- Vymazal, J.; Březinová, T.D. Removal of nutrients, organics and suspended solids in vegetated agricultural drainage ditch. Ecol. Eng. 2018, 118, 97–103. [Google Scholar] [CrossRef]
- Zhao, Y.; Shu, X.; Tu, Q.; Yang, Y.; Liu, C.; Fu, D.; Li, W.; Duan, C. Pollutant removal from agricultural drainage water using a novel double-layer ditch with biofilm carriers. Bioresour. Technol. 2020, 310, 123344. [Google Scholar] [CrossRef]
- Cital, F.; Ramírez-Hernández, J.; García-Hernández, J.; García-Leyva, G.; Rodríguez-Burgueño, J.E.; Ramírez-Barreto, M.E. Ecosystem services (ES) provided by ditches in a desert agricultural valley. Ecol. Eng. 2022, 174, 106462. [Google Scholar] [CrossRef]
- Yang, J.R.; Tang, S.; Li, Y.; Zhu, J.; Liu, Z. Assessing the nutrient removal performance from rice-crayfish paddy fields by an ecological ditch-wetland system. Heliyon 2024, 10, e38373. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.; Jiang, M.; Su, R.; Luo, Y.; Jiang, Y.; Hu, R. Fertilization intensities at the buffer zones of ponds regulate nitrogen and phosphorus pollution in an agricultural watershed. Water Res. 2024, 250, 121033. [Google Scholar] [CrossRef] [PubMed]
- Hunter, R.G.; Combs, D.L.; George, D.B. Nitrogen, Phosphorous, and Organic Carbon Removal in Simulated Wetland Treatment Systems. Arch. Environ. Contam. Toxicol. 2001, 41, 274–281. [Google Scholar]
- Mondal, B.; Barman, K.; Mazumder, B.S. Environmental dispersion in wetland flow with wind effects under boundary absorptions. J. Earth Syst. Sci. 2024, 133, 130. [Google Scholar] [CrossRef]
- Raza, S.T.; Feyissa, A.; Li, R.; Rene, E.R.; Ali, Z.; Iqbal, H.; Sahito, Z.A.; Chen, Z. Emerging technology effects on combined agricultural and eco-vermicompost. J. Environ. Manag. 2024, 352, 120056. [Google Scholar] [CrossRef]
- Al-Saedi, R.; Smettem, K.; Siddique, K.H.M. Nitrogen removal efficiencies and pathways from unsaturated and saturated zones in a laboratory-scale vertical flow constructed wetland. J. Environ. Manag. 2018, 228, 466–474. [Google Scholar] [CrossRef]
- Yang, S.; Xu, J.; Zhang, J.; Wang, Y.; Peng, S. Reduction of Non-Point Source Pollution from Paddy Fields through Controlled Drainage in an Aquatic Vegetable Wetland–Ecological Ditch System. Irrig. Drain. 2016, 65, 734–740. [Google Scholar] [CrossRef]
- Doriean, N.J.; Bennett, W.W.; Spencer, J.R.; Garzon-Garcia, A.; Burton, J.M.; Teasdale, P.R.; Welsh, D.T.; Brooks, A.P. Intensive landscape-scale remediation improves water quality of an alluvial gully located in a Great Barrier Reef catchment. Hydrol. Earth Syst. Sci. 2021, 25, 867–883. [Google Scholar] [CrossRef]
Sampling Sites | TN (mg/L) | NH3-N (mg/L) | NO3−-N (mg/L) | TP (mg/L) | PP (mg/L) | DOP (mg/L) |
---|---|---|---|---|---|---|
W1 (n = 18) | 2.30 ± 0.89 a | 0.97 ± 0.36 a | 0.90 ± 0.38 a | 0.63 ± 0.27 a | 0.51 ± 0.22 a | 0.12 ± 0.06 a |
W2 (n = 18) | 1.97 ± 0.76 b | 0.81 ± 0.32 ab | 0.78 ± 0.31 ab | 0.54 ± 0.19 ab | 0.43 ± 0.16 ab | 0.10 ± 0.05 ab |
W3 (n = 18) | 1.66 ± 0.59 bc | 0.71 ± 0.29 b | 0.68 ± 0.23 b | 0.48 ± 0.17 b | 0.39 ± 0.14 b | 0.09 ± 0.04 b |
W4 (n = 18) | 1.45 ± 0.49 c | 0.59 ± 0.24 bc | 0.61 ± 0.22 b | 0.45 ± 0.16 b | 0.37 ± 0.14 b | 0.08 ± 0.03 b |
W5 (n = 18) | 1.32 ± 0.44 c | 0.51 ± 0.22 c | 0.54 ± 0.19 b | 0.41 ± 0.13 b | 0.34 ± 0.12 b | 0.07 ± 0.03 b |
Interception rate (%) | 41.0 ± 12.5 | 47.1 ± 12.5 | 38.3 ± 13.6 | 31.9 ± 11.9 | 31.2 ± 12.2 | 34.9 ± 14.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Chen, C.; Yang, Z.; Zheng, X.; Chen, T.; Li, Y.; Lin, X.; Hu, Z.; Ren, K.; Zhang, Z. Performance and Mechanism of a Novel Composite Ecological Ditch System for Nitrogen and Phosphorus Interception in Agricultural Drainage. Water 2025, 17, 882. https://doi.org/10.3390/w17060882
Wu X, Chen C, Yang Z, Zheng X, Chen T, Li Y, Lin X, Hu Z, Ren K, Zhang Z. Performance and Mechanism of a Novel Composite Ecological Ditch System for Nitrogen and Phosphorus Interception in Agricultural Drainage. Water. 2025; 17(6):882. https://doi.org/10.3390/w17060882
Chicago/Turabian StyleWu, Xin, Chaohui Chen, Zijiang Yang, Xiangjian Zheng, Tianyi Chen, Yongtao Li, Xueming Lin, Zheng Hu, Kerun Ren, and Zhen Zhang. 2025. "Performance and Mechanism of a Novel Composite Ecological Ditch System for Nitrogen and Phosphorus Interception in Agricultural Drainage" Water 17, no. 6: 882. https://doi.org/10.3390/w17060882
APA StyleWu, X., Chen, C., Yang, Z., Zheng, X., Chen, T., Li, Y., Lin, X., Hu, Z., Ren, K., & Zhang, Z. (2025). Performance and Mechanism of a Novel Composite Ecological Ditch System for Nitrogen and Phosphorus Interception in Agricultural Drainage. Water, 17(6), 882. https://doi.org/10.3390/w17060882