Impact of Flow Rate, Sediment Uniformity, and Outlet Size on Sediment Removal Upstream of a Cross-River Structure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Physical Model
2.2. The Experimental Design and Procedure
2.3. The Dimensional Analysis
2.4. The Case Study
3. Results and Discussion
3.1. Impact of Uniform and Nonuniform Sediment on Scour Volume
3.2. Impact of Flow Rate on the Scour Volume
3.3. Impact of Outlet Size on the Scour Volume
3.4. Impact of Outlet Centerline from the Mobile Bed () on Scour Volume
3.5. The Proposed Model
3.6. Validating the Proposed Model
3.7. Sedimentation at the Hydropower Station of the Hindiya Barrage
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NEC | Nash Efficiency Coefficient |
HEC-RAS | Hydrologic Engineering Center-River Analysis System |
ODE | Ordinary Differential Equation |
CFD | Computational Fluid Dynamic |
Appendix A. Comparison Between Dredging Volume at the Hindiya Power Plant and the Measured Volume of the Model Study
References
- Couto, T.B.; Olden, J.D. Global proliferation of small hydropower plants–science and policy. Front. Ecol. Environ. 2018, 16, 91–100. [Google Scholar] [CrossRef]
- Zakwan, M.; Ahmad, Z.; Sharief, S.M.V. Magnitude frequency analysis for suspended sediment transport in the Ganga River. J. Hydrol. Eng. 2018, 23, 1–11. [Google Scholar] [CrossRef]
- AL-Thamiry, H.A.K.; Abdulazeez, T.M. Two–dimensional mathematical model to study erosion problem of Tigris River banks at Nu’maniyah. J. Eng. 2017, 23, 112–135. [Google Scholar] [CrossRef]
- Jassam, W.A.; Abed, B.S. Assessing of the morphology and sediment transport of Diyala River. J. Eng. 2021, 27, 47–63. [Google Scholar] [CrossRef]
- Abduljaleel, H.; Al-Khafaji, M.S.; Al-Saedi, A.H.N. Sediment transport capacity of Tigris River within Baghdad city. Int. J. Environ. Water 2016, 5, 97–107. Available online: https://www.researchgate.net/publication/330535033 (accessed on 13 March 2024).
- Daham, M.H.; Abed, B.S. Simulation of sediment transport in the upper reach of Al-Gharraf River. Mater. Sci. Eng. 2020, 901, 1–10. [Google Scholar] [CrossRef]
- Emamgholizadeh, S.; Bina, M.; Fathi-Moghadam, M.; Ghomeshi, M. Investigation and evaluation of the pressure flushing through storage reservoir. ARPN J. Eng. Appl. Sci. 2006, 1, 7–16. Available online: https://www.researchgate.net/publication/242423546_Investigation_and_Evaluation_of_the_Pressure_Flushing_Through_Storage_Reservoir (accessed on 20 March 2024).
- Powell, D.N. Sediment Transport Upstream of Orifices. Ph.D. Dissertation, Clemson University, Clemson, SC, USA, 2007. [Google Scholar]
- Powell, D.N.; Khan, A.A. Sediment transport mechanics upstream of an orifice. J. Vis. 2011, 14, 315–320. [Google Scholar] [CrossRef]
- Hajikandi, H.; Vosoughi, H.; Jamali, S. Comparing the scour upstream of circular and square orifices. Int. J. Civ. Eng. 2017, 16, 1145–1156. [Google Scholar] [CrossRef]
- Dreyer, J.S. Investigating the Influence of Low-level Outlet Shape on the Scour Cone Formed During Pressure Flushing of Sediments in Hydropower Plant Reservoirs. M.Sc. Thesis, University of Stellenbosch, Stellenbosch, South Africa, 2018. Available online: http://hdl.handle.net/10019.1/104910 (accessed on 5 April 2024).
- Guan, D.; Liu, J.; Chiew, Y.M.; Zhou, Y. Scour evolution downstream of submerged weirs in clear water scour conditions. Water 2019, 11, 1746. [Google Scholar] [CrossRef]
- Karamacharya, S.K.; Henry, P.Y.; Bishwakarma, M.; Aberle, J.; Rüther, N. Physical modeling of pressurized flushing of non-cohesive sediment using lightweight material. J. Phys. Conf. Ser. 2019, 1266, 1–7. [Google Scholar] [CrossRef]
- Park, S.W.; Hwang, J.H.; Ahu, J. Physical modeling of spatial and temporal development of local scour at the downstream of bed protection for low Froud number. Water 2019, 11, 1041. [Google Scholar] [CrossRef]
- Van der Spuy, L.R.; Basson, G.R.; Bosman, D.E. Flushing of sediments at hydropower plant dams. In Proceedings of the Conference HYDRO 2019, Porto, Portugal, 14–16 October 2019. [Google Scholar]
- Farsirotou, E.; Xafoulis, N.; Kotsopoulos, S. Experimental and numerical simulation of local scouring downstream of sharp-crested weirs in natural rivers. Eur. Water 2021, 69/70, 33–44. [Google Scholar] [CrossRef]
- Haghjouei, H.; Rahimpour, M.; Qaderia, K.; Kantoush, S.A. Experimental study on the effect of bottomless structure in front of a bottom outlet on a sediment flushing cone. Int. J. Sediment Res. 2021, 36, 335–347. [Google Scholar] [CrossRef]
- Keshavarzi, A.; Mohammadi, G.R.; Hamidifar, H. Time evolution of scour hole and flow characteristics upstream of a flushing orifice. ISH J. Hydraul. Eng. 2022, 28 (Suppl. S1), 199–206. [Google Scholar] [CrossRef]
- Nkad, N.Z.; Mohammed, T.A.; Mohammed, H. Experimental investigation on scour volume upstream of a slit weir. Pertanika J. Sci. Technol. 2022, 30, 1927–1947. [Google Scholar] [CrossRef]
- Hamdan, R.K.; Al-Adili, A.; Mohammed, T.A. Physical modeling of the scour volume upstream of a slit weir using uniform and non-uniform mobile beds. Water 2022, 14, 3273. [Google Scholar] [CrossRef]
- Ota, K.; Sato, T. Experimental and numerical study of the local scour caused by sediment re-leasing through a dam gate. J. JSCE 2014, 70, I-1075–I-1080. [Google Scholar] [CrossRef]
- Zhang, Q.; Draper, S.; Cheng, L.; An, H. Effect of limited sediment supply on sedimentation and the onset of tunnel scour below subsea pipelines. Coast. Eng. 2016, 116, 103–117. [Google Scholar] [CrossRef]
- Ota, K.; Sato, T.; Nakagawa, H. 3D numerical model of sediment transport considering transition from bed-load motion to suspension—Application to a scour upstream of a cross-river structure. J. JSCE 2016, 4, 173–180. [Google Scholar] [CrossRef]
- Ota, K.; Sato, T.; Arai, R.; Nakagawa, H. Local scour upstream of a slit weir: Ordinary differential equation–based model under steady and unsteady flow conditions. J. Hydraul. Eng. 2016, 143, 04016073. [Google Scholar] [CrossRef]
- Ota, K.; Sato, T.; Nakagawa, H.; Kawaike, K. Three-dimensional simulation of local scour around a weir-type structure: Hybrid Euler-Lagrange model for bed-material load. J. Hydraul. Eng. 2016, 143, 04016096. [Google Scholar] [CrossRef]
- Taha, N.; El-Feky, M.M.; El-Saiad, A.A.; Fathy, I. Numerical investigation of scour characteristics downstream of blocked culverts. Alex. Eng. J. 2020, 59, 3503–3513. [Google Scholar] [CrossRef]
- Majeed, H.Q.; Abed, B.S.; Shamkhi, M.S. CFD simulation for the operation effect of gates openings of al-hay regulator on the local erosion. J. Eng. Sci. Technol. 2021, 16, 1098–1109. Available online: https://jestec.taylors.edu.my/Vol%2016%20issue%202%20April%202021/16_2_15.pdf (accessed on 10 November 2023).
- Abed, M.S.; Azzubaidi, R.Z. Sediment Transport within the Reservoir of Mandali Dam. J. Eng. 2020, 26, 29–41. [Google Scholar] [CrossRef]
- Nagata, N.; Hosoda, T.; Nakato, T.; Muramoto, Y. Three-dimensional numerical model for flow and bed deformation around river hydraulic structures. J. Hydraul. Eng. 2005, 131, 1074–1087. [Google Scholar] [CrossRef]
- Roulund, A.; Sumer, B.M.; Fredsøe, J.; Michelsen, J. Numerical and experimental investigation on flow and scour around a circular pile. J. Fluid Mech. 2005, 534, 351–401. [Google Scholar] [CrossRef]
- Lui, X.; Carica, M.H. Three dimensional model with free water surface and mesh deformation for local sediment scour. J. Waterw. Port Coast. Ocean Eng. 2008, 134, 203–217. [Google Scholar] [CrossRef]
- Hajivalie, F.; Yeganeh-Bakhtiary, A.; Houshanghi, H.; Gotoh, H. Euler-Lagrange model for scour in front of vertical breakwater. Appl. Ocean. Res. 2012, 34, 96–106. [Google Scholar] [CrossRef]
- Melville, B.W.; Coleman, S.E. Bridge Scour; Water Resources Publication: Littleton, CO, USA, 2000; pp. 192–194. [Google Scholar]
- Huda, R.; Thamer, A.M.; Nordila, A. Experimental investigation on the parameters influencing local scour types around scaled triangular nose bridge pier in nonuniform mobile bed. J. Kejuruter. 2024, 36, 1235–1249. [Google Scholar] [CrossRef]
- Huda, R.; Thamer, A.M. Checking the accuracy of selected formulae for both clear water and live bed bridge scour. J. Eng. 2023, 29, 99–111. [Google Scholar] [CrossRef]
- Manish, P.; Mohammad, Z.; Sharma, P.K.; Ahmad, Z. Multiple linear regression and genetic algorithm approaches to predict temporal scour depth near circular pier in non-cohesive sediment. ISH J. Hydraul. Eng. 2018, 4, 1–9. [Google Scholar] [CrossRef]
- Maryam, S.D.; Firas, M.A. Pollution assessment of the Tigris River sediments resulting from wastewater discharge in Baghdad, Iraq. Iraqi Geol. J. 2024, 57, 47–61. [Google Scholar] [CrossRef]
No. | Shape of Outlet | Diameter (cm) | hs (cm) | Discharge (l/s) | No. of Experiments | |
---|---|---|---|---|---|---|
Bed with Uniform Sediment | Bed with Nonuniform Sediment | |||||
1 | circle | 11 | 5.5 | 6.3 | 1 | 1 |
2 | three-quarter circle | 11 | 5.5 | 6.3 | 1 | 1 |
3 | semicircle | 11 | 5.5 | 6.3, 5.8, 5, 4.2, 3.2 | 5 | 5 |
4 | circle | 9 | 4.5 | 6.3 | 1 | 1 |
5 | circle | 7 | 3.5 | 3.5 | 2 | 2 |
circle | 7 | 5 | 3 | 1 | 1 | |
6 | circle | 5 | 5 | 3 | 1 | 1 |
7 | three circles | 3 | 1.5 | 3, 2.8 | 2 | 2 |
Parameter | Definition | Dimension |
---|---|---|
Scour volume | L3 | |
Area of outlet | L2 | |
μ | Water dynamic viscosity | M L−1T−1 |
g | Acceleration due to gravity | LT−2 |
Approach velocity | LT−1 | |
Critical velocity | LT−1 | |
Distance between outlet centerline and mobile bed | L | |
y | Water depth | L |
Median diameter of sediment | L |
Range of Average Velocity, (cm/s) | Range of Critical Velocity for Sediment Entrainment, (cm/s) | Range of Flow Intensity, / | Flow Condition |
---|---|---|---|
2.60–9.50 | 29.14–32.43 | 0.080–0.32 | Clearwater |
Range of Average Velocity, (cm/s) | Range of Critical Velocity for Sediment Entrainment, (cm/s) | Range of Flow Intensity, | Flow Condition |
---|---|---|---|
2.60–9.50 | 17.07–18.54 | 0.31–0.39 | Clearwater |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, R.S.; Mohammed, T.A. Impact of Flow Rate, Sediment Uniformity, and Outlet Size on Sediment Removal Upstream of a Cross-River Structure. Water 2025, 17, 967. https://doi.org/10.3390/w17070967
Ahmed RS, Mohammed TA. Impact of Flow Rate, Sediment Uniformity, and Outlet Size on Sediment Removal Upstream of a Cross-River Structure. Water. 2025; 17(7):967. https://doi.org/10.3390/w17070967
Chicago/Turabian StyleAhmed, Rana Saud, and Thamer Ahmed Mohammed. 2025. "Impact of Flow Rate, Sediment Uniformity, and Outlet Size on Sediment Removal Upstream of a Cross-River Structure" Water 17, no. 7: 967. https://doi.org/10.3390/w17070967
APA StyleAhmed, R. S., & Mohammed, T. A. (2025). Impact of Flow Rate, Sediment Uniformity, and Outlet Size on Sediment Removal Upstream of a Cross-River Structure. Water, 17(7), 967. https://doi.org/10.3390/w17070967