Research on the Construction of an Integrated Multi-Trophic Aquaculture (IMTA) Model in Seawater Ponds and Its Impact on the Aquatic Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model Establishment
2.2. Sample Collection
2.3. Measurement of Environmental Factors
2.4. DNA Extraction
2.5. PCR Amplification
2.6. Data Analysis
3. Results
3.1. Environmental Factor Detection
3.2. High-Throughput Sequencing
3.3. Diversity Index
3.3.1. α-Diversity
3.3.2. β-Diversity
3.4. Dominant Microbial Flora
3.5. Differential Microbial Diversity
3.6. Functional Prediction
3.7. Analysis with Environmental Factors
4. Discussion
4.1. Role of IMTA in Water Purification
4.2. Characteristics of Microbial Communities in Water Bodies Under the IMTA Model
4.3. Functional Characteristics of Aquatic Microbial Communities
4.4. Influence of Environmental Factors in IMTA on Aquatic Microbial Communities
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, X.G. Environmental impact and ecological engineering management of pond aquaculture in China. Acta Hydrobiol. Sin. 2024, 48, 2162–2170. [Google Scholar]
- Luo, Y.; Huang, Z.Y. Exploring the Breeding and Ecological Farming Models of Large Yellow Croaker. Mar. Fish. 2023, 3, 49. [Google Scholar]
- Li, Y.; Wang, Y.; Wan, D.; Li, B.; Zhang, P.; Wang, H. Pilot-scale application of sulfur-limestone autotrophic denitrification biofilter for municipal tailwater treatment: Performance and microbial community structure. Bioresour. Technol. 2020, 300, 122682. [Google Scholar] [CrossRef]
- Chopin, T.; Buschmann, A.H.; Halling, C.; Troell, M.; Kautsky, N.; Neori, A.; Kraemer, G.P.; Zertuche-González, J.A.; Yarish, C.; Neefus, C. Integrating seaweeds into marine aquaculture systems: A key towards sustainability. J. Phycol. 2001, 37, 975–986. [Google Scholar] [CrossRef]
- Mao, Y.; Yang, H.; Zhou, Y.; Ye, N.; Fang, J. Potential of the seaweed Gracilaria lemaneiformis for integrated multi-trophic aquaculture with scallop Chlamys farreri in North China. J. Appl. Phycol. 2009, 21, 649. [Google Scholar] [CrossRef]
- Ferreira, J.G.; Hawkins, A.J.S.; Monteiro, P.; Moore, H.; Service, M.; Pascoe, P.L.; Ramos, L.; Sequeira, A. Integrated ecosystem-scale carrying capacity in shellfish growing areas. Aquaculture 2008, 275, 138–151. [Google Scholar] [CrossRef]
- Fang, J.; Zhang, J.; Xiao, T.; Huang, D.; Liu, S. Theory of Integrated Multi-Trophic Aquaculture (IMTA) in China; China Ocean and University Press: Qingdao, China, 2020. [Google Scholar]
- Zou, Y.; Hu, Z.; Zhang, J.; Xie, H.; Liang, S. Investigation and optimization of nitrogen transformations in aquaponics. Chin. J. Environ. Eng. 2015, 9, 4211–4216. [Google Scholar]
- Zheng, Y.Q.; Zheng, Z.M.; Qin, W.J. Effects of bioturation by razor clam sinonovacula constricta on vertical distribution of phosphorus form in sediment in an aquaculture wastewater treatment ecosystem. Oceanol. Limnol. Sin. 2017, 48, 161–170. [Google Scholar]
- Nicholaus, R.; Zheng, Z. The effects of bioturbation by the Venus clam Cyclina sinensis on the fluxes of nutrients across the sediment–water interface in aquaculture ponds. Aquac. Int. 2014, 22, 913–924. [Google Scholar] [CrossRef]
- Luo, Y.; Li, L.; Zhao, C.; Wang, D.; Xu, S.; Xu, J. Relationship between phytoplankton structure and water quality factors in culture ponds of Litopenaeus vannamei and Sinonovacula constricta. Oceanol. Limnol. Siniea 2020, 51, 378–387. [Google Scholar]
- Zhao, Y.B. Study on Budget of Organic Carbon, Nitrogen and Phosphorus in Shrimp-Clam Integrated Aquaculture System. Master’s Thesis, Ningbo University, Ningbo, China, 2018. [Google Scholar]
- Cui, H.; Zhang, X.; Dong, L. Research and application progress of ecological floating bed technology in river basin water environment treatment. Water Purif. Technol. 2021, 40 (Suppl. S1), 343–350. [Google Scholar]
- Yavuzcan Yildiz, H.; Robaina, L.; Pirhonen, J.; Mente, E.; Domínguez, D.; Parisi, G. Fish welfare in aquaponic systems: Its relation to water quality with an emphasis on feed and faeces—A review. Water 2017, 9, 13. [Google Scholar] [CrossRef]
- Rakocy, J.; Shultz, R.C.; Bailey, D.S.; Thoman, E.S. Aquaponic production of tilapia and basil: Comparing a batch and staggered cropping system. Acta Hortic. 2004, 648, 63–69. [Google Scholar] [CrossRef]
- McMurtry, M.R.; Sanders, D.C.; Cure, J.D.; Hodson, R.G.; Haning, B.C.; Amand, E.C.S. Efficiency of water use of an integrated fish/vegetable co-culture system. J. World Aquac. Soc. 1997, 28, 420–428. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, Y.; Gu, C.; Liu, H.; Ni, Q. Historical process, typical systems and developing trends of aquaponics. Fish. Mod. 2020, 47, 7. [Google Scholar]
- Ding, Y.; Zhang, M.; Zhang, J.; Yang, Q. Researches on fish and vegetable co-existing system. J. Fish. Sci. China 1997, 4, 71–76. [Google Scholar]
- Lu, B.; Xu, Z.; Li, J.; Chai, X. Removal of water nutrients by different aquatic plant species: An alternative way to remediate polluted rural rivers. Ecol. Eng. 2018, 110, 18–26. [Google Scholar] [CrossRef]
- Wang, C.; Zheng, S.-S.; Wang, P.-F.; Qian, J. Effects of vegetations on the removal of contaminants in aquatic environments: A review. J. Hydrodyn. 2014, 26, 497–511. [Google Scholar] [CrossRef]
- Chen, Y.H.; Wu, X.F.; Hao, J.; Li, K.L.; Liu, J. The Adaptability and Decontamination Effect of Four Kinds of Woody Plants in Con-structed Wetland Environment. Acta Ecol. Sin. 2014, 34, 916–924. [Google Scholar]
- Hao, J. Studies on Screening, Root Inducing and Adaptive Mechanism of Woody Plants with Subsurface Flow Constructed Wetlands. Ph.D. Thesis, Central South University of Forestry & Technology, Changsha, China, 2013. [Google Scholar]
- GB 17378-2007; Specifications for Marine Monitoring. Ministry of Natural Resources (Ocean): Beijing, China, 2007.
- Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 2007, 16, 5261–5267. [Google Scholar] [CrossRef]
- Edgar, R.C.; Haas, B.J.; Clemente, J.C.; Quince, C.; Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011, 27, 2194–2200. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef] [PubMed]
- Oksanen, J.; Simpson, G.L.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’Hara, R.; Solymos, P.; Stevens, M.H.H.; Szoecs, E.; et al. Vegan: Community ecology package. R package version. Acessoem 2010, 23, 2010. [Google Scholar]
- Aßhauer, K.P.; Wemheuer, B.; Daniel, R.; Meinicke, P. Tax4Fun: Predicting functional profiles from metagenomic 16S rRNA data. Bioinformatics 2015, 35, 2882–2884. [Google Scholar] [CrossRef] [PubMed]
- Rodhouse, P.G.; Roden, C.M. Carbon budget for a coastal inlet in relation to intensive cultivation of suspension—Feeding bivalve mollusks. Mar. Ecol. Prog. Ser. 1987, 36, 225–236. [Google Scholar] [CrossRef]
- Chu, T.; Guo, W. Purification Effect of Stocking Methods of Hyriopsis cumingii on Eutrophic Water Bodies. Hubei Agric. Sci. 2020, 59, 51–53. [Google Scholar]
- Lindahl, O.; Hart, R.; Hernroth, B.; Kollberg, S.; Loo, L.O.; Olrog, L.; Rehnstam-Holm, A.S.; Svensson, J.; Svensson, S.; Syversen, U. Improving marine water quality by mussel farming: A profitable solution for Swedish society. AMBIO 2005, 34, 131–138. [Google Scholar] [CrossRef]
- Dame, R.F.; Wolaver, T.G.; Libes, S.M. The summer uptake and release of nitrogen by an intertidal oyster reef. Neth. J. Sea Res. 1985, 19, 265–268. [Google Scholar] [CrossRef]
- Eng, C.T.; Paw, J.N.; Guarin, F.Y. The environmental impact of aquaculture and the effects of pollution on coastal aquaculture development in Southeast Asia. Mar. Pollut. Bull. 1989, 20, 335–343. [Google Scholar]
- Deng, M.; Hou, J.; Song, K.; Chen, J.; Gou, J.; Li, D.; He, X. Community metagenomic assembly reveals microbes that contribute to the vertical stratification of nitrogen cycling in an aquaculture pond. Aquaculture 2020, 520, 734911. [Google Scholar] [CrossRef]
- Zhang, B.Y.; Yu, K. Application of microbial gene databases in the annotation of nitro-gen cycle functional genes. Microbiol. China 2020, 47, 3021–3038. [Google Scholar]
- Li, W.; Liu, M.; Siddique, M.S.; Graham, N.; Yu, W. Contribution of bacterial extracellular polymeric substances (EPS) in surface water purification. Environ. Pollut. 2021, 280, 116998. [Google Scholar] [CrossRef]
- Van Der Gucht, K.; Vandekerckhove, T.; Vloemans, N.; Cousin, S.; Muylaert, K.; Sabbe, K.; Gillis, M.; Declerk, S.; Meester, L.; Vyverman, W. Characterization of bacterial communities in four freshwater lakes differing in nutrient load and food web structure. FEMS Microbiol. Ecol. 2005, 53, 205–220. [Google Scholar] [CrossRef]
- Zhou, Z.; Tran, P.Q.; Kieft, K.; Anantharaman, K. Genome diversification in globally distributed novel marine Proteobacteria is linked to environmental adaptation. ISME J. 2020, 14, 2060–2077. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Jin, W.; Zhao, J.; Wang, R.; Qi, H.; Li, J. Response of Intestinal Microbiota in Gymnocypris przewalskii to Stress from Different Salinities. J. Dalian Ocean Univ. 2024, 39, 225–233. [Google Scholar]
- Liu, P.; Wan, Y.; Zhang, Z.; Ji, Q.; Lian, J.; Yang, C.; Wang, X.; Qin, B.; Yu, J. Toxic effects of combined exposure to cadmium and nitrate on intestinal morphology, immune response, and microbiota in juvenile Paralichthys olivaceus. Aquat. Toxicol. 2023, 264, 106704. [Google Scholar] [CrossRef] [PubMed]
- Hu, D. Microbial Characteristics and Dynamic Changes of Bacterial Communities in the Conversion of Nitrite in the Aquaculture Water of Litopenaeus vannamei. Ph.D. Thesis, Xiamen University, Xiamen, China, 2017. [Google Scholar]
- Kirchman, D.L. The ecology of Cytophaga-Flavobacteria in aquatic environments. FEMS Microbiol. Ecol. 2002, 39, 91–100. [Google Scholar] [CrossRef]
- Nielsen, P.H.; Mielczarek, A.T.; Kragelund, C.; Nielsen, J.L.; Saunders, A.M.; Kong, Y.; Hansen, A.A.; Vollertsen, J. A conceptual ecosystem model of microbial communities in enhanced biological phosphorus removal plants. Water Res. 2010, 44, 5070–5088. [Google Scholar] [CrossRef]
- Fang, Y.; Li, H.; Wang, L.B.; Wan, X.; Shi, W.J.; Yang, Z.Y.; Jiang, Q.; Shen, H.; Hu, R.H.; Guan, X.P.; et al. Study on bacterial community structure in rearing water in small greenhouse of Litopenaeus vannamei. South China Fish. Sci. 2023, 19, 29–41. [Google Scholar]
- Bouwman, L.; Goldewijk, K.K.; Van Der Hoek, K.W.; Beusen, A.H.; Van Vuuren, D.P.; Willems, J.; Rufino, M.C.; Stehfest, E. Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900–2050 period. Proc. Natl. Acad. Sci. USA 2013, 110, 20882–20887. [Google Scholar] [CrossRef]
- Sun, C.; Xue, Y.; Zhou, J.; Hou, D.; Dai, L.; Chen, G.; Yang, W.; Gao, S.; Song, H.; Zhou, T.; et al. Cobetia Bacteria and Its Application. Chinese Patent CN116814461A, 29 September 2023. [Google Scholar]
- Ray, A.J.; Lotz, J.M. Comparing a chemoautotrophic-based biofloc system and three heterotrophic-based systems receiving different carbohydrate sources. Aquaculture 2014, 63, 54–61. [Google Scholar] [CrossRef]
- Zheng, Y.; Yu, M.; Liu, Y.; Su, Y.; Xu, T.; Yu, M.; Zhang, X.H. Comparison of cultivable bacterial communities associated with Litopenaeus vannamei larvae at different health statuses and growth stages. Aquaculture 2016, 451, 163–169. [Google Scholar] [CrossRef]
Hydration ≤ | Protein ≥ | Crude Fiber ≤ | Crude Ash ≤ | Crude Fat ≥ | Total Phosphorus ≥ | NaCl ≤ | Lysine ≥ | |
---|---|---|---|---|---|---|---|---|
Compound feed | 12.9% | 40.0% | 6.0% | 20% | 0.7% | 5.0% | 5.0% | 1.5% |
Time | NH4-N | NO2-N | NO3-N | P-PO4 | TN | TP |
---|---|---|---|---|---|---|
Early stage | 0.77 ± 0.06 | 0.16 ± 0.01 | 0.43 ± 0.01 | 1.04 ± 0.14 | 5.26 ± 1.64 | 0.33 ± 0.06 |
Late stage | 0.23 ± 0.04 | 0.05 ± 0.01 | 0.05 ± 0.01 | 0.33 ± 0.03 | 1.10 ± 0.16 | 0.12 ± 0.01 |
Time | OTU | Shannon | Simpson | Chao | Ace |
---|---|---|---|---|---|
Early stage | 772 ± 106 b | 4.82 ± 0.29 b | 0.90 ± 0.03 b | 997.20 ± 154.80 | 1070.83 ± 154.85 |
Middle stage | 768 ± 71 b | 4.90 ± 0.16 b | 0.90 ± 0.00 b | 996.67 ± 76.40 | 1067.30 ± 82.62 |
Late stage | 875 ± 50 a | 5.55 ± 0.10 a | 0.93 ± 0.01 a | 1076.53 ± 59.23 | 1148.44 ± 75.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Tang, B.; Zhou, H.; Zhong, P.; Zhao, L. Research on the Construction of an Integrated Multi-Trophic Aquaculture (IMTA) Model in Seawater Ponds and Its Impact on the Aquatic Environment. Water 2025, 17, 887. https://doi.org/10.3390/w17060887
Yang H, Tang B, Zhou H, Zhong P, Zhao L. Research on the Construction of an Integrated Multi-Trophic Aquaculture (IMTA) Model in Seawater Ponds and Its Impact on the Aquatic Environment. Water. 2025; 17(6):887. https://doi.org/10.3390/w17060887
Chicago/Turabian StyleYang, Han, Baogui Tang, Hui Zhou, Peigui Zhong, and Liqiang Zhao. 2025. "Research on the Construction of an Integrated Multi-Trophic Aquaculture (IMTA) Model in Seawater Ponds and Its Impact on the Aquatic Environment" Water 17, no. 6: 887. https://doi.org/10.3390/w17060887
APA StyleYang, H., Tang, B., Zhou, H., Zhong, P., & Zhao, L. (2025). Research on the Construction of an Integrated Multi-Trophic Aquaculture (IMTA) Model in Seawater Ponds and Its Impact on the Aquatic Environment. Water, 17(6), 887. https://doi.org/10.3390/w17060887