Effects of Biosolids and Manure Application on Microbial Water Quality in Rural Areas in the US
Abstract
:1. Waterborne Outbreaks in Rural Areas in the US
2. Sources of Microbial Pollution in Rural Areas in the US
3. Characterization of Biosolids and Manure
Organism | Detection Method | Concentration | Reference |
---|---|---|---|
Pathogens | |||
Salmonella sp. | culture | 1.2–3.2 MPNCU/g | [54] |
0.487–0.954 MPN/4 g | [34] | ||
40.1 MPN/4 g | [31] | ||
Cryptosporidium | Laser scanning cytometry | 4.3/10 g | [35] |
Adenoviruses | qPCR | 5 × 105 copies/g | [33] |
7.5 × 105 copies/g | [34] | ||
1.59 × 104 copies/g | [55] | ||
Cell culture | 480 MPN/4g | [34] | |
Human polyomavirus | qPCR | 8.05 × 102 copies/g | [55] |
2.5 × 105 copies/g | [34] | ||
Enteroviruses | qPCR | 1.9 × 104 copies/g | [34] |
4.8 × 103 copies/g | [54] | ||
3.3 × 104 copies/g | [56] | ||
RT-PCR | 1.2 × 104 copies/g | [57] | |
1.06 × 104 copies/g | [58] | ||
Cell culture | 480 MPN/4 g | [34] | |
38.2 MPNCU/g | [57] | ||
9 MPNCU/g | [58] | ||
15–80 MPNCU/g | [54] | ||
Noroviruses GI | qPCR | 5 × 104 copies/g | [34] |
Cell culture | 480 MPN/4 g | [34] | |
Noroviruses GII | qPCR | 1.5 × 105 copies/g | [34] |
Cell culture | 480 MPN/4 g | [34] | |
Indicators | |||
Somatic coliphages | Cell culture | 5.5 × 102 PFU/10 g | [35] |
2.09 × 105 PFU/4 g | [31] | ||
Total coliform | Culture | 7.64 × 105 MPN/4 g | [31] |
Enterococci | Culture | 7.2 × 105–2.6 × 106 MPN/g | [54] |
6.4 × 105 MPN/g | [56] | ||
E. coli | Culture | 4.4 × 105–1.1 × 106 MPN/g | [54] |
7.2 × 105 MPN/g | [56] | ||
104 MPN/g | [34] |
Organism | Concentration | Reference |
---|---|---|
Pathogens | ||
Salmonella sp. | 2.8 × 105 CFU/25g | [59] |
Listeria | 1.7 × 104 CFU /g | [59] |
E. coli O157:H7 | 2.2 × 106 CFU/g | [60] |
Indicators | ||
Enterococci | 1.5 × 10 MPN/g | [61] |
E. coli | 105–106 CFU /g | [61] |
5.5 × 107 MPN/g | [59] |
4. Association of Biosolids and Manure Application with Microbial Contamination of Surface and Groundwater
5. Risk Assessment
Ref. | Exposure Scenario | Microorganisms Type | Exposed Population | Findings/Risk Estimate |
---|---|---|---|---|
Biosolids | ||||
[100] | Ingestion of biosolids-contaminated soil | Rotavirus | Residential population(480 mg/d soil ingestion rate) | Risk of infection: 7.8 × 10−4 (when mixed with soil); 2.11 × 10−1 (without any mixing with soil) |
[101] | Inhalation of indicator organisms from air during land application activity | Coliphage MS-2, E. coli, coxsackievirus A21 | Occupational workers (for 1 to 8 h of exposure; 0.1 virus particles/g biosolids) | Risk of infection at 2 m: 1.64 × 10−7 to 1.31 × 10−6 |
[101] | Inhalation of indicator organisms from air during land application activity | Coliphage MS-2, E. coli , coxsackievirus A21 | Residential population (for 1 to 8 h of exposure; 0.1 virus particles/g biosolids) | Risk of infection at 30.5 m: 1.5 × 10−8 to 1.2 × 10−7 |
[102] | Inhalation of indicator organisms from air during land application of class B biosolids | Coliform bacteria, coliphages | Occupational workers | annual risk of infection: 7.8 × 10−4 to 2.1 × 10−2 |
[103] | Direct contact of Class B biosolids and subsequent ingestion (without incorporation in soil) | Ssalmonella | Residential (soil ingestion = 480 mg/d) | Risk of infection = 5.7 × 10−3 |
[103] | Direct contact of Class B biosolids and subsequent ingestion (with 100 times dilution with soil) | Salmonella | Residential (soil ingestion = 480 mg/d) | Risk of infection = 5.5 10−5 |
[103] | Direct contact with class A residuals following regrowth of Salmonella | Salmonella | Residential(soil ingestion = 480 mg/d) | Risk of salmonella infection = 8 × 10−1 |
[103] | Direct contact with class A residuals following regrowth of Salmonella (with 100 times dilution with soil) | Salmonella | Residential (soil ingestion = 480 mg/d) | Risk of salmonella infection = 2.64 × 10−1 |
[104] | Direct contact of Class B biosolids | echovirus-12, enterovirus types 68–71, adenoviruses, rotaviruses, and noroviruses genotype-I | Residential population | Risk of infection: 4.45 × 10−5 |
Manure | ||||
[105] | Exposures from fomite, soil, crop, and aerosol exposures from manure and biosolids | Bacteria and viruses | Occupational and residential population | Greatest risk from direct consumption of contaminated soil ; Greater bacterial risks from manure and greater viral risks from biosolids |
[106] | Exposure of dairy wastewater | Campylobacter jejuni, E.coliO157:H7, non-O157 E.coli, Listeria monocytogenes, and Salmonella spp. | Residential | daytime risk is less than 10−6 at distance > 1 km |
[107] | Inhalation exposure during dairy manure application | Enterococcusspp., E.coli, Salmonella spp.,Campylobacter spp., E. coli O157:H7 | Occupational (8h) | Median risk of infection: 1:500 (at 100 m), 1:100,000 (at 1,000 m) |
6. Best Management Practices for Biosolids to Protect Water Quality
7. Best Management Practices for Livestock Manure to Protect Water Quality
8. Conclusions and Recommendations
Acknowledgments
Conflicts of Interest
References
- Nicholson, F.; Groves, S.; Chambers, B. Pathogen survival during livestock manure storage and following land application. In ADAS Gleadthorpe Research Center, Meden Vale, Mansfield, Nottinghamshire NG20 9PF, UK; National Academy Press: Washington, DC, USA, 2004. [Google Scholar]
- Meslin, F.X. Global Aspects of Emerging and Potential Zoonoses: A WHO Perspective. In Proceedings of the 1st International Conference on Emerging Zoonoses, Jerusalem, Israel, 24–28 November 1996.
- Slifko, T.R.; Smith, H.V.; Rose, J.B. Emerging parasite zoonoses associated with water and food. Int. J. Parasitol. 2000, 30, 1379–1393. [Google Scholar] [CrossRef] [PubMed]
- Sobsey, M.D.; Khatib, L.A.; Hill, V.R.; Alocilja, E.; Pillai, S. Pathogens in Animal Wastes and the Impacts of Waste Management Practices on Their Survival, Transport and Fate. In White Paper, Midwest Plan Service; Iowa State University: Ames, IA, USA, 2001. [Google Scholar]
- Hubálek, Z. Emerging human infectious diseases: Anthroponoses, zoonoses, and sapronoses. Emerg. Infect. Dis. 2003, 9, 403–404. [Google Scholar] [CrossRef] [PubMed]
- Gannon, V.P. J.; Bolin, C.; Moe, C.L. Waterborne Zoonoses: Emerging Pathogens and Emerging Patterns of Infection. In Waterborne Zoonoses: Identification, Causes and Control; Cotruvo, J.A., Dufour, A., Rees, G., Bartram, J., Carr, R., Cliver, D.O., Craun, G.F., Fayer, R., Gannon, V.P.J., Eds.; WHO: London, UK, 2004. [Google Scholar]
- Cliver, D.O.; Moe, C.L. Prospects of Waterborne Viral Zoonoses. In Waterborne Zoonoses: Identification, Causes and Control; Cotruvo, J.A., Dufour, A., Rees, G., Bartram, J., Carr, R., Cliver, D.O., Craun, G.F., Fayer, R., Gannon, V.P.J., Eds.; WHO: London, UK, 2004. [Google Scholar]
- Palmer, S.; Brown, D.; Morgan, D. Early Qualitative Risk Assessment of the Emerging Zoonotic Potential of Animal Diseases. Br. Med. J. 2005, 331, 1256–1260. [Google Scholar] [CrossRef]
- Pourcher, A.M.; Morand, P.; Picard‐Bonnaud, F.; Billaudel, S.; Monpoeho, S.; Federighi, M.; Moguedet, G. Decrease of enteric micro-organisms from rural sewage sludge during their composting in straw mixture. J. Appl. Microbiol. 2005, 99, 528–539. [Google Scholar] [CrossRef] [PubMed]
- Bofill-Mas, S.; Albinana-Gimenez, N.; Clemente-Casares, P.; Hundesa, A.; Rodriguez-Manzano, J.; Allard, A.; Calvo, M.; Girones, R. Quantitation and stabilityof human adenoviruses and polyomavirusJCPyV in wastewater matrices. Appl. Environ. Microbiol. 2006, 72, 7894–7896. [Google Scholar] [CrossRef] [PubMed]
- Pourcher, A.M.; Françoise, P.B.; Virginie, F.; Agnieszka, G.; Vasilica, S.; Gérard, M. Survival of fecal indicators and enteroviruses in soil after land-spreading of municipal sewage sludge. Appl. Soil Ecol. 2007, 35, 473–479. [Google Scholar] [CrossRef]
- Monpoeho, S.; Maul, A.; Bonnin, C.; Patria, L.; Ranarijaona, S.; Billaudel, S.; Ferré, V. Clearance of Human-Pathogenic Viruses from Sludge: Study of Four Stabilization Processes by Real-Time Reverse Transcription-PCR and Cell Culture. Appl. Environ. Microb. 2004, 70, 5434–5440. [Google Scholar] [CrossRef]
- Monpoeho, S.; Maula, A.; Mignotte-Cadiergues, B.; Schwartzbrod, L.; Billaudel, S.; Ferre, V. Best Viral Elution Method Available for Quantification of Enteroviruses in Sludge by Both Cell Culture and Reverse Transcription-PCR. Appl. Environ. Microbiol. 2001, 67, 2484–2488. [Google Scholar] [CrossRef] [PubMed]
- Gobernaa, M.; Podmirsega, S.; Waldhubera, S.; Knappa, B.; Garcíab, C.; Insama, H. Pathogenic bacteria and mineral N in soils following the land spreading of biogas digestates and fresh manure. Appl. Soil Ecol. 2011, 49, 18–25. [Google Scholar] [CrossRef]
- Kudva, I.T.; Blanch, K.; Hovde, C.J. Analysis of Escherichia coli O157: H7 survival in ovine or bovine manure and manure slurry. Appl. Environ. Microbiol. 1998, 64, 3166–3174. [Google Scholar] [PubMed]
- Sinton, L.W.; Braithwaite, R.R.; Hall, C.H.; Mackenzie, M.L. Survival of indicator and pathogenic bacteria in bovine feces on pasture. Appl. Environ. Microbiol. 2007, 73, 7917–7925. [Google Scholar] [CrossRef] [PubMed]
- King, G.; Brooks, J.P.; Brown, S.; Gerba, C.; O’Connor, G.A.; Pepper, I.L. Land Application of Organic Residuals: Public Health Threat or Environmental Benefit; American Society for Microbiology: Washington, DC, USA, 2011. [Google Scholar]
- Daniel, T.C.; Sharpley, A.N.; Lemunyon, J.L. Agricultural phosphorus and eutrophication: A symposium overview. J. Environ. Qual. 1998, 27, 251–257. [Google Scholar] [CrossRef]
- Scott, T.M.; Rose, J.B.; Jenkins, T.M.; Farrah, S.R.; Lukasik, J. Microbial source tracking: Current methodology and future directions. Appl. Environ. Microbiol. 2002, 68, 5796–5803. [Google Scholar] [CrossRef] [PubMed]
- Easterling, D.R.; Evans, J.L.; Groisman, P.Y.; Karl, T.R.; Kunkel, K.E.; Ambenje, P. Observed variability and trends in extreme climate events: A brief review. Bull. Am. Met. Soc. 2000, 81, 417–425. [Google Scholar] [CrossRef]
- Easterling, D.R.; Thomas, K.R.; Gallo, K.P. Observed climate variability and change of relevance to the biosphere. J. Geophys. Res. 2000, 105, 20101–20114. [Google Scholar] [CrossRef]
- Atherholt, T.B.; LeChevallier, M.W.; Norton, W.D.; Rosen, J.S. Effect of rainfall on Giardia and Crypto. J. Am. Water Works Assoc. 1998, 90, 66–80. [Google Scholar]
- Tate, K.W.; Atwill, E.R.; George, M.R.; McDougald, N.K.; Larsen, R.E. Crytposporidium parvum transport from cattle fecal deposits on California rangelands. J. Range Manag. 2000, 53, 295–299. [Google Scholar] [CrossRef]
- Kistemann, T.; Claben, T.; Koch, C.; Dangendorf, F.; Fischeder, R.; Gebel, J.; Vacata, V.; Exner, M. Microbial load of drinking water reservoir tributaries during extreme rainfall and runoff. Appl. Environ. Microbiol. 2002, 68, 2188–2197. [Google Scholar] [CrossRef] [PubMed]
- Gary, H.; Johnson, S.; Ponce, S. Cattle grazing impact on surface water quality in a Colorado front range stream. J. Soil Water Conserv. 1983, 38, 124–128. [Google Scholar]
- Niemi, R.M.; Niemi, J.S. Bacterial pollution of waters in pristine and agricultural lands. J. Environ. Qual. 1991, 20, 620–627. [Google Scholar] [CrossRef]
- Doran, J.W.; Linn, D.M. Bacteriological quality of runoff water from pastureland. Appl. Environ. Microbiol. 1979, 37, 985–991. [Google Scholar] [PubMed]
- Jawson, M.D.; Elliott, L.F.; Saxton, K.E.; Fortier, D.H. The effect of cattle grazing on indicator bacteria in runoff from a Pacific Northwest watershed. J. Environ. Qual. 1982, 11, 621–627. [Google Scholar] [CrossRef]
- Culley, J.L.B.; Phillips, P.A. Bacteriological quality of surface and subsurface runoff from manuredsandy clay loamsoil. J. Environ. Qual. 1982, 11, 155–158. [Google Scholar] [CrossRef]
- McMurry, S.W.; Coyne, M.S.; Perfect, E. Fecal coliform transport through intact soil blocks amended with poultry manure. J. Environ. Qual. 1998, 27, 86–92. [Google Scholar] [CrossRef]
- Howell, J.M.; Coyne, M.S.; Cornelius, P.L. Effect of sediment particle size and temperature on fecal bacteria mortality rates and the fecal coliform/fecal streptococci ratio. J. Environ. Qual. 1996, 25, 1216–1220. [Google Scholar] [CrossRef]
- Fleming, R.J.; Bradshaw, S.H. Contamination of Subsurface Drainage Systems during Manure Spreading; ASAE Paper No. 92-2618; American Society of Agricultural Engineers: St. Joseph, MI, USA, 1992. [Google Scholar]
- Shipitalo, M.J.; Gibbs, F. Potential of Earthworm Burrows to Transmit Injected Animal Waste to Tile Drains. Soil Sci. Soc. Am. J. 2000, 64, 2103–2109. [Google Scholar] [CrossRef]
- Shipitalo, M.J.; Protz, R. Comparison of morphology and porosity of a soil under conventional and zero tillage. Can. J. Soil Sci. 1987, 67, 445–456. [Google Scholar] [CrossRef]
- Drees, L.R.; Karathanasis, A.D.; Wilding, L.P.; Blevins, R.L. Micromorphological characteristics of long-term no-till and conventionally tilled soils. Soil Sci. Soc. Am. J. 1994, 58, 508–517. [Google Scholar] [CrossRef]
- Pagliai, M.; Raglione, M.; Panini, T.; Maletta, M.; La Marca, M. The structure of two alluvial soils in italy after 10 years of conventional and minimum tillage. Soil Tillage Res. 1995, 34, 209–223. [Google Scholar] [CrossRef]
- Geohring, L.D.; Van Es, H.M. Soil Hydrology and Liquid Manure Applications. In. In Proceedings of the Liquid Manure Application Systems Conference, Rochester, NY, USA, 1994; pp. 166–174.
- Evans, M.R.; Owens, J.D. Factors affecting the concentration of fecal bacteria in land drainage water. J. Gen. Micro. 1972, 71, 477–485. [Google Scholar] [CrossRef]
- Dean, D.M.; Foran, M.E. The effects of farm liquid waste applications on tile drainage. J. Soil Water Conser. 1992, 47, 368–369. [Google Scholar]
- McLellan, J.E.; Fleming, R.J.; Bradshaw, S.H. Reducing Manure Output To Streams from Subsurface Drainage Systems; ASAE Paper No. 93–2010; American Society of Agricultural Engineers: St. Joseph, MI, USA, 1993. [Google Scholar]
- Jamieson, R.C.; Gordon, R.J.; Sharples, K.E.; Stratton, G.W.; Madani, A. Movement and Persistence of Fecal Bacteria in Agricultural Soils and Subsurface Drainage Systems: A Review. Can. Biosyst. Engin. 2002, 44, 1–9. [Google Scholar]
- Kon, T.; Weir, S.C.; Howell, E.T.; Lee, H.; Trevors, J.T. Repetitive element (REP)-polymerase chain reaction (PCR) analysis of Escherichia coli isolates from recreational waters of southeastern Lake Huron. Can. J. Microbial. 2009, 55, 269–276. [Google Scholar] [CrossRef]
- McLellan, S.L.; Salmore, A.K. Evidence for localized bacterial loading as the cause of chronic beach closings in a freshwater marina. Water Res. 2003, 37, 2700–2708. [Google Scholar] [CrossRef] [PubMed]
- Rose, J.B.; Verhougstrate, M. Investigation of Water Quality and Sources Associated with Buck Creek Watershed. Michigan State University: East Lansing, MI, USA, 18 September 2008. [Google Scholar]
- Sengelov, G.; Agerso, Y.; Halling-Sorensen, B.; Baloda, S.B.; Andersen, J.S.; Jensen, L.B. Bacterial antibiotic resistance levels in Danish farmland as a result of treatment with pig manure slurry. Environ. Intern. 2003, 28, 587–595. [Google Scholar] [CrossRef]
- Pei, R.; Kim, S.-C.; Carlson, K.; Pruden, A. Effect of River Landscape of the sediment concentrations of antibiotics and corresponding antibiotic resistance genes (ARG). Water Res. 2006, 40, 2427–2435. [Google Scholar] [CrossRef] [PubMed]
- Pruden, A.; Pei, R.; Storteboom, H.; Carlson, K. Antibiotic Resistance Genes as Emerging Contaminants: Studies in the Northern Colorado. Environ. Sci. Tech. 2006, 40, 7445–7450. [Google Scholar] [CrossRef]
- Batt, A.L.; Bruce, I.B.; Aga, D.S. Evaluating the vulnerability of surface waters to antibiotic contamination from varying wastewater treatment plant discharges. Environ. Pollut. 2006, 142, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Chee-Sanford, J.C.; Aminov, R.I.; Krapac, I.J.; Garrigues-Jeanjean, N.; Mackie, R.I. Occurrence and Diversity of Tetracycline Resistance Genes in Lagoons and Groundwater Underlying Two Swine Production Facilities. Appl. Environ. Microbiol. 2001, 67, 1494–1502. [Google Scholar] [CrossRef] [PubMed]
- Sapkota, A.R.; Curriero, F.C.; Gibson, K.E.; Schwab, K.J. Antibiotic-resistant enterococci and fecal indicators in surface water and groundwater impacted by a concentration swine feeding operation. Environ. Health Perspect. 2007, 115, 1040–1045. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Huang, M.; Rumbeiha, W.; Li, H. Determination of amprolium, carbadox, monensin, and tylosin in surface water by liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass. Spectrom. 2007, 21, 1944–1950. [Google Scholar] [CrossRef] [PubMed]
- Witte, W. Medical consequences of antibiotic use in agriculture. Science 1998, 279, 996–997. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.E.; Besser, J.M.; Hedberg, C.W.; Leano, F.T.; Bender, J.B.; Wicklund, J.H.; Johnson, B.P.; Moore, K.A.; Osterholm, M.T. Quinolone-resistant campylobacter jejuni Infections in Minnesota, 1992–1998. N. Engl. J. Med. 1999, 340, 1525–1532. [Google Scholar] [CrossRef] [PubMed]
- Munir, M.; Xagoraraki, I. Levels of Antibiotic Resistance Genes in Manure, Biosolids, and Fertilized Soil. J. Environ. Qual. 2011, 40, 248–255. [Google Scholar] [CrossRef] [PubMed]
- Gerba, C.P.; Pepper, I.L.; Whitehead, L.F., III. A risk assessment of emerging pathogens of concern in the land application of biosolids. Water Sci. Technol. 2002, 46, 225–230. [Google Scholar] [PubMed]
- Brooks, J.P.; Tanner, B.D.; Gerba, C.P.; Haas, C.N.; Pepper, I.L. Estimation of bioaerosol risk of infection to residents adjacent to a land applied biosolids site using an empirically derived transport model. J. Appl. Microbiol. 2005, 98, 397–405. [Google Scholar] [CrossRef]
- Tanner, B.D.; Brooks, J.P.; Gerba, C.P.; Haas, C.N.; Josephson, K.L.; Pepper, I.L. Estimated occupational risk from bioaerosols generated during land application of class B biosolids. J. Environ. Qual. 2008, 37, 2311–2321. [Google Scholar] [CrossRef]
- Gerba, C.P.; Castro-del, C.; Brooks, J.O.; Pepper, I.L. Exposure and risk assessment of salmonella in recycled residuals. Water Sci. Technol. 2008, 57, 1061–1065. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Wong, K.; Xagoraraki, I. Effect of Detection Methods on Risk Estimates of Exposure to Biosolids-Associated Human Enteric Viruses. Risk Anal. 2012, 32, 916–929. [Google Scholar] [CrossRef] [PubMed]
- Brooks, J.P.; McLaughlin, M.R.; Gerba, C.P.; Pepper, I.L. Land application of manure and class B biosolids: An occupational and public quantitative microbial risk assessment. J. Environ. Qual. 2012, 41, 2009–2023. [Google Scholar] [CrossRef] [PubMed]
- Dungan, R.S. Estimation of Infectious Risks in Residential Populations Exposed to Airborne Pathogens During Center Pivot Irrigation of Dairy Wastewaters. Environ. Sci. Technol. 2014, 48, 5033–5042. [Google Scholar] [CrossRef]
- Jahne, M.A.; Rogers, S.W.; Holsen, T.M.; Grimberg, S.J. Quantitative microbial risk assessment of bioaerosols from a manure application site. Aerobiologia 2014. [Google Scholar] [CrossRef]
- Low, S.Y.; Paez-Rubio, T.; Baertsch, C.; Kucharski, M.; Peccia, J. Off-site Exposure to Respirable Aerosols Produced during the Disk-incorporation of Class B Biosolids. J. Environ. Eng. 2007, 133, 987–994. [Google Scholar] [CrossRef]
- Eisenberg, J.N. Application of a Dynamic Model to Assess Microbial Health Risks Associated with Beneficial Uses of Biosolids; Water Environment Research Foundation: Alexandria, VA, USA, 2006; pp. 1–124. [Google Scholar]
- Galada, H.G.; Gurian, P.L.; Joe, A.; Kumar, A.; Olson, B.; Olson, M.; Richter, E.; Teng, J.; Zhang, H.; Xagoraraki, I.; et al. Site Specific Risk Assessment Tool for Land Applied Biosolids; Water Environment Research Foundation: Alexandria, VA, USA, 2012. [Google Scholar]
- Atwill, E.R.; Hou, L.; Karle, B.M.; Harter, T.; Tate, K.W.; Dahlgren, R.A. Transport of cryptosporidium parvum oocysts through vegetated buffer strips and estimated filtration efficiency. Appl. Environ. Microbiol. 2002, 68, 5517–5527. [Google Scholar] [CrossRef] [PubMed]
- Bradford, S.A.; Tadassa, Y.F.; Pachepsky, Y. Transport of Giardia and manure suspensions in saturated porous media. J. Environ. Qual. 2006, 35, 749–757. [Google Scholar] [CrossRef]
- Muirhead, R.W.; Collins, R.P.; Bremer, P.J. Numbers and transported state of Escherichia coli in runoff direct from fresh cowpats under simulated rainfall. J. Appl. Microbiol. 2006, 42, 83–87. [Google Scholar] [CrossRef]
- Chetochine, A.S.; Brusseau, M.L.; Gerba, C.P.; Pepper, I.L. Leaching of phage from class B biosolids and potential transport through soil. Appl. Environ. Microbiol. 2006, 72, 665–671. [Google Scholar] [CrossRef] [PubMed]
- US EPA. The Standards for the Use or Disposal of Sewage Sludge; Final 40 CFR Part 503 Rules; EPA 822/Z-93/001; US EPA: Washington, DC, USA, 1993. [Google Scholar]
- Bibby, K.; Viau, E.; Peccia, J. Viral metagenome analysis to guide human pathogen monitoring in environmental samples. Lett. Appl. Microbiol. 2011, 52, 386–392. [Google Scholar] [CrossRef] [PubMed]
- Michigan Department of Environmental Quality (MDEQ). Administrative Rules, Part 24, Land Application of Biosolids; Michigan Department of Environmental Quality, Surface Water Quality Division: Lansing, MI, USA, 1999. [Google Scholar]
- Jacobs, L.W.; McCreary, D.S. Applying Biosolids to Land in Michigan; Extension Bulletin E-2780; Michigan State University: East Lansing, MI, USA, 2001. [Google Scholar]
- Evanylo, G.K. Agricultural Land Application of Biosolids in Virginia; Publication 452–302; College of Agriculture and Life Sciences, Virginia Polytechnic Institute and State University: Blacksburg, VA, USA, 2009. [Google Scholar]
- Eash, N.S.; McClurkan, J.; Burns, R.T. Best Management Practices (BMP’s) for Land Application of Biosolids; University of Tennessee: Knoxiville, TN, USA, 1997. [Google Scholar]
- Barbarick, K.A.; Ippolito, J.A. Nutrient assessment of a dry land wheat agroecosystem after 12 years of biosolids applications. Agron. J. 2007, 99. [Google Scholar] [CrossRef]
- Arnold, K.; Dunn, J.; Carpenter, J.D. Best Management Practices for Biosolids Land Application; Extension Bulletin WQ426; University of Missouri Extension: Columbia, MO, USA, 1994. [Google Scholar]
- Michigan Commission of Agriculture and Rural Development (MDARD). Generally Accepted Agricultural and Management Practices for Manure Management and Utilization; MDARD: Lansing, MI, USA, 2014. [Google Scholar]
- Harrigan, T.M.; Northcott, W.; Rector, N.; Bolinger, D. Keeping Land-Applied Manure in the Root Zone: Part 1: Sediment and Contaminant Runoff; Extension Bulletin WO-1036; Michigan State University: East Lansing, MI, USA, 2007. [Google Scholar]
- Harrigan, T.M.; Mutch, D.R.; Snapp, S.S. Slurry-Enriched Seeding of Biosuppressive Covers. Appl. Eng. Agric. 2006, 22, 827–834. [Google Scholar] [CrossRef]
- Harrigan, T.M. Manure on Tile-Drained Cropland. In Michigan Dairy Review; Michigan State University: East Lansing, MI, USA, 2005; Volume 10, pp. 10–12. [Google Scholar]
- Harrigan, T.M.; Northcott, W.; Rector, N.; Bolinger, D. Keeping Land-Applied Manure in the Root Zone: Part 2: Tile-drained Land; Extension Bulletin WO-1037; Michigan State University: East Lansing, MI, USA, 2007. [Google Scholar]
- Gagliardi, J.V.; Karns, J.S. Persistence of Escherichia coli O157:H7 in soil and on plant roots. Environ. Microbiol. 2002, 4, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Lim, T.T.; Edwards, D.R.; Workman, S.R.; Larson, B.T.; Dunn, L. Vegetated filter strip removal of cattle manure constituents in runoff. Trans. ASAE 1998, 41, 1375–1381. [Google Scholar] [CrossRef]
- Craun, M.F.; Craun, G.F.; Calderon, R.L.; Beach, M.J. Waterborne Outbreaks in the United States. J. Water Health 2006, 4, 19–30. [Google Scholar]
- Craun, G.F. Waterborne disease outbreaks in the United States of America: Causes and prevention. World Health Stat. Q. 1992, 45, 192–199. [Google Scholar]
- Craun, G.F.; Calderon, R.L.; Nwachuku, N. Causes of waterborne outbreaks reported in the United States. In Drinking Water and Infectious Disease: Establishing the Links; Hunter, P.R., Waite, M., Ronchi, E., Eds.; CRC Press: London, UK, 2003; pp. 1991–1998. [Google Scholar]
- Lee, S.H.; Levy, D.A.; Craun, G.F.; Beach, M.J.; Calderon, R.L. Surveillance for waterborne-disease outbreaks—United States, 1999–2000. Morb. Mortal. Wkly. Rep. Surveill. Summ. 2002, 51, 1–47. [Google Scholar]
- Liang, J.L.; Dziuban, E.J.; Craun, G.C.; Hill, V.; Moore, M.R.; Gelting, R.J.; Calderon, R.L.; Beach, M.J.; Roy, S.L. Surveillance for waterborne disease and outbreaks associated with drinking water and water not intended for drinking-US, 2003–2004. MMWR Surveill. Summ. 2006, 55, 31–65. [Google Scholar] [PubMed]
- US EPA. Prepublication of the Ground Water Rule Federal Register Notice; EPA-HQ-OW-2002-0061; FRL-RIN 2040-AA97; US EPA: Washington, DC, USA, 2006. [Google Scholar]
- Hrudey, S.E.; Hrudey, E.J. Safe Drinking Water: Lessons from Recent Outbreaks in Affluent Nations; IWA-publishing: London, UK, 2004. [Google Scholar]
- Curriero, F.C.; Patz, J.A.; Rose, J.B.; Lele, S. The association between extreme precipitation and waterborne disease outbreaks in the United States, 1948–1994. Am. J. Pub. Health 2001, 91, 1194–1201. [Google Scholar]
- Hrudey, S.E.; Payment, P.; Huck, P.M.; Gillham, R.W.; Hrudey, E.J. A fatal waterborne disease epidemic in Walkerton, Ontario: Comparison with other waterborne outbreaks in the developed world. Water Sci. Technol. 2003, 47, 7–14. [Google Scholar] [PubMed]
- National Research Council (NRC): Committee on Toxicants and Pathogens in Biosolids Applied to Land. Biosolids Applied to Land: Advancing Standards and Practices; The National Academies Press: Washington, DC, USA, 2002; pp. 1–12. [Google Scholar]
- Hoxie, N.J.; Davis, J.P.; Vergeront, J.M.; Nashold, R.D.; Blair, K.A. Cryptosporidiosis—Associated mortality following a massive waterborne outbreak in Milwaukee, Wisconsin. Am. J. Health 1997, 87, 2032–2035. [Google Scholar] [CrossRef]
- Craun, G.F.; Calderon, R.L.; Craun, M.F. Waterborne outbreaks caused by zoonotic pathogens in the USA. In Waterborne Zoonoses; IWA Publishing: London, UK, 2004; pp. 120–135. [Google Scholar]
- Eisenberg, J.N.S.; Moore, K.; Soller, J.A.; Eisenberg, D.; Colford, J.M., Jr. Microbial risk assessment framework for exposure to amended sludge projects. Environ. Health Perspect. 2008, 116, 727–733. [Google Scholar] [CrossRef] [PubMed]
- Lapen, D.R.; Topp, E.; Edwards, M.; Sabourin, L.; Curnoe, W.; Gottschall, N.; Bolton, P.; Rahman, S.; Coelho, B.B.; Payne, M.; et al. Effect of liquid municipal biosolids application method on tile and groundwater quality. J. Environ. Qual. 2008, 37, 925–936. [Google Scholar] [CrossRef] [PubMed]
- Gottschall, N.; Edwards, M.; Topp, E.; Bolton, P.; Payne, M.; Curnoe, W.E.; Coelho, B.B.; Lapen, D.R. Nitrogen, phosphorous, and bacteria tile and groundwater quality following direct injection of dewatered municipal biosolids into soil. J. Environ. Qual. 2009, 38, 1066–1075. [Google Scholar] [CrossRef]
- Venglovsky, J.; Sasakova, N.; Vargova, M.; Pacajova, Z.; Placha, I.; Petrovsky, M.; Harichova, D. Evolution of temperature and chemical parameters during composting of the pig slurry solid fraction amended with natural zeolite. Bioresour. Tech. 2005, 96, 181–189. [Google Scholar] [CrossRef]
- Venglovsky, J.; Martinez, J.; Placha, I. Hygienic and ecological risks connected with utilization of animal manures and biosolids in agriculture. Livest. Sci. 2006, 102, 197–203. [Google Scholar] [CrossRef]
- Thurston-Enriquez, J.; Gilley, J.; Eghball, B. Microbial quality of runoff following land application of cattle manure and swine slurry. J. Water Health 2005, 3, 157–171. [Google Scholar] [PubMed]
- Brooks, J.P.; Maxwell, S.L.; Rensing, C.; Gerba, C.P.; Pepper, I.L. Occurrence of antibiotic-resistant bacteria and endotoxin associated with the land application of biosolids. Can. J. Microbiol. 2007, 53, 616–622. [Google Scholar] [PubMed]
- North East Biosolids and Residuals Association (NEBRA). A National Biosolids Regulation, Quality, End Use, and Disposal Survey; NEBRA: Tamworth, NH, USA, 2007. [Google Scholar]
- U.S. Environmental Protection Agency. Emerging Technologies for Biosolid Management; EPA 832-R-06–005; U.S. Environmental Protection Agency: Washington, DC, USA, 2006. [Google Scholar]
- Pepper, I.L.; Brooks, J.P.; Gerba, C.P. Pathogens in biosolids. Adv. Agron. 2006, 90, 1–41. [Google Scholar]
- Lyberatos, G.; Sklivaniotis, M.; Angelakis, A.N. Management of Biosolids in EUREAU Countries. Fresenius Environ. Bull. 2011, 20, 2489–2495. [Google Scholar]
- Singh, R.P.; Agrawal, M. Potential benefits and risks of land application of sewage sludge. Waste Manag. 2008, 28, 347–358. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; He, Z.L.; Stoffella, P.J. Land application of biosolids in the USA: A review. Appl. Environ. Soil Sci. 2012. [Google Scholar] [CrossRef]
- United Nations Industrial Development Organization (UNIDO); International Fertilizer Development Center (IFDC). Fertilizer Manual, 3rd ed.; Kluwer Academic Press: Norwell, MA, USA, 1998. [Google Scholar]
- Stehouwer, R.C.; Wolf, A.M.; Doty, W.T. Chemical monitoring of sewage sludge in Pennsylvania: Variability and application uncertainty. J. Environ. Qual. 2000, 29, 1686–1695. [Google Scholar] [CrossRef]
- Shepherd, M.A.; Withers, P.J. Phosphorus leaching from liquid digested sewage sludge applied to sandy soils. J. Agric. Sci. 2001, 136, 433–441. [Google Scholar]
- He, Z.L.; Alva, A.K.; Calvert, D.V.; Li, Y.C.; Stoffella, P.J.; Banks, D.J. Nutrient availability and changes in microbial biomass of organic amendments during field incubation. Compost. Sci. Util. 2000, 8, 293–302. [Google Scholar] [CrossRef]
- Hue, N.V. Sewage sludge. In Soil Amendments and Environmental Quality; Lewis Publishers: Boca Raton, FL, USA, 1995; pp. 199–247. [Google Scholar]
- Pepper, I.L.; Brooks, J.P.; Sinclair, R.G.; Gurian, P.L.; Gerba, C.P. Pathogens and indicators in United States Class B biosolids: National and historic distributions. J. Environ. Qual. 2010, 39, 2185–2190. [Google Scholar] [CrossRef] [PubMed]
- US EPA. Cyanobacteria and Cyanotoxins: Information for Drinking Water Systems; Fact Sheet EPA-810F11001; US EPA: Washington, DC, USA, 2012. [Google Scholar]
- Viau, E.; Peccia, J. Survey of Wastewater Indicators and Human Pathogen Genomes in Biosolids Produced by Class A and Class B Stabilization Treatments. Appl. Environ. Microbiol. 2009, 75, 164–174. [Google Scholar] [CrossRef] [PubMed]
- Wong, K.; Onan, B.; Xagoraraki, I. Quantification of enteric viruses, indicators and salmonella in Class B anaerobic digested biosolids by culture and molecular methods. Appl. Environ. Microb. 2010, 76, 6441–6448. [Google Scholar] [CrossRef]
- Guzman, C.; Jofre, J.; Montemayor, M.; Lucena, F. Occurrence and levels of indicators and selected pathogens in different sludges and biosolids. J. Appl. Microbiol. 2007, 103, 2420–2429. [Google Scholar] [CrossRef] [PubMed]
- Animal Health Institute. 2002. Available online: http://www.ahi.org (accessed on 29 June 2014).
- Burkholder, J.; Libra, B.; Weyer, P.; Heathcote, S.; Kolpin, D.; Thorne, P.S.; Wichman, M. Impacts of waste from concentrated animal feeding operations on water quality. Environ. Health Perspect. 2007, 115, 308–312. [Google Scholar] [CrossRef] [PubMed]
- Wilson, S.C. Hogwash! Why Industrial Animal Agriculture Is Not beyond the Scope of Clean Air Act Regulation. Pace Environ. L. Rev. 2007, 24, 439. [Google Scholar]
- US EPA. Protocol for Developing Pathogen TMDLs; EPA 841-R-00–002; United States Environmental Protection Agency: Washington, DC, USA, 2001. [Google Scholar]
- Jongbloed, A.W.; Lenis, N.P. Environmental concerns about animal manure. J. Anim. Sci. 1998, 76, 2641–2648. [Google Scholar] [PubMed]
- Hanselman, T.A.; Graetz, D.A.; Wilkie, A.C. Manure-borne estrogens as potential contaminants: A review. Environ. Sci. Technol. 2003, 37, 5471–5478. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.C.; Williams, R.J.; Matthiessen, P. The total potential steroid hormone contribution of farm animals to freshwaters: The United Kingdom as a case study. Sci. Total Environ. 2006, 362, 166–178. [Google Scholar] [CrossRef] [PubMed]
- Gerba, C.P.; Smith, E.J. Sources of pathogenic microorganisms and their fate during land application of wastes. J. Environ. Qual. 2005, 34, 42–48. [Google Scholar] [PubMed]
- Guan, T.Y.; Holley, R.A. Pathogen survival in swine manure environments and transmission of human enteric illness: A review. J. Environ. Qual. 2003, 32, 383–392. [Google Scholar] [CrossRef] [PubMed]
- Hutchinson, M.L.; Walters, L.D.; Avery, S.M.; Munro, F.; Moore, A. Analyses of livestock production, waste storage, and pathogen levels and prevalences in farm manures. Appl. Environ. Microb. 2005, 71, 1231–1236. [Google Scholar] [CrossRef]
- Coyne, M.S.; Gilfillen, R.A.; Rhodes, R.W.; Blevins, R.L. Soil and fecal coliform trapping by grass filter strips during simulated rain. J. Soil Water Conserv. 1995, 50, 405–408. [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oun, A.; Kumar, A.; Harrigan, T.; Angelakis, A.; Xagoraraki, I. Effects of Biosolids and Manure Application on Microbial Water Quality in Rural Areas in the US. Water 2014, 6, 3701-3723. https://doi.org/10.3390/w6123701
Oun A, Kumar A, Harrigan T, Angelakis A, Xagoraraki I. Effects of Biosolids and Manure Application on Microbial Water Quality in Rural Areas in the US. Water. 2014; 6(12):3701-3723. https://doi.org/10.3390/w6123701
Chicago/Turabian StyleOun, Amira, Arun Kumar, Timothy Harrigan, Andreas Angelakis, and Irene Xagoraraki. 2014. "Effects of Biosolids and Manure Application on Microbial Water Quality in Rural Areas in the US" Water 6, no. 12: 3701-3723. https://doi.org/10.3390/w6123701