Coupled Coordination of the Water–Food–Energy System in Nine Provinces of the Yellow River Basin: Spatiotemporal Characteristics and Driving Mechanisms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Research Area
2.2. Theoretical Mechanism Analysis
2.2.1. Water Resource Subsystem
2.2.2. Food Subsystem
2.2.3. Energy Subsystem
2.3. Indicator Selection
2.3.1. Indicator System
2.3.2. Influencing Factors
2.4. Methods
2.4.1. Entropy Weight Method
2.4.2. Coupling Coordination Model
2.4.3. Empirical Model
2.5. Data Sources
3. Results
3.1. Temporal and Spatial Characteristics
3.2. Regression Results
3.2.1. Baseline Regression
3.2.2. Robustness Test
4. Discussion
4.1. Coupled Coordination Degree
4.2. Influencing Factors
4.3. Future Research Opportunities
5. Conclusions and Recommendations
5.1. Conclusions
5.2. Recommendations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cai, X.M.; Rosegrant, M.W. Optional Water Development Strategies for the Yellow River Basin: Balancing Agricultural and Ecological Water Demands. In 1st International Yellow River Forum; Shang, H.Q., Ed.; Yellow River Conservancy Publisher: Zhengzhou, China, 2003; pp. 125–138. [Google Scholar]
- Xu, Z.X. Urban Water Resources Management in the Yellow River Basin: Perspectives of Sustainability. In 2nd International Yellow River Forum; Shang, H.Q., Ed.; Yellow River Conservancy Publisher: Zhengzhou, China, 2005; pp. 253–260. [Google Scholar]
- Liu, J.H.; Zhang, Y.Y.; Pu, L.Y.; Huang, L.C.; Wang, H.Y.; Sarfraz, M. Research on the Impact of Energy Efficiency on Green Development: A Case Study of the Yellow River Basin in China. Energies 2023, 16, 3660. [Google Scholar] [CrossRef]
- Su, M.L. Yellow River Action on Climate Changes. In 5th International Yellow River Forum on Ensuring Water Right of the River’s Demand and Healthy River Basin Maintenance; Shang, H.Q., Xiang, X.L., Eds.; Yellow River Conservancy Publisher: Zhengzhou, China, 2015; pp. 29–33. [Google Scholar]
- Yong, Z. Strengthening Integrated River Basin Management in order to Realize the Long-term of Stability and Security in the Yellow River. In 5th International Yellow River Forum on Ensuring Water Right of the River’s Demand and Healthy River Basin Maintenance; Shang, H.Q., Xiang, X.L., Eds.; Yellow River Conservancy Publisher: Zhengzhou, China, 2015; pp. 74–79. [Google Scholar]
- Yan, Z.Q.; Zhou, Z.H.; Liu, J.J.; Wang, H.; Li, D. Water use characteristics and impact factors in the Yellow River basin, China. Water Int. 2020, 45, 148–168. [Google Scholar]
- Ren, L.Z.; Yi, N.; Li, Z.Y.; Su, Z.X. Research on the Impact of Energy Saving and Emission Reduction Policies on Carbon Emission Efficiency of the Yellow River Basin: A Perspective of Policy Collaboration Effect. Sustainability 2023, 15, 12051. [Google Scholar] [CrossRef]
- Wohlfart, C.; Kuenzer, C.; Chen, C.; Liu, G.H. Social-ecological challenges in the Yellow River basin (China): A review. Environ. Earth Sci. 2016, 75, 1066. [Google Scholar]
- Zhang, X.Y.; Liu, K.; Wang, S.D.; Wu, T.X.; Li, X.K.; Wang, J.N.; Wang, D.C.; Zhu, H.T.; Tan, C.; Ji, Y.H. Spatiotemporal evolution of ecological vulnerability in the Yellow River Basin under ecological restoration initiatives. Ecol. Indic. 2022, 135, 108586. [Google Scholar]
- Wang, X.R.; Duan, L.R.; Zhang, T.J.; Cheng, W.; Jia, Q.; Li, J.S.; Li, M.Y. Ecological vulnerability of China’s Yellow River Basin: Evaluation and socioeconomic driving factors. Environ. Sci. Pollut. Res. 2023, 30, 115915–115928. [Google Scholar]
- Niu, H.P.; Xiu, Z.Y.; Xiao, D.Y. Impact of land-use change on ecological vulnerability in the Yellow River Basin based on a complex network model. Ecol. Indic. 2024, 166, 112212. [Google Scholar]
- Zhang, Q.; Wang, G.; Yuan, R.Y.; Singh, V.P.; Wu, W.H.; Wang, D.Z. Dynamic responses of ecological vulnerability to land cover shifts over the Yellow river Basin, China. Ecol. Indic. 2022, 144, 109554. [Google Scholar]
- Qian, X.; Wang, L.; Liu, B.; Yang, J.S. Study on the Water Resources Allocation Mode of the Yellow River. In 1st International Yellow River Forum; Shang, H.Q., Ed.; Yellow River Conservancy Publisher: Zhengzhou, China, 2003; pp. 96–104. [Google Scholar]
- Yang, Z.F.; Sun, T.; Cui, B.S.; Chen, B.; Chen, G.Q. Environmental flow requirements for integrated water resources allocation in the Yellow River Basin, China. Commun. Nonlinear Sci. 2009, 14, 2469–2481. [Google Scholar]
- Guan, X.K.; Dong, Z.C.; Luo, Y.; Zhong, D.Y. Multi-Objective Optimal Allocation of River Basin Water Resources under Full Probability Scenarios Considering Wet-Dry Encounters: A Case Study of Yellow River Basin. Int. J. Environ. Res. Public Health 2021, 18, 11652. [Google Scholar] [CrossRef]
- Li, X.; Wan, J.; Jia, J.L.; Wang, Q. Research on Water Resource initial allocation of Yellow River Basin based on the AHP Model. In Proceedings of the 1st International Conference on Energy and Environmental Protection (ICEEP 2012), Hohhot, China, 23–24 June 2012; Iranpour, R., Zhao, J., Wang, A., Yang, F.L., Li, X., Eds.; Trans Tech Publications, Ltd.: Singapore, 2012; Volume 518–523, pp. 4216–4221. [Google Scholar]
- Wang, S.; Yang, J.; Wang, A.; Liu, T.; Du, S.; Liang, S. Coordinated analysis and evaluation of water–energy–food coupling: A case study of the Yellow River basin in Shandong Province, China. Ecol. Indic. 2023, 148, 110138. [Google Scholar] [CrossRef]
- Karamian, F.; Mirakzadeh, A.A.; Azari, A. Application of multi-objective genetic algorithm for optimal combination of resources to achieve sustainable agriculture based on the water-energy-food nexus framework. Sci. Total Environ. 2023, 860, 160419. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Niu, D.; Yu, M.; Li, M.; Yang, X.; Ji, Z. Integrated assessment of the sustainable water-energy-food nexus in China: Case studies on multi-regional sustainability and multi-sectoral synergy. J. Clean. Prod. 2022, 334, 130235. [Google Scholar] [CrossRef]
- Li, H.; Li, M.; Fu, Q.; Singh, V.P.; Liu, D.; Xu, Y. An optimization approach of water-food-energy nexus in agro-forestry-livestock system under uncertain water supply. J. Clean. Prod. 2023, 407, 137116. [Google Scholar] [CrossRef]
- Zhang, Y.; Cui, J.; Liu, X.; Liu, H.; Liu, Y.; Jiang, X.; Li, Z.; Zhang, M. Application of water-energy-food nexus approach for optimal tillage and irrigation management in intensive wheat-maize double cropping system. J. Clean. Prod. 2022, 381, 135181. [Google Scholar] [CrossRef]
- Wu, L.; Elshorbagy, A.; Helgason, W. Assessment of agricultural adaptations to climate change from a water-energy-food nexus perspective. Agric. Water Manag. 2023, 284, 108343. [Google Scholar] [CrossRef]
- Maia, R.G.T.; Junior, A.O.P. Eco-Efficiency of the food and beverage industry from the perspective of sensitive indicators of the water-energy-food nexus. J. Clean. Prod. 2021, 324, 129283. [Google Scholar] [CrossRef]
- Wang, Y.; Song, J.; Sun, H. Coupling interactions and spatial equilibrium analysis of water-energy-food in the Yellow River Basin, China. Sustain. Cities Soc. 2023, 88, 104293. [Google Scholar] [CrossRef]
- Cansino-Loeza, B.; Munguía-López, A.D.C.; Ponce-Ortega, J.M. A water-energy-food security nexus framework based on optimal resource allocation. Environ. Sci. Policy 2022, 133, 1–16. [Google Scholar] [CrossRef]
- Francisco, É.C.; Ignácio, P.S.D.A.; Piolli, A.L.; Dal Poz, M.E.S. Food-energy-water (FEW) nexus: Sustainable food production governance through system dynamics modeling. J. Clean. Prod. 2023, 386, 135825. [Google Scholar] [CrossRef]
- Raya-Tapia, A.Y.; López-Flores, F.J.; Ponce-Ortega, J.M. Incorporating deep learning predictions to assess the water-energy-food nexus security. Environ. Sci. Policy 2023, 144, 99–109. [Google Scholar] [CrossRef]
- Chen, Q.; Liu, Y.; Su, M.; Hu, Y.; Cao, X.; Dang, Z.; Lu, G. The effect of energy–water nexus on single resource system in urban agglomerations: Analysis based on a multiregional network approach. Appl. Energy 2025, 378, 124781. [Google Scholar] [CrossRef]
- Zheng, Y.L.; Huang, G.H.; Li, Y.P.; Han, D.C.; Luo, B.; Liu, Y.Y.; Tang, W.C. A risk-based stochastic energy-water-carbon nexus analytical model to support provincial multi-system synergistic management—A case study of Shanxi, China. Sci. Total Environ. 2024, 957, 177608. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.K.; Li, Y.P.; Zheng, H.R.; Ma, Y.; Huang, G.H.; Li, Y.F.; Shen, Z.Y. Mapping Water, Energy and Carbon Footprints Along Urban Agglomeration Supply Chains. Earths Future 2022, 10, e2021EF002225. [Google Scholar] [CrossRef]
- He, Z.G. The Water-Energy-Carbon Coupling Coordination Level in China. Sustainability 2024, 16, 383. [Google Scholar] [CrossRef]
- Taherzadeh, O.; Bithell, M.; Richards, K. Water, energy and land insecurity in global supply chains. Global Environ. Change 2021, 67, 102158. [Google Scholar] [CrossRef]
- Rao, P.; Kostecki, R.; Dale, L.; Gadgil, A. Technology and Engineering of the Water-Energy Nexus. Annu. Rev. Environ. Resour. 2017, 42, 407–437. [Google Scholar] [CrossRef]
- Ke, J.; Khanna, N.; Zhou, N. Analysis of water-energy nexus and trends in support of the sustainable development goals: A study using longitudinal water-energy use data. J. Clean. Prod. 2022, 371, 133448. [Google Scholar] [CrossRef]
- Fang, D.L.; Chen, B. Linkage analysis for the water-energy nexus of city. Appl. Energy 2017, 189, 770–779. [Google Scholar] [CrossRef]
- Mosalam, H.A.; El-Barad, M. Design an Integration Platform Between Water Energy Nexus and Business Model Applied for Sustainable Development. In Proceedings of the 2nd WaterEnergyNEXUS Conference, Online, 2–4 December 2020; Naddeo, V., Balakrishnan, M., Choo, K.H., Eds.; Springer: Cham, Switzerland, 2020; pp. 481–484. [Google Scholar]
- Tsolas, S.D.; Karim, M.N.; Hasan, M. Systematic Design, Analysis and Optimization of Water-Energy Nexus. In Proceedings of the 9th International Conference on the Foundations of Computer Aided Process Design (FOCAPD), Online, 14–18 July 2019; Munoz, S.G., Laird, C.D., Realff, M.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 47, pp. 227–232. [Google Scholar]
- Liu, Y.; Gao, Y.; Gai, J.; Liu, H.; Zhang, Z.; Diogo, V.; Hersperger, A.M. The Water-Land-Food nexus reveals growing resource export pressure in middle-income economies. Resour. Conserv. Recycl. 2025, 212, 108006. [Google Scholar] [CrossRef]
- Yang, D.; Liu, Y.; Wang, J. Trade-offs and synergies of food-water-land benefits for crop rotation optimization in Northeast China. Agric. Ecosyst. Environ. 2025, 379, 109377. [Google Scholar] [CrossRef]
- Miyagawa, K. Development for water, food, and nutrition security in Asia. Irrig. Drain. 2021, 70, 555–559. [Google Scholar]
- Imasiku, K.; Ntagwirumugara, E. An impact analysis of population growth on energy-water-food-land nexus for ecological sustainable development in Rwanda. Food Energy Secur. 2020, 9, e185. [Google Scholar]
- Ren, D.D.; Yang, H.; Zhou, L.F.; Yang, Y.H.; Liu, W.F.; Hao, X.H.; Pan, P.P. The Land-Water-Food-Environment nexus in the context of China’s soybean import. Adv. Water Resour. 2021, 151, 103892. [Google Scholar]
- Liu, G.Y.; Du, S.P.; Gao, Y.; Xiong, X.P.; Lombardi, G.V.; Meng, F.X.; Chen, Y.; Chen, C.C. A study on energy-water-food-carbon nexus in typical Chinese northern rural households. Energy Policy 2024, 188, 114100. [Google Scholar]
- Yao, L.M.; Li, Y.L.; Chen, X.D. A robust water-food-land nexus optimization model for sustainable agricultural development in the Yangtze River Basin. Agric. Water Manag. 2021, 256, 107103. [Google Scholar]
- Zhang, J.X.; Yang, T.; Deng, M.J. Ecosystem Services’ Supply-Demand Assessment and Ecological Management Zoning in Northwest China: A Perspective of the Water-Food-Ecology Nexus. Sustainability 2024, 16, 7223. [Google Scholar] [CrossRef]
- Mortada, S.; Abou Najm, M.; Yassine, A.; El Fadel, M.; Alamiddine, I. Towards sustainable water-food nexus: An optimization approach. J. Clean. Prod. 2018, 178, 408–418. [Google Scholar]
- Zhang, C.; Chen, X.X.; Li, Y.; Ding, W.; Fu, G.T. Water-energy-food nexus: Concepts, questions and methodologies. J. Clean. Prod. 2018, 195, 625–639. [Google Scholar]
- Ali, S.M.; Acquaye, A. An examination of Water-Energy-Food nexus: From theory to application. Renew. Sustain. Energy Rev. 2024, 202, 114669. [Google Scholar]
- Endo, A.; Kumazawa, T.; Kimura, M.; Yamada, M.; Kato, T.; Kozaki, K. Describing and Visualizing a Water-Energy-Food Nexus System. Water 2018, 10, 1245. [Google Scholar] [CrossRef]
- Rhouma, A.; El Jeitany, J.; Mohtar, R.; Gil, J.M. Trends in the Water-Energy-Food Nexus Research. Sustainability 2024, 16, 1162. [Google Scholar] [CrossRef]
- Zhu, M.C. Water-energy-food Nexus based on a new perspective of regional sustainable development. Water Supply 2023, 23, 4466–4478. [Google Scholar]
- Núnez-López, J.M.; Rubio-Castro, E.; Ponce-Ortega, J.M. Optimizing resilience at water-energy-food nexus. Comput. Chem. Eng. 2022, 160, 107710. [Google Scholar]
- Gartsiyanova, K.; Genchev, S.; Kitev, A. Assessment of Water Quality as a Key Component in the Water-Energy-Food Nexus. Hydrology 2024, 11, 36. [Google Scholar] [CrossRef]
- Makanda, K.; Nzama, S.; Kanyerere, T. Assessing the Role of Water Resources Protection Practice for Sustainable Water Resources Management: A Review. Water 2022, 14, 3153. [Google Scholar] [CrossRef]
- Voronkov, N.A. Hydrologic Role of Soils and Ecological Methods of Regulating Water-Resources. Eurasian Soil Sci. 1995, 27, 101–112. [Google Scholar]
- Campos, B.C.; Ren, Y.J.; Loy, J.P. Scarce Water Resources and Cereal Import Dependency: The Role of Integrated Water Resources Management. Water 2020, 12, 1750. [Google Scholar] [CrossRef]
- D’Odorico, P.; Davis, K.F.; Rosa, L.; Carr, J.A.; Chiarelli, D.; Dell’Angelo, J.; Gephart, J.; MacDonald, G.K.; Seekell, D.A.; Suweis, S.; et al. The Global Food-Energy-Water Nexus. Rev. Geophys. 2018, 56, 456–531. [Google Scholar]
- Lu, S.B.; Bai, X.; Zhang, J.; Li, J.K.; Li, W.; Lin, J. Impact of virtual water export on water resource security associated with the energy and food bases in Northeast China. Technol. Forecast. Soc. 2022, 180, 121635. [Google Scholar]
- Li, M.; Fu, Q.; Singh, V.P.; Liu, D.; Li, J. Optimization of sustainable bioenergy production considering energy-food-water-land nexus and livestock manure under uncertainty. Agric. Syst. 2020, 184, 102900. [Google Scholar]
- Terneus Páez, C.F.; Viteri Salazar, O. Analysis of biofuel production in Ecuador from the perspective of the water-food-energy nexus. Energy Policy 2021, 157, 112496. [Google Scholar]
- Wang, W.; Niu, Y.F.; Gapich, A.; Strielkowski, W. Natural resources extractions and carbon neutrality: The role of geopolitical risk. Resour. Policy 2023, 83, 103577. [Google Scholar]
- Luqman, M.; Al-Ansari, T. Energy, water and food security through a waste-driven polygeneration system for sustainable dairy production. Int. J. Hydrogen Energy 2022, 47, 3185–3210. [Google Scholar]
- Li, W.; Jiang, S.; Zhao, Y.; Li, H.; Zhu, Y.; He, G.; Xu, Y.; Shang, Y. A copula-based security risk evaluation and probability calculation for water-energy-food nexus. Sci. Total Environ. 2023, 856, 159236. [Google Scholar]
- Feng, M.; Chen, Y.; Duan, W.; Zhu, Z.; Wang, C.; Hu, Y. Water-energy-carbon emissions nexus analysis of crop production in the Tarim river basin, Northwest China. J. Clean. Prod. 2023, 396, 136566. [Google Scholar]
- Huang, D.; Li, G.; Chang, Y.; Sun, C. Water, energy, and food nexus efficiency in China: A provincial assessment using a three-stage data envelopment analysis model. Energy 2023, 263, 126007. [Google Scholar]
- Tao, M.; Zhao, Y.; Jiang, Q.; Wang, Z.; Wu, Y. Study on the nonlinear transition relationship between water resources consumption and economic development in Heilongjiang province based on system dynamics. J. Hydrol. Reg. Stud. 2025, 57, 102193. [Google Scholar]
- Bangjun, W.; Linyu, C.; Feng, J.; Yue, W. Research on club convergence effect and its influencing factors of per capita energy consumption: Evidence from the data of 243 prefecture-level cities in China. Energy 2023, 263, 125657. [Google Scholar]
- Raza, M.Y.; Chen, Y. Nuclear energy consumption, low-carbon transition and factor productivity in South Korea. Nucl. Eng. Technol. 2025, 57, 103315. [Google Scholar]
- Peng, S.; Wang, L.; Xu, L. Does farmland transfer promote green agricultural production? An empirical analysis of fertilizer and pesticide reduction. J. Clean. Prod. 2025, 489, 144631. [Google Scholar] [CrossRef]
- Cheng, X.; Fang, L.; Li, J.; Wang, H. An empirical analysis of the impact of the coupling coordination degree of the water-energy-food nexus on food security in China. Curr. Res. Environ. Sustain. 2024, 8, 100261. [Google Scholar] [CrossRef]
- Xu, L.; Shu, H.; Lu, X.; Li, T. Regional technological innovation and industrial upgrading in China: An analysis using interprovincial panel data from 2008 to 2020. Financ. Res. Lett. 2024, 66, 105621. [Google Scholar]
- Wang, Q.; Li, L. The effects of population aging, life expectancy, unemployment rate, population density, per capita GDP, urbanization on per capita carbon emissions. Sustain. Prod. Consum. 2021, 28, 760–774. [Google Scholar] [CrossRef]
- Tong, K. Urbanization moderates the transitional linkages between energy resource use, greenhouse gas emissions, socio-economic and human development: Insights from subnational analyses in China. J. Clean. Prod. 2024, 476, 143776. [Google Scholar] [CrossRef]
- Su, M.; Wang, Q.; Li, R.; Wang, L. Per capita renewable energy consumption in 116 countries: The effects of urbanization, industrialization, GDP, aging, and trade openness. Energy 2022, 254, 124289. [Google Scholar] [CrossRef]
- Liu, D.J.; Li, L. Application Study of Comprehensive Forecasting Model Based on Entropy Weighting Method on Trend of PM2.5 Concentration in Guangzhou, China. Int. J. Environ. Res. Public Health 2015, 12, 7085–7099. [Google Scholar] [CrossRef]
- Qi, Y.Y.; Farnoosh, A.; Lin, L.; Liu, H. Coupling coordination analysis of China’s provincial water-energy-food nexus. Environ. Sci. Pollut. Res. 2022, 29, 23303–23313. [Google Scholar]
- Li, Y.; Zhou, B. Coupling coordination degree measurement and spatial characteristics analysis of green finance and technological innovation -Empirical analysis based on China. Heliyon 2024, 10, e33486. [Google Scholar] [CrossRef]
- Zhao, Y.H.; Hou, P.; Jiang, J.B.; Zhai, J.; Chen, Y.; Wang, Y.C.; Bai, J.J.; Zhang, B.; Xu, H.T. Coordination Study on Ecological and Economic Coupling of the Yellow River Basin. Int. J. Environ. Res. Public Health 2021, 18, 10664. [Google Scholar] [CrossRef]
- Luan, S. Restriction factors and improvement paths of ecological environment and water resources protection in Qinghai Section of the Yellow River basin. Desalin Water Treat. 2023, 315, 565–571. [Google Scholar]
- Zhao, J.; Zhang, Q.; Xu, L.; Sun, S.; Wang, G.; Singh, V.P.; Wu, W. Flood-susceptible areas within the Yellow River Basin, China: Climate changes or socioeconomic behaviors. J. Hydrol. Reg. Stud. 2024, 55, 101900. [Google Scholar]
- Chen, M.; Zhao, J.; Zhao, S. Measurement and evaluation of agricultural technological innovation efficiency in the Yellow River Basin of China under water resource constraints. Heliyon 2024, 10, e32521. [Google Scholar]
- Zhang, J.X. Comprehensive Evaluation and Analysis of Water Resources Development and Utilization Degree. Fresen Environ. Bull. 2021, 30, 3221–3227. [Google Scholar]
- Ding, T.H.; Chen, J.F. Evaluation and obstacle factors of coordination development of regional water-energy-food-ecology system under green development: A case study of Yangtze River Economic Belt, China. Stoch. Environ. Res. Risk Assess. 2022, 36, 2477–2493. [Google Scholar]
- Wang, Y.R.; Song, J.X.; Zhang, X.X.; Sun, H.T.; Bai, H.F. Coupling coordination evaluation of water-energy-food and poverty in the Yellow River Basin, China. J. Hydrol. 2022, 614, 128461. [Google Scholar]
- Liu, S.Y.; Wang, L.C.; Lin, J.; Wang, H.; Li, X.G.; Ao, T.Q. Evaluation of Water-Energy-Food-Ecology System Development in Beijing-Tianjin-Hebei Region from a Symbiotic Perspective and Analysis of Influencing Factors. Sustainability 2023, 15, 5138. [Google Scholar] [CrossRef]
- Wang, S.S.; Yang, R.J.; Shi, S.; Wang, A.L.; Liu, T.F.; Yang, J.Y. Characteristics and Influencing Factors of the Spatial and Temporal Variability of the Coupled Water-Energy-Food Nexus in the Yellow River Basin in Henan Province. Sustainability 2023, 15, 13977. [Google Scholar] [CrossRef]
- Li, C.G.; Liu, Y.; Xu, Z.C.; Zhao, G.; Bao, Y.H.; Cai, C.C.; Lu, Y.; Mao, Y.F.; Wang, A.B.; Wu, L. Impacts and influencing pathways of urbanization on carbon-water-energy-food nexus across Chinese cities. Environ. Dev. Sustain. 2024. [Google Scholar] [CrossRef]
Primary Indicators | Secondary Indicators | Indicator Description (Units) |
---|---|---|
Water Resource Subsystem | Water Consumption per Unit GDP | Water consumption per 10,000 Yuan GDP (billion cubic meters/10,000 Yuan) |
Per Capita Water Resource Availability | Per capita water resource availability of the urban population at year-end (cubic meters/person) | |
Water Production Coefficient * | Total water resources/Annual precipitation | |
Energy Subsystem | Energy Consumption per Unit GDP | Energy consumption per 10,000 Yuan GDP (tons/10,000 Yuan) |
Per Capita Energy Consumption | Per capita energy consumption of the urban population at year-end (tons/person) | |
Carbon Intensity | Carbon dioxide emissions/GDP (tons/10,000 Yuan) | |
Food Subsystem | Per Capita Grain Yield | Per capita grain yield of the urban population at year-end (tons/person) |
Per Capita Total Power of Agricultural Machinery | Total power of agricultural machinery in agriculture, forestry, animal husbandry, and fishery/Population (kilowatts/person) | |
Fertilizer Application per Unit Area | Fertilizer application amount/Cultivated land area (10,000 tons/square kilometer) |
Variable Type | Indicator Name | Indicator Description |
---|---|---|
Indicator Name | Water–Food–Energy Coupling Coordination Degree | / |
Core Explanatory Variables | R&D Intensity | R&D Expenditure as a Percentage of GDP |
Control Variables | Average PM2.5 Concentration | Annual Average PM2.5 Concentration |
Industrial Structure | The total GDP of the tertiary industry/The total GDP of the country | |
Urbanization Rate | Urban Population/Total Population | |
Per Capita GDP | Total Output/Resident Population | |
Population Density | Total Population/Regional Area |
Coupling Coordination Degree | Coordination Type | Coupling Coordination Degree | Coordination Type |
---|---|---|---|
[0, 0.1) | Extreme Imbalance | [0.1, 0.2) | Severe Imbalance |
[0.2, 0.3) | Moderate Imbalance | [0.3, 0.4) | Mild Imbalance |
[0.4, 0.5) | Near Imbalance | [0.5, 0.6) | Barely Coordinated |
[0.6, 0.7) | Primary Coordination | [0.7, 0.8) | Intermediate Coordination |
[0.8, 0.9) | Good Coordination | [0.9, 1] | High-Quality Coordination |
Variables | N | Mean | Std | Min | Max |
---|---|---|---|---|---|
Coupling Coordination Degree | 1164 | 0.349 | 0.048 | 0.211 | 0.531 |
R&D Intensity | 1164 | 0.018 | 0.069 | 0 | 1.741 |
Average PM2.5 Concentration | 1164 | 0.049 | 0.018 | 0.015 | 0.11 |
Industrial Structure | 1164 | 0.42 | 0.099 | 0.165 | 0.886 |
Urbanization Rate | 1164 | 0.542 | 0.142 | 0.196 | 0.96 |
Per Capita GDP | 1164 | 5.729 | 3.878 | 0.692 | 28.518 |
Population Density | 1164 | 5.618 | 1.086 | 1.628 | 7.273 |
Variables | (1) | (2) |
---|---|---|
Coupling Coordination Degree | Coupling Coordination Degree | |
R&D Intensity | −0.0410 *** | −0.0372 *** |
(−6.5977) | (−5.7359) | |
Average PM2.5 Concentration | −0.2114 *** | |
(−3.5089) | ||
Industrial Structure | −0.0380 *** | |
(−3.9887) | ||
Urbanization Rate | −0.0407 *** | |
(−3.5965) | ||
Per Capita GDP | −0.0023 *** | |
(−5.2045) | ||
Population Density | −0.0080 | |
(−1.1843) | ||
City Fixed Effects | YES | YES |
Year Fixed Effects | YES | YES |
_cons | 0.3626 *** | 0.4561 *** |
(286.2043) | (11.8924) | |
N | 1164 | 1164 |
Adj. R2 | 0.146 | 0.083 |
F | 25.531 | 34.430 |
Variables | Coupling Coordination Degree |
---|---|
Average PM2.5 Concentration | −0.2328 *** |
(−3.7948) | |
Number of Patent Grants | −0.0015 ** |
(−2.4315) | |
Industrial Structure | −0.0323 *** |
(−3.3533) | |
Urbanization Rate | −0.0433 *** |
(−3.7789) | |
Per Capita GDP | −0.0024 *** |
(−5.5142) | |
Population Density | −0.0085 |
(−1.2381) | |
City Fixed Effects | YES |
Year Fixed Effects | YES |
_cons | 0.4601 *** |
(11.8426) | |
Adj. R2 | 0.059 |
F | 29.218 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nie, L.; Wu, M.; Wu, Z.; Zhang, J.; Liu, X. Coupled Coordination of the Water–Food–Energy System in Nine Provinces of the Yellow River Basin: Spatiotemporal Characteristics and Driving Mechanisms. Water 2025, 17, 1040. https://doi.org/10.3390/w17071040
Nie L, Wu M, Wu Z, Zhang J, Liu X. Coupled Coordination of the Water–Food–Energy System in Nine Provinces of the Yellow River Basin: Spatiotemporal Characteristics and Driving Mechanisms. Water. 2025; 17(7):1040. https://doi.org/10.3390/w17071040
Chicago/Turabian StyleNie, Lei, Manya Wu, Zhifang Wu, Jing Zhang, and Xiaorun Liu. 2025. "Coupled Coordination of the Water–Food–Energy System in Nine Provinces of the Yellow River Basin: Spatiotemporal Characteristics and Driving Mechanisms" Water 17, no. 7: 1040. https://doi.org/10.3390/w17071040
APA StyleNie, L., Wu, M., Wu, Z., Zhang, J., & Liu, X. (2025). Coupled Coordination of the Water–Food–Energy System in Nine Provinces of the Yellow River Basin: Spatiotemporal Characteristics and Driving Mechanisms. Water, 17(7), 1040. https://doi.org/10.3390/w17071040