Liquid Radioactive Wastes Treatment: A Review
Abstract
:1. Introduction
Waste classes | Typical characteristics |
---|---|
EW | Activity levels at or below clearance levels, which are based on an annual dose to members of the public of less than 0.01 mSv |
LILW | Activity levels above clearance levels] and thermal power below about 2 kW/m3 |
LILW-SL | Restricted long lived radionuclide concentrations (limitation of long lived alpha emitting radionuclides to 4,000 Bq/g in individual waste packages and to an overall average of 400 Bq/g per waste package) |
LILW-LL | Long lived radionuclide concentrations exceeding limitations for short lived waste |
HLW | Thermal power above 2 kW/m3 and long lived radionuclide concentrations exceeding limitations for short lived waste |
2. Advances in Conventional Treatment of Aqueous Radioactive Wastes
Source | Typical radioisotopes | Characteristics |
---|---|---|
Nuclear research centers | Might include relatively long lived, mixed with short lived |
|
Radioisotopes Lab. production | Wide variety depending upon production and purity of targets. |
|
Radio-labeling and radiopharmaceuticals | 14C, 3H, 32P, 35S, 125I |
|
Medical diagnosis and treatment | 99Tcm, 131I, 85Sr |
|
Scientific research | Variable, with short and long lived radioisotopes |
|
Industrial and pilot plants | Depends upon application |
|
Laundry and decontamination | Wide variety likely |
|
Technology | Features | Limitations |
---|---|---|
Precipitation |
|
|
Ion –Exchange |
|
|
Evaporation |
|
|
Reverse osmoses |
|
|
Ultrafiltration |
|
|
Microfiltration |
|
|
Solvant extraction |
|
|
2.1. Ion Exchange/Sorption
2.2. Miscellaneous Methods
3. Advances in Conventional TREATMENT of Organic Liquid Wastes
Type | Sources | Characteristics |
---|---|---|
Oils | Lubricating oils, Hydraulic fluids Vacuum pump oils | These wastes contain relatively small quantities of βγ-emitting radionuclides |
Scintillation liquids | Non-aqueous solvents such as steroids, lipids; and Non-polar solvents such as toluene, xylene, and hexane | The level of radioactivity for this type of waste is typically about 350 MBq/m3. |
Solvent extraction liquids | Tri-butyl phosphate, Tri- and tertiary amino-compounds. | |
Miscellaneous solvents | Toluene, carbon tetrachloride, acetone, alcohols and trichloroethane. Aqueous solutions of organic acids, such as citric acid, picolinic acid, ethylene-diamine tetra-acetic acid | Dry cleaning produces small quantities of perchloroethylene and Freonwastes. The gross βγ activity of this waste is usually less than about 200 MBq/m3. |
Methods | Features | Limitation |
---|---|---|
Incineration | • Decomposes organic nature of Waste • High volume reduction • Combined use for other waste • Eliminates infectious hazard | • Secondary waste must be treated • High temperatures are required to ensure complete decomposition • Off-gas filtration and monitoring are required |
Emulsification | • Allows embedding of liquid organic waste into cement matrixes | • Low limitations for content of emulsified liquids in the cement matrix |
Absorption | • Solidifies and immobilizes organic liquids • Simple and cheap | • Suitable only for small amounts of waste |
Distillation | • Removes water and detoxifies the waste for direct disposal | • Non-universal application • Technology is relatively expensive for this type of waste |
Wet oxidation | • Produce clean solvent • Low temperature process • Simpler than incineration • Suitable for biological waste | • Requires storage of oxidizing agent • Residue requires immobilization |
4. Emerged Technological Options
5. Conclusions and Recommendations
- (1)
- Most of the published work focused on studying Cs, Co, Sr, and U uptake from different real and simulated waste streams due to the high environmental impact of these radionuclides; to a lesser extent the researches studied the uptake of Zn, Eu and Pu.
- (2)
- Despite real radioactive wastes containing different isotopes of varying concentrations, the majority of the tested sorbent materials were conducted by using single and bi-solute competitive adsorption. There is a need to study the behavior of these sorbents for removing the potential radionuclides as a multicomponent system.
- (3)
- Emerged technologies studies such as continuous electrodeionization were tested on soluble alkali radionuclides; there is a need to find their economical feasibility.
References
- International Atomic Energy Agency. Standardization of Radioactive Waste Categories; TRS No. 101; IAEA: Vienna, Austria, 1970. [Google Scholar]
- International Atomic Energy Agency. Review of the Factors Affecting the Selection and Implementation of Waste Management Technologies; IAEA-TECDOC-1096; IAEA: Vienna, Austria, 1999. [Google Scholar]
- Abdel-Rahman, R.O.; El-Kamash, A.M.; Ali, H.F.; Hung, Y.T. Overview on recent trends and developments in radioactive liquid waste treatment part 1: Sorption/Ion Exchange Technique. Int. J. Environ. Eng. Sci. 2011, 2, 1–16. [Google Scholar]
- International Atomic Energy Agency. Management of Low and Intermediate Level Radioactive Wastes with Regard to Their Chemical Toxicity; IAEA-TECDOC-1325; IAEA: Vienna, Austria, 2002. [Google Scholar]
- International Atomic Energy Agency. Handling and Processing of Radioactive Waste from Nuclear Applications; TRS No. 402; IAEA: Vienna, Austria, 2001. [Google Scholar]
- Ren, J.S.; Mu, T.; Zhang, W.; Yang, S.Y. Effect of Ingredients in waste water on property of ion exchange resin for uranium-contained waste water treatment. Atom. Ene. Sci. Technol. 2008, 42, 38–42. [Google Scholar]
- Park, Y.; Lee, Y.C.; Shin, W.S.; Choi, S.J. Removal of cobalt, strontium and cesium from radioactive laundry wastewater by ammonium molybdophosphate–polyacrylonitrile (AMP-PAN). Chem. Eng. J. 2010, 162, 685–695. [Google Scholar] [CrossRef]
- Park, Y.; Shin, W.S.; Reddy, G.S.; Shin, S.J.; Choi, S.J. Use of nano crystalline silicotitanate for the removal of Cs, Co and Sr from low-level liquid radioactive waste. J. Nanoelectro. Optoelectro. 2010, 5, 238–242. [Google Scholar] [CrossRef]
- Abd El-Rahman, K.M.; El-Kamash, A.M.; El-Sourougy, M.R.; Abdel-Moniem, N.M. Thermodynamic modeling for the removal of Cs+, Sr2+, Ca2+, and Mg2+ ions from aqueous waste solutions using zeolite A. J. Radioanl. Nucl. Chem. 2006, 268, 221–230. [Google Scholar]
- El-Kamash, A.M.; Zaki, A.A.; Abd El Geleel, M. Modeling batch kinetics and thermodynamics of zinc and cadmium ions removal from waste solutions using synthetic zeolite A. J. Hazard Mater. 2005, 127, 211–220. [Google Scholar] [CrossRef] [PubMed]
- Sinha, P.K.; Lal, K.B.; Panicker, P.K.; Krishnasamy, V. A comparative study on indigenously available synthetic zeolites for removal of strontium from solutions by ion-exchange. Radiochem. Acta 1996, 7, 157–163. [Google Scholar]
- Dyer, A.; Abdel Gawad, A.S.; Mikhail, M.; Enamy, H.; Afshang, M. The natural zeolite, laumontite, as a potential material for the treatment of aqueous nuclear wastes. J. Radioanal. Nucl. Chem. 1991, 4, 265–276. [Google Scholar] [CrossRef]
- Durrani, S.K.; Dyer, A.; Blackburn, R. Self-diffusion of barium and cesium cations in neutron-and gamma-irradiated high-silica zeolites and boron-zeotypes. Zeolites 1993, 13, 1–13. [Google Scholar] [CrossRef]
- Kotoh, K.; Nishikawa, T.; Kashio, Y. Multi-component adsorption characteristics of hydrogen isotopes on synthetic zeolite 5A-type at 77.4 K. J. Nucl. Sci. Technol. 2002, 39, 435–441. [Google Scholar] [CrossRef]
- Inglezakis, V.J.; Loizidon, M.D.; Grigoropoulou, H.P. Equilibrium and kinetic ion exchange studies of Pb2+, Cr3+, Fe3+ and Cu2+ on natural clinoptilolite. Water Res. 2002, 36, 2784–2792. [Google Scholar] [CrossRef] [PubMed]
- Barros, M.A.S.D.; Arroyo, P.A. Thermodynamics of the exchange processes between K+, Ca2+ and Cr3+ in zeolite NaA. Adsorption 2004, 10, 227–235. [Google Scholar] [CrossRef]
- Qadeer, R.; Hanif, J.; Hanif, I. Uptake of thorium ions from aqueous solutions by zeolite molecular sieves (13X type) powder. J. Radioanal. Nucl. Chem. 1995, 190, 103–112. [Google Scholar] [CrossRef]
- Sinha, P.K.; Lal, K.B.; Panieker, P.K.; Krishnasamy, V. A comparative study on indigenously available synthetic zeolites for removal of strontium from solution by ion-exchange. Radiochem. Acta 1996, 73, 157–163. [Google Scholar]
- Ouki, S.; Kavannagh, M. Performance of natural zeolites for the treatment of mixed metal-contaminated effluents. Waste Manage. Res. 1997, 15, 383–391. [Google Scholar] [CrossRef]
- Chmielewska, E.; Horvathova, A. The interaction mechanisms between aqueous solutions of 137Cs and 134Ba radionuclides and local natural zeolites for reaction scenario. J. Radioanal. Nucl. Chem. 1998, 227, 151–155. [Google Scholar] [CrossRef]
- Abdel-Rahman, R.O.; Ibrahim, H.A.; Hanafy, M.; Abdel-Monem, N.M. Assessment of synthetic zeolite NaA-X as sorbing barrier for strontium in a radioactive disposal facility. Chem. Eng. J. 2010, 157, 100–112. [Google Scholar] [CrossRef]
- Abdel Rahman, R.O.; Ibrahim, H.A.; Abdel Monem, N.M. Long-term performance of zeolite Na A-X blend as backfill material in near surface disposal vault. Chem. Eng. J. 2009, 149, 143–152. [Google Scholar] [CrossRef]
- El-Kamash, A.M. Evaluation of zeolite a for the sorptive removal of Cs+ and Sr2+ ions from aqueous solutions using batch and fixed bed column operations. J. Hazard. Mater. 2008, 151, 432–445. [Google Scholar] [CrossRef] [PubMed]
- El-Naggar, M.R.; El-Kamash, A.M.; El-Dessouky, M.I.; Ghonaim, A.K. Two-step method for preparation of Na A-X zeolite blend from fly ash for removal of cesium ions. J. Hazard. Mater. 2008, 154, 963–972. [Google Scholar] [CrossRef] [PubMed]
- International Atomic Energy Agency. Application of Ion Exchange Processes for the Treatment of Radioactive Waste and Management of Spent Ion Exchangers; TRS No. 408; IAEA: Vienna, Austria, 2002. [Google Scholar]
- Liu, H.D.; Li, F.Z.; Zhao, X. Preparation of high surface area porous potassium titanium hexacynoferrate/sio2 bead for radioactive waste water treatment. Chin. J. Inorg. Chem. 2008, 24, 1657–1663. [Google Scholar] [CrossRef]
- Liu, H.D.; Li, F.Z.; Zhao, X.; Yun, G.C. Preparing high-loaded potassium cobalt hexacyanoferrate/silica composite for radioactive wastewater treatment. Nucl. Technol. 2009, 165, 200–208. [Google Scholar]
- Milyutin, V.V.; Kononenko, O.A.; Mikheev, S.V.; Gelis, V.M. Sorption of cesium on finely dispersed composite ferrocyanide sorbents. Radiochemistry 2010, 52, 281–283. [Google Scholar] [CrossRef]
- Rao, S.V.S.; Lekshmi, R.; Mani, A.G.S.; Sinha, P.K. Treatment of low level radioactive liquid wastes using composite ion-exchange resins based on polyurethane foam. J. Radioanal. Nucl. Chem. 2010, 283, 379–384. [Google Scholar] [CrossRef]
- Valsala, T.P.; Joseph, A.; Sonar, N.L.; Sonavane, M.S.; Shah, J.G.; Raj, K.A.; Venugopal, V. Separation of strontium from low level radioactive waste solutions using hydrous manganese dioxide composite materials. J. Nucl. Mat. 2010, 404, 138–143. [Google Scholar] [CrossRef]
- Bogdanovich, N.G.; Grushicheva, E.A.; Mishevets, T.O.; Skomorokhova, S.N.; Trifanova, E.M.; Emel’Yanov, V.P.; Petrukhina, G.N.; Starkov, O.V. Recovery of 137Cs and 90Sr from wastewater by sorption on finely dispersed minerals under static conditions. Radiochemistry 2008, 50, 395–401. [Google Scholar] [CrossRef]
- Humelnicu, D.; Popovici, E.; Dvininov, E.; Mita, C. Study on the retention of uranyl ions on modified clays with titanium oxide. J. Radioanal. Nucl. Chem. 2009, 279, 131–136. [Google Scholar] [CrossRef]
- El-Sofany, E.A.; Zaki, A.A.; Mekhamer, H.S. Kinetics and thermodynamics studies for the removal of Co2+ and Cs+ from aqueous solution by sand and clay soils. Radiochimica Acta 2009, 97, 23–32. [Google Scholar] [CrossRef]
- Pátzay, G.; Weiser, L.; Feil, F.; Patek, G.; Schunk, J. Radioactive Wastewater Treatment Using Selective Ion Exchangers. In Proceedings of 1st International Nuclear and Renewable Energy Conference, INREC’10, Amman, Jordan, 21–24 March 2010. Art. No. 5462565.
- Sonar, N.L.; Mishra, P.K.; Kore, S.G.; Sonavane, S.; Kulkarni, Y.A.; Raj, K.; Manchanda, V.K. Treatment of 106Ru present in intermediate level radioactive liquid waste with nickel sulphide. Sep. Sci. Technol. 2009, 44, 506–515. [Google Scholar] [CrossRef]
- Dodbiba, G.; Wu, I.C.; Kikuchi, T.; Fujita, T. Adsorption of molybdenum in nitric acid solution by using Pb-Fe based adsorbents. In Proceedings of the 2008 Global Symposium on Recycling, Waste Treatment and Clean Technology (REWAS 2008), Cancun, Mexico, 12–15 October 2008; pp. 63–68.
- Borai, E.H.; Hilal, M.A.; Attallah, M.F.; Shehata, F.A. Improvement of radioactive liquid waste treatment efficiency by sequential cationic and anionic ion exchangers. Radiochimica Acta 2008, 96, 441–447. [Google Scholar] [CrossRef]
- Ren, J.S.; Mu, T.; Yang, S.Y.; Zhao, Y.J.; Luo, S.Q. Treatment of high salinity low level radioactive wastewater containing uranium and plutonium by flocculation. J. Nucl. Radiochem. 2008, 30, 201–205. [Google Scholar]
- Xiong, Z.H.; Fan, X.H.; Luo, D.L.; Wang, T.; Chen, Q. Treatment of simulated plutonium-containing wastewater by ultrafiltration-reverse osmosis technology. J. Nucl. Radiochem. 2008, 30, 142–145. [Google Scholar]
- Dulama, M.; Deneanu, N.; Pavelescu, M.; Pasre, L. Combined radioactive liquid waste treatment processes involving inorganic sorbents and micro/ultrafiltration. Rom. J. Physics. 2009, 54, 851–859. [Google Scholar]
- Dulama, M.; Pavelescu, M.; Deneanu, N.; Dulama, C.N. Application of indigenous inorganic sorbents in combination with membrane technology for treatment of radioactive liquid waste from decontamination processes. Radiochim. Acta 2010, 98, 413–420. [Google Scholar]
- Rodrigues Silva, J.I.; De Melo Ferreira, A.C.; Da Costa, A.C.A. Uranium biosorption under dynamic conditions: preliminary tests with sargassum filipendula in real radioactive wastewater containing Ba, Cr, Fe, Mn, Pb, Ca and Mg. J. Radioanal. Nucl. Chem. 2009, 279, 909–914. [Google Scholar] [CrossRef]
- Dulama, M.; Deneanu, N.; Dulama, C.; Pavelescu, M. Experimental studies concerning the semipermeable membrane separation efficiency for 134Cs, 137Cs, 57Co, 58Co, 60Co, 54Mn in liquid radioactive waste. I. Treatment of secondary waste from POD decontamination procedure. Rev. Chim. 2008, 59, 544–549. [Google Scholar]
- Gasser, M.S.; El-Hefny, N.E.; Daoud, J.A. Extraction of Co(II) from aqueous solution using emulsion liquid membrane. J. Hazard. Mater. 2008, 151, 610–615. [Google Scholar] [CrossRef] [PubMed]
- International Atomic Energy Agency. Treatment and Conditioning of Radioactive Organic Liquids; IAEA-TECDOC-656; IAEA: Vienna, Austria, 1992. [Google Scholar]
- Tikilili, P.V.; Chirwa, E.M.N. Microbial degradation of recalcitrant organics from radioactive waste using indigenous cultures of naphthalene degrading bacteria. Chem. Eng. Trans. 2009, 18, 845–850. [Google Scholar]
- Seshadri, H.; Chitra, S.; Paramasivan, K.; Sinha, P.K. Photocatalytic degradation of liquid waste containing edta. Desalination 2008, 232, 139–144. [Google Scholar] [CrossRef]
- Avramenko, V.A.; Bratskaya, S.Y.; Voit, A.V.; Dobrzhanskiy, V.G.; Egorin, A.M.; Zadorozhniy, P.A.; Mayorov, V.Y.; Sergienko, V.I. Implementation of the continuous-flow hydrothermal technology of the treatment of concentrated liquid radioactive wastes at nuclear power plants. Theoret. Found. Chem. Eng. 2010, 44, 592–599. [Google Scholar] [CrossRef]
- Ramanjaneyulu, P.S.; Singh, P.; Sayi, Y.S.; Chawla, H.M.; Ramakumar, K.L. Ion selective electrode for cesium based on 5-(4~-Nitrophenylazo)25,27-Bis(2-Propyloxy)26,28-Dihydroxycalix[4]Arene. J. Hazard. Mater. 2010, 175, 1031–1036. [Google Scholar] [CrossRef] [PubMed]
- Peters, T.B.; Poirier, M.R.; Fink, S.D. Processing macrobatch 2 at the savannah river site integrated salt disposition process (ISDP). Sep. Sci. Technol. 2010, 45, 1801–1806. [Google Scholar] [CrossRef]
- Liu, L.; Li, F.; Zhao, X.; Zhao, G. Low-level radioactive wastewater treatment by continuous electrodeionization. Qinghua Daxue Xuebao/J. Tsinghua Univ. 2008, 48, 1012–1014. [Google Scholar]
- Avramenko, V.; Dobrzhansky, V.; Marinin, D.; Sergienko, V.; Shmatko, S. Novel Technology for Hydrothermal Treatment of NPP Evaporator Concentrates. In Proceedings of the ICEM2007–11th International Conference on Environmental Remediation and Radioactive Waste Management,(PART B), Bruges, Belgium, 2–6 September 2007; pp. 1141–1146.
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Rahman, R.O.A.; Ibrahium, H.A.; Hung, Y.-T. Liquid Radioactive Wastes Treatment: A Review. Water 2011, 3, 551-565. https://doi.org/10.3390/w3020551
Rahman ROA, Ibrahium HA, Hung Y-T. Liquid Radioactive Wastes Treatment: A Review. Water. 2011; 3(2):551-565. https://doi.org/10.3390/w3020551
Chicago/Turabian StyleRahman, R. O. Abdel, H. A. Ibrahium, and Yung-Tse Hung. 2011. "Liquid Radioactive Wastes Treatment: A Review" Water 3, no. 2: 551-565. https://doi.org/10.3390/w3020551
APA StyleRahman, R. O. A., Ibrahium, H. A., & Hung, Y.-T. (2011). Liquid Radioactive Wastes Treatment: A Review. Water, 3(2), 551-565. https://doi.org/10.3390/w3020551