Diagnosing Atmospheric Influences on the Interannual 18O/16O Variations in Western U.S. Precipitation
Abstract
:1. Introduction
2. Methods
Simulation name | Description |
---|---|
CTRL | Unperturbed control simulation |
NOFEQ1 | Equilibrium oxygen isotopic fractionation during ocean water evaporation is turned off (αeq–ev = 1) |
NOFEQ2 | Equilibrium oxygen isotopic fractionation during condensation is turned off (αeq–con = 1) |
NORNEV | All oxygen isotopic fractionation associated with raindrop evaporation is turned off |
CONFEQ1 | Equilibrium oxygen isotopic fractionation during ocean water evaporation is set to constant, removing the temperature dependence (αeq–ev = 1.00980653, T = 293 K) |
CONFEQ2 | Equilibrium oxygen isotopic fractionation during condensation is set to a constant, removing the temperature dependence (αeq–con = 1.01162795, T = 274 K) |
NOFKI1 | Kinetic oxygen isotopic fractionation during ocean water evaporation is turned off (αk–ev = 1) |
NOFKI2 | Kinetic oxygen isotopic fractionation during vapor deposition onto ice is turned off (αk–con = 1) |
TAGY | Tagging simulation where tag1 is applied within 20°–40° N and 140°–170° W; Tag 2 is applied within 40°–60° N and 140°–170° W. |
TAGZ | Tagging simulation where 14 separate tags are applied to the 28 vertical σ layers (2 layers per tag). Tag 1 is applied to the surface layer and layer 2; tag 2 is applied to layers 3 and 4; tag 3 is applied to layers 5 and 6; and so on to up to layers 27 and 28. This simulation is actually a combination of 7 simulations, with each model run simulating two of the tags. |
3. Simulated δ18Op Variability
4. Attributing Interannual Isotopic Variations
4.1. Post-Condensation Exchanges
4.2. Condensation Height
4.3. Circulation Effects
4.3.1. Circulation Effects and δ18Op
4.3.2. Circulation Effects and δ18OPW
4.4. Temperature Effect
5. Conclusions
Acknowledgments
Conflict of Interest
References
- Lorius, C.; Jouzel, J.; Raynaud, D.; Hansen, J.; Letreut, H. The ice-core record: Climate sensitivity and future greenhouse warming. Nature 1990, 347, 139–145. [Google Scholar] [CrossRef]
- Vimeux, F.; Ginot, P.; Schwikowski, M.; Vuille, M.; Hoffmann, G.; Thompson, L.G.; Schotterer, U. Climate variability during the last 1000 years inferred from Andean ice cores: A review of methodology and recent results. Palaeogeogr. Palaeocl. 2009, 281, 229–241. [Google Scholar] [CrossRef]
- McDermott, F. Palaeo-climate reconstruction from stable isotope variations in speleothems: A review. Quat. Sci. Rev. 2004, 23, 901–918. [Google Scholar] [CrossRef]
- Sternberg, L.D.L.O. Oxygen stable isotope ratios of tree-ring cellulose: The next phase of understanding. New Phytol. 2009, 181, 553–562. [Google Scholar] [CrossRef]
- Dansgaard, W. Stable isotopes in precipitation. Tellus 1964, 16, 436–468. [Google Scholar] [CrossRef]
- Araguas-Araguas, L.; Froehlich, K.; Rozanski, K. Stable isotope composition of precipitation over southeast Asia. J. Geophys. Res. Atmos. 1998, 103, 28721–28742. [Google Scholar] [CrossRef]
- Yamanaka, T.; Shimada, J.; Hamada, Y.; Tanaka, T.; Yang, Y.H.; Zhang, W.J.; Hu, C.S. Hydrogen and oxygen isotopes in precipitation in the northern part of the North China Plain: Climatology and inter-storm variability. Hydrol. Process. 2004, 18, 2211–2222. [Google Scholar] [CrossRef]
- Risi, C.; Bony, S.; Vimeux, F. Influence of convective processes on the isotopic composition (δ18O and δD) of precipitation and water vapor in the tropics: 2. Physical interpretation of the amount effect. J. Geophys. Res. Atmos. 2008, 113, D19306. [Google Scholar] [CrossRef]
- Lee, J.E.; Fung, I. “Amount effect” of water isotopes and quantitative analysis of post-condensation processes. Hydrol. Process. 2008, 22, 1–8. [Google Scholar] [CrossRef]
- Lee, J.E.; Risi, C.; Fung, I.; Worden, J.; Scheepmaker, R.A.; Lintner, B.; Frankenberg, C. Asian monsoon hydrometeorology from TES and SCIAMACHY water vapor isotope measurements and LMDZ simulations: Implications for speleothem climate record interpretation. J. Geophys. Res. Atmos. 2012, 117, D15112. [Google Scholar]
- Field, R.D.; Jones, D.B.A.; Brown, D.P. Effects of postcondensation exchange on the isotopic composition of water in the atmosphere. J. Geophys. Res. Atmos. 2010, 115, D24305. [Google Scholar] [CrossRef]
- Buenning, N.H.; Noone, D.C.; Riley, W.J.; Still, C.J.; White, J.W.C. Influences of the hydrological cycle on observed interannual variations in atmospheric CO18O. J Geophys. Res. Biogeo. 2011, 116, G04001. [Google Scholar] [CrossRef]
- Rozanski, K.; Sonntag, C.; Munnich, K.O. Factors controlling stable isotope composition of european precipitation. Tellus 1982, 34, 142–150. [Google Scholar] [CrossRef]
- Bowen, G.J. Spatial analysis of the intra-annual variation of precipitation isotope ratios and its climatological corollaries. J. Geophys. Res. Atmos. 2008, 113, D05113. [Google Scholar] [CrossRef]
- Sturm, C.; Zhang, Q.; Noone, D. An introduction to stable water isotopes in climate models: Benefits of forward proxy modelling for paleoclimatology. Clim. Past 2010, 6, 115–129. [Google Scholar] [CrossRef]
- Berkelhammer, M.; Stott, L.D. Secular temperature trends for the southern Rocky Mountains over the last five centuries. Geophys. Res. Lett. 2012, 39, L17701. [Google Scholar]
- Naftz, D.L.; Susong, D.D.; Schuster, P.F.; Cecil, L.D.; Dettinger, M.D.; Michel, R.L.; Kendall, C. Ice core evidence of rapid air temperature increases since 1960 in alpine areas of the Wind River Range, Wyoming, United States. J. Geophys. Res. Atmos. 2002, 107, ACL 3. [Google Scholar]
- Schuster, P.F.; White, D.E.; Naftz, D.L.; Cecil, L.D. Chronological refinement of an ice core record at Upper Fremont Glacier in south central North America. J. Geophys. Res. Atmos. 2000, 105, 4657–4666. [Google Scholar] [CrossRef]
- Berkelhammer, M.; Stott, L.D. Modeled and observed intra-ring δ18O cycles within late Holocene Bristlecone Pine tree samples. Chem. Geol. 2009, 264, 13–23. [Google Scholar] [CrossRef]
- Berkelhammer, M.B.; Stott, L.D. Recent and dramatic changes in Pacific storm trajectories recorded in δ18O from Bristlecone Pine tree ring cellulose. Geochem. Geophys. Geosy. 2008, 9, Q04008. [Google Scholar]
- Vacco, D.A.; Clark, P.U.; Mix, A.C.; Cheng, H.; Edward, R.L. A speleothem record of Younger Dryas cooling, Klamath Mountains, Oregon, USA. Quat. Res. 2005, 64, 249–256. [Google Scholar] [CrossRef]
- Oster, J.L.; Montanez, I.P.; Sharp, W.D.; Cooper, K.M. Late Pleistocene California droughts during deglaciation and Arctic warming. Earth Planet Sci. Lett. 2009, 288, 434–443. [Google Scholar] [CrossRef]
- Ersek, V.; Clark, P.U.; Mix, A.C.; Cheng, H.; Edwards, R.L. Holocene winter climate variability in mid-latitude western North America. Nat. Commun. 2012, 3. [Google Scholar] [CrossRef]
- Feakins, S.J.; Sessions, A.L. Controls on the D/H ratios of plant leaf waxes in an arid ecosystem. Geochim. Cosmochim. Acta 2010, 74, 2128–2141. [Google Scholar] [CrossRef]
- Benson, L.V.; Burdett, J.W.; Kashgarian, M.; Lund, S.P.; Phillips, F.M.; Rye, R.O. Climatic and hydrologic oscillations in the Owens Lake basin and adjacent Sierra Nevada, California. Science 1996, 274, 746–749. [Google Scholar] [CrossRef]
- Benson, L.V.; Lund, S.P.; Burdett, J.W.; Kashgarian, M.; Rose, T.P.; Smoot, J.P.; Schwartz, M. Correlation of late-Pleistocene lake-level oscillations in Mono Lake, California, with North Atlantic climate events. Quat. Res. 1998, 49, 1–10. [Google Scholar] [CrossRef]
- Li, H.C.; Ku, T.L. Delta C-13-delta O-18 covariance as a paleohydrological indicator for closed-basin lakes. Palaeogeogr. Palaeoclimatol. 1997, 133, 69–80. [Google Scholar] [CrossRef]
- Li, H.C.; Ku, T.L.; Stott, L.D.; Anderson, R.F. Stable isotope studies on Mono Lake (California). 1. Delta O-18 in lake sediments as proxy for climatic change during the last 150 years. Limnol. Oceanogr. 1997, 42, 230–238. [Google Scholar]
- Coplen, T.B.; Neiman, P.J.; White, A.B.; Landwehr, J.M.; Ralph, F.M.; Dettinger, M.D. Extreme changes in stable hydrogen isotopes and precipitation characteristics in a landfalling Pacific storm. Geophys. Res. Lett. 2008, 35, L21808. [Google Scholar] [CrossRef]
- Yoshimura, K.; Kanamitsu, M.; Dettinger, M. Regional downscaling for stable water isotopes: A case study of an atmospheric river event. J. Geophys. Res. Atmos. 2010, 115, D18114. [Google Scholar] [CrossRef]
- Vachon, R.W.; Welker, J.M.; White, J.W.C.; Vaughn, B.H. Monthly precipitation isoscapes δ18O of the United States: Connections with surface temperatures, moisture source conditions, and air mass trajectories. J. Geophys. Res. Atmos. 2010, 115, D21126. [Google Scholar]
- Ersek, V.; Mix, A.C.; Clark, P.U. Variations of delta O-18 in rainwater from southwestern Oregon. J. Geophys. Res. Atmos. 2010, 115, D09109. [Google Scholar] [CrossRef]
- Friedman, I.; Harris, J.M.; Smith, G.I.; Johnson, C.A. Stable isotope composition of waters in the Great Basin, United States—1. Air-mass trajectories. J. Geophys. Res. Atmos. 2002, 107. [Google Scholar] [CrossRef]
- Friedman, I.; Smith, G.I.; Gleason, J.D.; Warden, A.; Harris, J.M. Stable Isotope Composition of Waters in Southeastern California. 1. Modern Precipitation. J. Geophys. Res. Atmos. 1992, 97, 5795–5812. [Google Scholar] [CrossRef]
- Friedman, I.; Smith, G.I.; Johnson, C.A.; Moscati, R.J. Stable isotope compositions of waters in the Great Basin, United States—2. Modern precipitation. J. Geophys. Res. Atmos. 2002, 107. [Google Scholar] [CrossRef]
- Berkelhammer, M.; Stott, L.; Yoshimura, K.; Johnson, K.; Sinha, A. Synoptic and mesoscale controls on the isotopic composition of precipitation in the western United States. Clim. Dynam. 2012, 38, 433–454. [Google Scholar] [CrossRef]
- Buenning, N.H.; Stott, L.; Yoshimura, K.; Berkelhammer, M. The cause of the seasonal variation in the oxygen isotopic composition of precipitation along the western U.S. coast. J. Geophys. Res. Atmos. 2012, 117, D18114. [Google Scholar]
- Yoshimura, K.; Kanamitsu, M.; Noone, D.; Oki, T. Historical isotope simulation using Reanalysis atmospheric data. J. Geophys. Res. Atmos. 2008, 113, D19108. [Google Scholar] [CrossRef]
- Reynolds, R.W.; Smith, T.M. Improved global sea-surface temperature analyses using optimum interpolation. J. Climate 1994, 7, 929–948. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteorol. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef]
- Yoshimura, K.; Kanamitsu, M. Dynamical global downscaling of global reanalysis. Mon. Weather Rev. 2008, 136, 2983–2998. [Google Scholar] [CrossRef]
- Majoube, M. Fractionation in O-18 between ice and water vapor. J. Chim. Phys. Phys. Chim. Biol. 1971, 68, 625–636. [Google Scholar]
- Majoube, M. Oxygen-18 and deuterium fractionation between water and steam. J. Chim. Phys. Phys. Chim. Biol. 1971, 68, 1423–1436. [Google Scholar]
- Merlivat, L.; Jouzel, J. Global climatic interpretation of the deuterium-oxygen-18 relationship for precipitation. J. Geophys. Res. 1979, 84, 5029–5033. [Google Scholar] [CrossRef]
- Jouzel, J.; Merlivat, L. Deuterium and oxygen 18 in precipitation: Modeling of the isotopic effects during snow formation. J. Geophys. Res. 1984, 89, 11749–11757. [Google Scholar] [CrossRef]
- Stewart, M.K. Stable isotope fractionation due to evaporation and isotopic-exchange of falling waterdrops—Applications to atmospheric processes and evaporation of lakes. J. Geophys. Res. 1975, 80, 1133–1146. [Google Scholar] [CrossRef]
- Bony, S.; Risi, C.; Vimeux, F. Influence of convective processes on the isotopic composition (δ18O and δD) of precipitation and water vapor in the tropics: 1. Radiative-convective equilibrium and Tropical Ocean-Global Atmosphere-Coupled Ocean-Atmosphere Response Experiment (TOGA-COARE) simulations. J. Geophys. Res. Atmos. 2008, 113, D19305. [Google Scholar] [CrossRef]
- Wright, J.S.; Sobel, A.H.; Schmidt, G.A. Influence of condensate evaporation on water vapor and its stable isotopes in a GCM. Geophys. Res. Lett. 2009, 36, L12804. [Google Scholar] [CrossRef]
- Feng, X.H.; Reddington, A.L.; Faiia, A.M.; Posmentier, E.S.; Shu, Y.; Xu, X.M. The Changes in North American atmospheric circulation patterns indicated by wood cellulose. Geology 2007, 35, 163–166. [Google Scholar] [CrossRef]
- Zhu, M.F.; Stott, L.; Buckley, B.; Yoshimura, K. 20th century seasonal moisture balance in Southeast Asian montane forests from tree cellulose δ18O. Climatic Change 2012, 115, 505–517. [Google Scholar] [CrossRef]
- Zhu, M.F.; Stott, L.; Buckley, B.; Yoshimura, K.; Ra, K. Indo-Pacific Warm Pool convection and ENSO since 1867 derived from Cambodian pine tree cellulose oxygen isotopes. J. Geophys. Res. Atmos. 2012, 117, D11307. [Google Scholar] [CrossRef]
- Roden, J.S.; Lin, G.G.; Ehleringer, J.R. A mechanistic model for interpretation of hydrogen and oxygen isotope ratios in tree-ring cellulose. Geochim. Cosmochim. Acta 2000, 64, 21–35. [Google Scholar] [CrossRef]
- Kanner, L.; Buenning, N.H.; Stott, L.; Stahle, D. Climatologic and hydrologic influences on the oxygen isotope ratio of tree cellulose in coastal southern California during the late 20th century. Geochem. Geophys. Geosy. 2013. Submitted for publiation. [Google Scholar]
- Risi, C.; Noone, D.; Worden, J.; Frankenberg, C.; Stiller, G.; Kiefer, M.; Funke, B.; Walker, K.; Bernath, P.; Schneider, M.; et al. Process-evaluation of tropospheric humidity simulated by general circulation models using water vapor isotopologues: 1. Comparison between models and observations. J. Geophys. Res. Atmos. 2012, 117, D05303. [Google Scholar] [CrossRef]
- Ehhalt, D.H.; Rohrer, F.; Fried, A. Vertical profiles of HDO/H2O in the troposphere. J. Geophys. Res. Atmos. 2005, 110, D13301. [Google Scholar] [CrossRef]
- Sayres, D.S.; Pfister, L.; Hanisco, T.F.; Moyer, E.J.; Smith, J.B.; St Clair, J.M.; OʼBrien, A.S.; Witinski, M.F.; Legg, M.; Anderson, J.G. Influence of convection on the water isotopic composition of the tropical tropopause layer and tropical stratosphere. J. Geophys. Res. Atmos. 2010, 115, D00J20. [Google Scholar] [CrossRef]
- Vachon, R.W.; White, J.W.C.; Gutmann, E.; Welker, J.M. Amount-weighted annual isotopic δ18O values are affected by the seasonality of precipitation: A sensitivity study. Geophys. Res. Lett. 2007, 34, L21707. [Google Scholar] [CrossRef]
- Field, R.D.; Moore, G.W.K.; Holdsworth, G.; Schmidt, G.A. A GCM-based analysis of circulation controls on δ18O in the southwest Yukon, Canada: Implications for climate reconstructions in the region. Geophys. Res. Lett. 2010, 37, L05706. [Google Scholar]
- Romero, I.C.; Feakins, S.J. Spatial gradients in plant leaf wax D/H across a coastal salt marsh in southern California. Org. Geochem. 2011, 42, 618–629. [Google Scholar] [CrossRef]
- Helliker, B.R. On the controls of leaf-water oxygen isotope ratios in the atmospheric crassulacean acid metabolism epiphyte tillandsia usneoides. Plant Physiol. 2011, 155, 2096–2107. [Google Scholar] [CrossRef]
- Yin, J.H. A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys. Res. Lett. 2005, 32, L18701. [Google Scholar] [CrossRef]
- Salathe, E.P. Influences of a shift in North Pacific storm tracks on western North American precipitation under global warming. Geophys. Res. Lett. 2006, 33, L19820. [Google Scholar] [CrossRef]
- Worden, J.; Bowman, K.; Noone, D.; Beer, R.; Clough, S.; Eldering, A.; Fisher, B.; Goldman, A.; Gunson, M.; Herman, R.; et al. Tropospheric emission spectrometer observations of the tropospheric HDO/H2O ratio: Estimation approach and characterization. J. Geophys. Res. Atmos. 2006, 111, D16309. [Google Scholar] [CrossRef]
- Worden, J.; Noone, D.; Bowman, K.; Spect, T.E. Importance of rain evaporation and continental convection in the tropical water cycle. Nature 2007, 445, 528–532. [Google Scholar] [CrossRef]
- Frankenberg, C.; Yoshimura, K.; Warneke, T.; Aben, I.; Butz, A.; Deutscher, N.; Griffith, D.; Hase, F.; Notholt, J.; Schneider, M.; et al. Dynamic processes governing lower-tropospheric HDO/H2O ratios as observed from space and ground. Science 2009, 325, 1374–1377. [Google Scholar] [CrossRef]
- Wunch, D.; Toon, G.C.; Wennberg, P.O.; Wofsy, S.C.; Stephens, B.B.; Fischer, M.L.; Uchino, O.; Abshire, J.B.; Bernath, P.; Biraud, S.C.; et al. Calibration of the total carbon column observing network using aircraft profile data. Atmos. Meas. Tech. 2010, 3, 1351–1362. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Buenning, N.H.; Stott, L.; Kanner, L.; Yoshimura, K. Diagnosing Atmospheric Influences on the Interannual 18O/16O Variations in Western U.S. Precipitation. Water 2013, 5, 1116-1140. https://doi.org/10.3390/w5031116
Buenning NH, Stott L, Kanner L, Yoshimura K. Diagnosing Atmospheric Influences on the Interannual 18O/16O Variations in Western U.S. Precipitation. Water. 2013; 5(3):1116-1140. https://doi.org/10.3390/w5031116
Chicago/Turabian StyleBuenning, Nikolaus H., Lowell Stott, Lisa Kanner, and Kei Yoshimura. 2013. "Diagnosing Atmospheric Influences on the Interannual 18O/16O Variations in Western U.S. Precipitation" Water 5, no. 3: 1116-1140. https://doi.org/10.3390/w5031116
APA StyleBuenning, N. H., Stott, L., Kanner, L., & Yoshimura, K. (2013). Diagnosing Atmospheric Influences on the Interannual 18O/16O Variations in Western U.S. Precipitation. Water, 5(3), 1116-1140. https://doi.org/10.3390/w5031116