Spatiotemporal Dynamics and Attribution Analysis of Blue and Green Water Resources During 1980–2019 in the Hanjiang River Basin, China
Abstract
:1. Introduction
2. Data and Methods
2.1. Research Region
2.2. Data
2.3. Methodology
2.3.1. SWAT Model
2.3.2. Pettitt Mutation Test
2.3.3. Scenario Setting and Impact Factor Contribution Calculation
3. Results
3.1. Parameter Sensitivity Analysis
3.2. Calibration and Validation of the SWAT Model
3.3. Spatiotemporal Variations in Blue and Green Water
3.3.1. Temporal Variation Dynamics
3.3.2. Spatial Distribution Dynamics
3.4. Temporal Variation Dynamics of Blue and Green Water
3.4.1. Temporal Change Attribution Analysis
3.4.2. Spatial Change Attribution Analysis
4. Discussion
4.1. Variations in Blue and Green Water Resources at the Catchment Scale
4.2. Mechanisms Affecting the Temporal and Spatial Variability of Blue and Green Water Resources
4.3. Uncertainties and Limitations
5. Conclusions
- (1)
- The annual mean blue water and green water resources within the whole valley were 392.24 mm and 410.48 mm, respectively. For the watershed of Hanjiang River green water dominates the water resources, accounting for 51.14%.
- (2)
- The quantity of the blue water in the region showed a fluctuating downward tendency, but the overall decreasing range was slight. Over a long period, the total quantity of green water was relatively stable, with a slight increase in the trend. In terms of interannual variability, 1985 was the mutation point for blue water and 1991 was the mutation point for green water.
- (3)
- The regional impact ratio of rainfall and blue/green water in the Hanjiang River Basin is not balanced. The high-value areas of blue water are mainly distributed in the westernmost, northeastern, and southeastern parts of the basin. Meanwhile, green water resources exhibit a characteristic of “high in the west and low in the east”.
- (4)
- The change in blue water resources in the area is mainly affected by the changes in meteorological elements and land utilization, with climate contributing 96.05% and land use contributing only 3.95%; The contribution rates to the change in green water is 110.74% and −10.74%, respectively. Climate factors are the key contributors of the changes in green water and blue water in this region. Green and blue water are declining in most areas. Moreover, blue water is declining at a much faster rate than green water.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dalin, C.; Wada, Y.; Kastner, T.; Puma, M.J. Groundwater depletion embedded in international food trade. Nature 2017, 543, 700–704. [Google Scholar] [PubMed]
- Wei, F.; Zhang, X.; Xu, J.; Bing, J.; Pan, G. Simulation of water resource allocation for sustainable urban development: An integrated optimization approach. J. Clean. Prod. 2020, 273, 122537. [Google Scholar]
- Yang, Y.; Zhang, Y.; Wang, L. Water resource sustainable use assessment methodology and an impact factor analysis framework for SDG 6–oriented river basins: Evidence from the Yellow River basin (Shaanxi section) in China. Environ. Sci. Pollut. Res. 2023, 30, 110175–110190. [Google Scholar]
- Shukla, S.; Gedam, S. Evaluating hydrological responses to urbanization in a tropical river basin: A water resources management perspective. Nat. Resour. Res. 2019, 28, 327–347. [Google Scholar]
- Jiang, Q.; Ouyang, X.; Wang, Z.; Wu, Y.; Guo, W. System dynamics simulation and scenario optimization of China s water footprint under different SSP-RCP scenarios. J. Hydrol. 2023, 622, 129671. [Google Scholar]
- Chattopadhyay, S.; Jha, M.K. Hydrological response due to projected climate variability in Haw River watershed, North Carolina, USA. Hydrol. Sci. J. 2016, 61, 495–506. [Google Scholar]
- François, B.; Schlef, K.E.; Wi, S.; Brown, C.M. Design considerations for riverine floods in a changing climate—A review. J. Hydrol. 2019, 574, 557–573. [Google Scholar]
- Clifton, C.F.; Day, K.T.; Luce, C.H.; Grant, G.E.; Safeeq, M.; Halofsky, J.E.; Staab, B.P. Effects of climate change on hydrology and water resources in the Blue Mountains, Oregon, USA. Clim. Serv. 2018, 10, 9–19. [Google Scholar] [CrossRef]
- Khan, J.Z.; Zaheer, M. Hydrological response to changing climate: A case study of large watershed, Xiananning, Hubei, China. Geol. Ecol. Landsc. 2022, 6, 141–147. [Google Scholar]
- Hordofa, A.T.; Leta, O.T.; Alamirew, T.; Chukalla, A.D. Climate change impacts on blue and green water of Meki River Sub-Basin. Water Resour. Manag. 2023, 37, 2835–2851. [Google Scholar]
- Martínez-Retureta, R.; Aguayo, M.; Abreu, N.J.; Stehr, A.; Duran-Llacer, I.; Rodríguez-López, L.; Sauvage, S.; Sánchez-Pérez, J.M. Estimation of the climate change impact on the hydrological balance in basins of south-central chile. Water 2021, 13, 794. [Google Scholar] [CrossRef]
- Cheng, S.; Cheng, L.; Liu, P.; Qin, S.; Zhang, L.; Xu, C.Y.; Xiong, L.; Liu, L.; Xia, J. An analytical baseflow coefficient curve for depicting the spatial variability of mean annual catchment baseflow. Water Resour. Res. 2021, 57, e2020WR029529. [Google Scholar]
- Yu, G.; Liu, T.; Wang, Q.; Li, T.; Li, X.; Song, G.; Feng, Y. Impact of land use/land cover change on ecological quality during urbanization in the lower yellow river basin: A case study of Jinan city. Remote Sens. 2022, 14, 6273. [Google Scholar] [CrossRef]
- Hou, Y.; Chen, Y.; Li, Z.; Wang, Y. Changes in land use pattern and structure under the rapid urbanization of the Tarim River Basin. Land 2023, 12, 693. [Google Scholar] [CrossRef]
- Cheng, L.; Zhang, L.; Chiew, F.H.; Canadell, J.G.; Zhao, F.; Wang, Y.P.; Hu, X.; Lin, K. Quantifying the impacts of vegetation changes on catchment storage-discharge dynamics using paired-catchment data. Water Resour. Res. 2017, 53, 5963–5979. [Google Scholar]
- Peter, A.; Mujuru, M.; Dube, T. An assessment of land cover changes in a protected nature reserve and possible implications on water resources, South Africa. Phys. Chem. Earth Parts A B C 2018, 107, 86–91. [Google Scholar]
- Andualem, T.G.; Peters, S.; Hewa, G.A.; Boland, J.; Myers, B.R. Spatiotemporal trends of urban-induced land use and land cover change and implications on catchment surface imperviousness. Appl. Water Sci. 2023, 13, 223. [Google Scholar]
- Falkenmark, M. Coping with water scarcity under rapid population growth. In Proceedings of the Conference of SADC Ministers, Pretoria, South Africa; 1995; Volume 23, p. 24. [Google Scholar]
- Dai, C.; Qin, X.; Dong, F.; Cai, Y. Climate change impact on blue and green water resources distributions in the Beijiang River basin based on CORDEX projections. J. Water Clim. Change 2022, 13, 2780–2798. [Google Scholar]
- Sharma, A.; Patel, P.L.; Sharma, P.J. Blue and green water accounting for climate change adaptation in a water scarce river basin. J. Clean. Prod. 2023, 426, 139206. [Google Scholar]
- Liang, J.; Liu, Q.; Zhang, H.; Li, X.; Qian, Z.; Lei, M.; Li, X.; Peng, Y.; Li, S.; Zeng, G. Interactive effects of climate variability and human activities on blue and green water scarcity in rapidly developing watershed. J. Clean. Prod. 2020, 265, 121834. [Google Scholar]
- Abbaspour, K.C.; Faramarzi, M.; Ghasemi, S.S.; Yang, H. Assessing the impact of climate change on water resources in Iran. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef]
- Farsani, I.F.; Farzaneh, M.R.; Besalatpour, A.A.; Salehi, M.H.; Faramarzi, M. Assessment of the impact of climate change on spatiotemporal variability of blue and green water resources under CMIP3 and CMIP5 models in a highly mountainous watershed. Theor. Appl. Climatol. 2019, 136, 169–184. [Google Scholar] [CrossRef]
- Yuan, Z.; Xu, J.; Wang, Y. Historical and future changes of blue water and green water resources in the Yangtze River source region, China. Theor. Appl. Climatol. 2019, 138, 1035–1047. [Google Scholar] [CrossRef]
- Faramarzi, M.; Abbaspour, K.C.; Schulin, R.; Yang, H. Modeling blue and green water resources availability in Iran. Hydrol. Process. Int. J. 2009, 23, 486–501. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Rouholahnejad, E.; Vaghefi, S.; Srinivasan, R.; Yang, H.; Kløve, B. A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. J. Hydrol. 2015, 524, 733–752. [Google Scholar] [CrossRef]
- Li, D.; Bu, S.; Chen, S.; Li, Q.; Li, Y. Assessment of the impact of short-term land use/land cover changes on water resources in the Yanghe reservoir basin, China. Water Supply 2022, 22, 833–848. [Google Scholar] [CrossRef]
- Woldesenbet, T.A. Impact of land use and land cover dynamics on ecologically-relevant flows and blue-green water resources. Ecohydrol. Hydrobiol. 2022, 22, 420–434. [Google Scholar] [CrossRef]
- Du, L.; Rajib, A.; Merwade, V. Large scale spatially explicit modeling of blue and green water dynamics in a temperate mid-latitude basin. J. Hydrol. 2018, 562, 84–102. [Google Scholar]
- Kang, W.; Ni, F.; Deng, Y.; Xiang, J.; Zhou, J.; Du, Z.; Wu, M.; Jiang, N.; Yue, Z. Spatiotemporal dynamics of blue and green water resources in a mountainous watershed: A case study of the Wujiang River Basin, China. J. Hydrol. Reg. Stud. 2023, 48, 101484. [Google Scholar]
- Ai, L.; Shi, Z.H.; Yin, W.; Huang, X. Spatial and seasonal patterns in stream water contamination across mountainous watersheds: Linkage with landscape characteristics. J. Hydrol. 2015, 523, 398–408. [Google Scholar] [CrossRef]
- Mao, P.; Pang, J.; Huang, C.; Zha, X.; Zhou, Y.; Guo, Y.; Hu, H.; Liu, T. Chemical weathering characteristics and regional comparative study of the loess deposits in the upper Hanjiang River. Acta Geogr. Sin. 2017, 72, 279–291. [Google Scholar]
- Jin, H.; Chen, X.; Zhong, R.; Wu, P.; Li, D. Spatio-temporal changes of precipitation in the Hanjiang River Basin under climate change. Theor. Appl. Climatol. 2021, 146, 1441–1458. [Google Scholar] [CrossRef]
- Zhang, X.; Ren, G.; Bing, H.; Mikami, T.; Matsumoto, J.; Zhang, P.; Yang, G. Reconstruction and characterization of droughts and floods in the Hanjiang River Basin, China, 1426–2017. Clim. Change 2023, 176, 62. [Google Scholar] [CrossRef]
- Yang, H.; Zheng, L.; Wang, Y.; Li, J.; Zhang, B.; Bi, Y. Quantifying the relationship between land use intensity and ecosystem services’ value in the Hanjiang River Basin: A case study of the Hubei Section. Int. J. Environ. Res. Public Health 2022, 19, 10950. [Google Scholar] [CrossRef]
- Song, X.; Zhang, J.; Zhan, C.; Liu, C. Review for impacts of climate change and human activities on water cycle. J. Hydraul. Eng. 2013, 44, 779–790. (In Chinese) [Google Scholar]
- Wang, M.; Zhang, Y.; Lu, Y.; Gao, L.; Wang, L. Attribution analysis of streamflow changes based on large-scale hydrological modeling with uncertainties. Water Resour. Manag. 2023, 37, 713–730. [Google Scholar] [CrossRef]
- Haddeland, I.; Heinke, J.; Biemans, H.; Eisner, S.; Flörke, M.; Hanasaki, N.; Konzmann, M.; Ludwig, F.; Masaki, Y.; Schewe, J.; et al. Global water resources affected by human interventions and climate change. Proc. Natl. Acad. Sci. USA 2014, 111, 3251–3256. [Google Scholar] [CrossRef]
- Tang, X.; Fu, G.; Zhang, S.; Gao, C.; Wang, G.; Bao, Z.; Liu, Y.; Liu, C.; Jin, J. Attribution of climate change and human activities to streamflow variations with a posterior distribution of hydrological simulations. Hydrol. Earth Syst. Sci. 2022, 26, 5315–5339. [Google Scholar] [CrossRef]
- Chen, T.; Jia, J.; Zou, L.; Hong, S. Quantifying the influences of natural factors and human activities on NDVI changes in the Hanjiang River Basin, China. Remote Sens. 2020, 12, 3780. [Google Scholar] [CrossRef]
- Zhan, Y.; Fan, J.; Meng, T.; Li, Z.; Yan, Y.; Huang, J.; Chen, D.; Sui, L. Analysis on vegetation cover changes and the driving factors in the mid-lower reaches of Hanjiang River Basin between 2001 and 2015. Open Geosci. 2021, 13, 675–689. [Google Scholar] [CrossRef]
- Yang, S.; Liu, J.; Wang, C.; Zhang, T.; Dong, X.; Liu, Y. Vegetation dynamics influenced by climate change and human activities in the Hanjiang River Basin, central China. Ecol. Indic. 2022, 145, 109586. [Google Scholar] [CrossRef]
- Jiang, W.; Wang, L.; Zhang, M.; Yao, R.; Chen, X.; Gui, X.; Sun, J.; Cao, Q. Analysis of drought events and their impacts on vegetation productivity based on the integrated surface drought index in the Hanjiang River Basin, China. Atmos. Res. 2021, 254, 105536. [Google Scholar] [CrossRef]
- Deng, P.; Zhang, M.; Hu, Q.; Wang, L.; Bing, J. Pattern of spatio-temporal variability of extreme precipitation and flood-waterlogging process in Hanjiang River Basin. Atmos. Res. 2022, 276, 106258. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, J.; Elmahdi, A.; Shu, Z.; Wu, Y.; Wang, G. Evolution characteristics and relationship of meteorological and hydrological droughts from 1961 to 2018 in Hanjiang River Basin, China. J. Water Clim. Change 2022, 13, 224–246. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, W.; Liu, Q.; Shen, H.; Cai, S.; Lei, X. Future runoff forecast in Hanjiang River Basin based on Wetspa model and CMIP6 model. Front. Environ. Sci. 2022, 10, 980949. [Google Scholar] [CrossRef]
- Zou, Y.; Yan, B.; Feng, B.; Zhang, J.; Tang, Y. A three-parameterhydrological model for monthly runoff simulation—A case study of upper Hanjiang River Basin. Water 2023, 15, 474. [Google Scholar] [CrossRef]
- Pang, J.; Xu, Z.; Liu, C. Weather generator and database in the SWAT model. J. China Hydrol. 2007, 27, 25–30. (In Chinese) [Google Scholar]
- Ministry of Natural Resources of China. Standard Map Service (Approval No. GS (2022) 1873). 2022. Available online: http://bzdt.ch.mnr.gov.cn/ (accessed on 19 March 2025).
- Brighenti, T.M.; Bonumá, N.B.; Srinivasan, R.; Chaffe, P.L.B. Simulating sub-daily hydrological process with SWAT: A review. Hydrol. Sci. J. 2019, 64, 1415–1423. [Google Scholar] [CrossRef]
- Douglas-Mankin, K.R.; Srinivasan, R.; Arnold, J.G. Soil and Water Assessment Tool (SWAT) model: Current developments and applications. Trans. ASABE 2010, 53, 1423–1431. [Google Scholar] [CrossRef]
- Faramarzi, M.; Abbaspour, K.C.; Vaghefi, S.A.; Farzaneh, M.R.; Zehnder, A.J.; Srinivasan, R.; Yang, H. Modeling impacts of climate change on freshwater availability in Africa. J. Hydrol. 2013, 480, 85–101. [Google Scholar] [CrossRef]
- Zhao, A.; Zhu, X.; Liu, X.; Pan, Y.; Zuo, D. Impacts of land use change and climate variability on green and blue water resources in the Weihe River Basin of northwest China. Catena 2016, 137, 318–327. [Google Scholar]
- Kling, H.; Fuchs, M.; Paulin, M. Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. J. Hydrol. 2012, 424, 264–277. [Google Scholar]
- Zang, C.; Liu, J.; Van Der Velde, M.; Kraxner, F. Assessment of spatial and temporal patterns of green and blue water flows under natural conditions in inland river basins in Northwest China. Hydrol. Earth Syst. Sci. 2012, 16, 2859–2870. [Google Scholar]
- Pettitt, A.N. A non-parametric approach to the change-point problem. J. R. Stat. Soc. Ser. C (Appl. Stat). 1979, 28, 126–135. [Google Scholar]
- Villarini, G.; Serinaldi, F.; Smith, J.A.; Krajewski, W.F. On the stationarity of annual flood peaks in the continental United States during the 20th century. Water Resour. Res. 2009, 417, W08417. [Google Scholar]
- Peng, T.; Mei, Z.; Dong, X.; Wang, J.; Liu, J.; Chang, W.; Wang, G. Attribution of runoff changes in the Hanjiang River Basin based on Budyko hypothesis. South North Water Transf. Water Sci. Technol. 2021, 19, 1114–1124. (In Chinese) [Google Scholar]
- Blyth, E.M.; Martinez-de la Torre, A.; Robinson, E.L. Trends in evapotranspiration and its drivers in Great Britain: 1961 to 2015. Prog. Phys. Geogr. Earth Environ. 2019, 43, 666–693. [Google Scholar]
- Ruscica, R.C.; Sörensson, A.A.; Diaz, L.B.; Vera, C.; Castro, A.; Papastefanou, P.; Rammig, A.; Rezende, L.F.C.; Sakschewski, B.; Thonicke, K.; et al. Evapotranspiration trends and variability in southeastern South America: The roles of land-cover change and precipitation variability. Int. J. Climatol. 2022, 42, 2019–2038. [Google Scholar] [CrossRef]
- Yuan, Z.; Xu, J.; Meng, X.; Wang, Y.; Yan, B.; Hong, X. Impact of climate variability on blue and green water flows in the Erhai Lake Basin of Southwest China. Water 2019, 11, 424. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, S.; Meng, L.; Liu, T.; Zhu, M.; Ou, X.; Xiong, Y.; Labat, D. How did blue and green water resource evolute spatially and temporally in the Meijiang River Basin, China? Front. Earth Sci. 2023, 11, 1130520. [Google Scholar] [CrossRef]
- Zhang, W.; Zha, X.; Li, J.; Liang, W.; Ma, Y.; Fan, D.; Li, S. Spatiotemporal change of blue water and green water resources in the headwater of Yellow River Basin, China. Water Resour. Manag. 2014, 28, 4715–4732. [Google Scholar] [CrossRef]
- Zhang, X.; Jiang, C.; Huang, J.; Ni, Z.; Sun, J.; Li, Z.; Wen, T. Spatiotemporal Evaluation of Blue and Green Water in Xinjiang River Basin Based on SWAT Model. Water 2022, 14, 2429. [Google Scholar] [CrossRef]
- Minnig, M.; Moeck, C.; Radny, D.; Schirmer, M. Impact of urbanization on groundwater recharge rates in Dübendorf, Switzerland. J. Hydrol. 2018, 563, 1135–1146. [Google Scholar] [CrossRef]
- Wu, L.; He, Y.; Tan, Q.; Zheng, Y. Land-use simulation for synergistic pollution and carbon reduction: Scenario analysis and policy implications. J. Environ. Manag. 2024, 356, 120603. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Wang, S.; Song, S.; Wang, Y.; Wang, Y.; Gao, D.; Li, Z. Ecological restoration intensifies evapotranspiration in the Kubuqi Desert. Ecol. Eng. 2022, 175, 106504. [Google Scholar] [CrossRef]
- Dong, N.; Yang, M.; Yu, Z.; Wei, J.; Yang, C.; Yang, Q.; Liu, X.; Lei, X.; Wang, H.; Kunstmann, H. Water resources management in a reservoir-regulated basin: Implications of reservoir network layout on streamflow and hydrologic alteration. J. Hydrol. 2020, 586, 124903. [Google Scholar] [CrossRef]
- Xie, J.; You, J.; Ma, Z.; Deng, X.; Lin, P.; Gao, J. Methodology for including reservoir regulation in water scarcity evaluation. J. Clean. Prod. 2022, 365, 132657. [Google Scholar] [CrossRef]
- Liu, H.; Yin, J.; Feng, L. The dynamic changes in the storage of the Danjiangkou Reservoir and the influence of the South-North Water Transfer Project. Sci. Rep. 2018, 8, 8710. [Google Scholar] [CrossRef]
- Dai, X.; Yu, Z.; Yang, G.; Xu, C.; Wan, R. Investigation of inner-basin variation: Impact of large reservoirs on water regimes of downstream water bodies. Hydrol. Process. 2021, 35, e14241. [Google Scholar] [CrossRef]
- Liu, H.; Zheng, L.; Yin, S. Multi-perspective analysis of vegetation cover changes and driving factors of long time series based on climate and terrain data in Hanjiang River Basin, China. Arab. J. Geosci. 2018, 11, 509. [Google Scholar] [CrossRef]
- Feng, J.; Shao, D.; Gu, W.; Liu, L.; Dong, W.; Miao, D. Surface water–groundwater transformation patterns in the Jianghan Plain after the impoundment of the Three Gorges Project and the opening of the Yangtze-to-Hanjiang Water Transfer Project. Water 2023, 15, 2952. [Google Scholar] [CrossRef]
Scenarios | Meteorological Data | Land Use Data | Simulation Results/mm |
---|---|---|---|
Scenario 1 | 1980–1991 | 1990 | |
Scenario 2 | 1992–2019 | 1990 | |
Scenario 3 | 1980–1991 | 2010 | |
Scenario 4 | 1992–2019 | 2010 |
Sensitivity Ranking | Parameter Code | Parameter | t | p | Initial Range of Parameter | Optimal Range of Parameter | Fitted Value |
---|---|---|---|---|---|---|---|
1 | ESCO | Soil evaporation compensation coefficient | 10.41 | 0.00 | 0.01~1 | 0.31~0.60 | 0.45 |
2 | RCHRG_DP | Permeability of deep aquifer | 8.00 | 0.00 | 0~1 | 0.88~0.91 | 0.90 |
3 | GWQMN | Shallow underground runoff coefficient | −4.15 | 0.00 | 0~5000 | 316.02~429.16 | 372.59 |
4 | CN2 | SCS runoff curve number | 3.06 | 0.00 | −0.5~0.5 | 0.48~0.50 | 0.49 |
5 | SMFMN | The minimum snowmelt rate/mm | 2.49 | 0.02 | 0~10 | 8.93~9.07 | 9.00 |
6 | EPCO | Plant absorption compensation factor | −1.87 | 0.07 | 0.01~1 | 0.77~0.79 | 0.78 |
7 | GW_REVAP | Re-evaporation coefficient of shallow groundwater | −1.50 | 0.14 | 0.02~0.2 | 0.13~0.15 | 0.14 |
8 | SOL_K | soil saturated hydraulic conductivity | 1.23 | 0.23 | −0.8~0.8 | 0.33~0.35 | 0.34 |
9 | SFTMP | Snowfall temperature | −1.22 | 0.23 | −5~5 | −4.64~−4.73 | −4.68 |
10 | SURLAG | Lag coefficient of surface runoff | 0.93 | 0.36 | 1~24 | 21.56~22.10 | 21.83 |
11 | SOL_ALB | Wet soil reflectance | −0.90 | 0.37 | −0.5~0.5 | 0.42~0.44 | 0.43 |
12 | GW_DELAY | Groundwater delay period/day | −0.82 | 0.42 | 0~500 | 468.06~469.82 | 468.94 |
13 | OV_N | Manning coefficient of surface runoff | 0.72 | 0.47 | 0~0.8 | 0.38~0.42 | 0.40 |
14 | BIOMIX | Biomixing efficiency | 0.56 | 0.58 | −0.5~0.5 | 0.08~0.12 | 0.10 |
15 | REVAPMN | Re-evaporation depth of shallow groundwater | −0.47 | 0.64 | 0~500 | 197.30~234.81 | 216.06 |
16 | SMFMX | Maximum snowmelt rate/mm | −0.29 | 0.77 | 0~10 | 1.33~1.46 | 1.40 |
Scenarios | Blue Water | Green Water | ||||
---|---|---|---|---|---|---|
Simulated Value (mm/a) | Variation (mm/a) | Contribution Rate of Each Factor (%) | Simulated Value (mm/a) | Variation (mm/a) | Contribution Rate of Each Factor (%) | |
Scenario 1 | 422.30 | - | - | 418.04 | - | - |
Scenario 2 | 384.78 | −37.51 | 96.05 | 407.99 | −10.05 | 110.74 |
Scenario 3 | 420.76 | −1.54 | 3.95 | 419.02 | 0.98 | −10.74 |
Scenario 4 | 383.24 | −39.05 | - | 408.96 | −9.08 | - |
Land Use | Area Proportion (%) | Percentage of Change Area (%) | |
---|---|---|---|
1990 | 2010 | ||
Cropland | 35.79 | 35.31 | −0.48 |
Woodland | 39.72 | 39.66 | −0.07 |
Grassland | 19.46 | 19.42 | −0.04 |
Water area | 2.51 | 2.80 | 0.29 |
Construction land | 2.47 | 2.78 | 0.31 |
Bare land | 0.05 | 0.04 | −0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, P.; Chen, S.; Yu, Y.; Wu, Y.; Wang, W. Spatiotemporal Dynamics and Attribution Analysis of Blue and Green Water Resources During 1980–2019 in the Hanjiang River Basin, China. Water 2025, 17, 1008. https://doi.org/10.3390/w17071008
Tian P, Chen S, Yu Y, Wu Y, Wang W. Spatiotemporal Dynamics and Attribution Analysis of Blue and Green Water Resources During 1980–2019 in the Hanjiang River Basin, China. Water. 2025; 17(7):1008. https://doi.org/10.3390/w17071008
Chicago/Turabian StyleTian, Pei, Shu Chen, Yue Yu, Yongyan Wu, and Wei Wang. 2025. "Spatiotemporal Dynamics and Attribution Analysis of Blue and Green Water Resources During 1980–2019 in the Hanjiang River Basin, China" Water 17, no. 7: 1008. https://doi.org/10.3390/w17071008
APA StyleTian, P., Chen, S., Yu, Y., Wu, Y., & Wang, W. (2025). Spatiotemporal Dynamics and Attribution Analysis of Blue and Green Water Resources During 1980–2019 in the Hanjiang River Basin, China. Water, 17(7), 1008. https://doi.org/10.3390/w17071008