Effectiveness of Domestic Wastewater Treatment Using a Bio-Hedge Water Hyacinth Wetland System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pilot Plant Setup
2.2. Planting and Acclimatization
2.3. Operational Procedure
Item | Phase | ||||||
---|---|---|---|---|---|---|---|
I | II | III | IV | V | VI | VII | |
Operation period (d) | 45 | 45 | 45 | 45 | 45 | 45 | 45 |
HRT (h) | 20 | 18 | 16 | 14 | 12 | 10 | 8 |
Q (L/d) | 25 | 28 | 32 | 36 | 42 | 50 | 63 |
OLR | |||||||
(g BOD5/d) | 5.65 ± 0.50 | 6.42 ± 0.76 | 6.85 ± 0.61 | 7.00 ± 0.55 | 9.18 ± 1.10 | 10.78 ± 0.66 | 13.80 ± 0.98 |
(gBOD5/m2/d) 1 | 4.83 ± 0.42 | 5.50 ± 0.65 | 5.86 ± 0.52 | 6.00 ± 0.47 | 7.85 ± 0.93 | 9.21 ± 0.57 | 11.80 ± 0.84 |
(gBOD5/m2/d) 2 | 38.70 ± 3.35 | 44.00 ± 5.21 | 47.00 ± 4.18 | 48.00 ± 3.80 | 62.88 ± 7.50 | 73.80 ± 4.54 | 94.50 ± 6.71 |
(gBOD5/m3/d) 3 | 217 ± 18.80 | 247 ± 29.27 | 264 ± 23.46 | 269 ± 21.33 | 353 ± 42.04 | 414 ± 25.51 | 531 ± 37.70 |
(gBOD5/m3/d) 4 | 269 ± 23.26 | 306 ± 36.24 | 326 ± 29.04 | 333 ± 26.41 | 437 ± 52.05 | 513 ± 31.60 | 657 ± 46.67 |
2.4. Wastewater Sampling and Analysis
2.5. Determination of Botanical Aspects
2.6. Statistical Analysis
3. Results and Discussion
3.1. Process Performance
Parameters | BHWHS (14 h HRT) | SPWHS (21 h HRT) | CWHS (43 h HRT) | |||
---|---|---|---|---|---|---|
Outlet | Reduction at Outlet (%) | Outlet | Reduction at Outlet (%) | Outlet | Reduction at Outlet (%) | |
Temperature (°C) | 27.20 ± 0.45 | - | 25.20 ± 0.84 | - | 24.20 ± 0.83 | - |
pH | 7.25 ± 0.14 | - | 7.42 ± 0.12 | - | 7.20 ± 0.09 | - |
DO(mg/L) | 3.22 ± 0.15 | - | 4.48 ± 0.08 | - | 2.54 ± 0.24 | - |
COD (mg/L) | 85.20 ± 6.76 | 79.08 ± 1.48 | 81.70 ± 4.83 | 80.93 | 88.72 ± 4.80 | 75.53 |
BOD5(mg/L) | 26.40 ± 3.05 | 86.42 ± 1.67 | 20.20 ± 0.84 | 90.90 | 27.00 ± 1.60 | 87.26 |
TSS (mg/L) | 44.40 ± 2.30 | 73.02 ± 2.23 | 45.00 ± 1.58 | 70.31 | 46.80 ± 1.92 | 67.40 |
TN (mg/L) | 11.03 ± 0.60 | 76.61 ± 1.60 | - | - | - | - |
NH3-N (mg/L) | 9.08 ± 0.57 | 72.48 ± 1.84 | 8.14 ± 0.73 | 74.19 | 9.27 ± 0.50 | 69.27 |
TP (mg/L) | 6.31 ± 0.47 | 44.84 ± 2.05 | - | - | - | - |
PO4-P (mg/L) | 4.48 ± 0.32 | 38.69 ± 1.76 | 4.59 ± 0.27 | 41.23 | 4.72 ± 0.24 | 30.80 |
MPN/100mL | 9.00 × 105 | 94.08 ± 1.20 | 1.98 × 105 | 96.45 | 3.54 × 105 | 91.19 |
TVC (cfu/mL) | 1.60 × 105 | 95.80 ± 0.75 | 3.04 × 105 | 98.20 | 2.64 × 105 | 92.35 |
3.2. Role of Plant
Parameter | Initial | After 10 Days |
---|---|---|
Number of leaves | 7.80 ± 1.92 | 10.40 ± 1.36 |
Size of leaves (cm2) | 17.00 ± 3.36 | 20.24 ± 3.41 |
Number of roots | 47.40 ± 10.14 | 92.20 ± 9.23 |
Longest root (cm) | 9.66 ± 1.24 | 12.04 ± 1.31 |
Dry weight (g/plant) | 0.90 ± 0.13 | 1.01 ± 0.11 |
Ash weight (g/plant) | 0.07 ± 0.006 | 0.15 ± 0.005 |
3.3. Role of Biofilms
3.4. Role of Evapotranspiration and Evaporation
HRT (h) | Influent Temperature (°C) | Evapotranspiration (mm/d) | Evaporation (mm/d) |
---|---|---|---|
8 | 25.20 ± 0.84 | 35.48 ± 1.23 | 1.92 ± 0.75 |
10 | 25.60 ± 0.55 | 35.07 ± 0.75 | 2.19 ± 0.57 |
12 | 26.80 ± 0.84 | 41.23 ± 1.40 | 2.05 ± 0.48 |
14 | 27.20 ± 0.40 | 42.20 ± 1.146 | 2.33 ± 0.61 |
16 | 28.40 ± 0.90 | 45.34 ± 0.57 | 3.01 ± 0.78 |
18 | 29.80 ± 1.10 | 49.86 ± 1.23 | 3.30 ± 0.57 |
20 | 30.20 ± 0.84 | 47.67 ± 1.04 | 3.42 ± 0.68 |
3.5. Pre-Estimation of Capital Cost
Item | BHWHS (14 h HRT) | SPWHS (21 h HRT) | CWHS (43 h HRT) |
---|---|---|---|
Volume (m3/m3inflow) | 0.61 | 0.90 | 1.80 |
Area (m2/m3inflow) | 4.06 (×0.15 depth) | 6.21 (×0.145 depth) | 3.83 (×0.47 depth) |
Cost | |||
US$/m3inflow | 78 | 115 | 231 |
US$/kg BOD5 removed | 465 | 565 | 1247 |
4. Conclusions
Acknowledgments
Author Contributions
Appendix
Features | Details | |
---|---|---|
CWHS | SPWHS | |
Shape | Rectangular | Cylindrical |
Area of the pond (m2) | 0.111 (0.37 m × 0.30 m) | 0.140 (0.422 m diameter) |
Height of the pond (m) | 0.5 | 0.17 |
Effective depth (m) | 0.47 | 0.145 |
Void Volume (L) | 52 | 20 |
Density of plants | 22 samplings (198–199 plant/m2) | 27 sampling (192–193 plant/m2) |
Conflicts of Interest
References
- Mulling, B.T.M.; Soeter, A.M.; van der Geest, H.G.; Admiraal, W. Changes in the planktonic microbial community during residence in a surface flow constructed wetland used for tertiary wastewater treatment. Sci. Total Environ. 2014, 466–467, 881–887. [Google Scholar]
- Shen, D.S.; Huang, B.C.; Feng, H.J.; Zhao, B.; Zhao, J.M.; Zhang, H.Y.; Liu, P.-Q. Performance of a novel decentralised sewage treatment reactor. J. Chem. 2013, 2013, 1–6. [Google Scholar]
- Ávila, C.; Salas, J.J.; Martín, I.; Aragón, C.; García, J. Integrated treatment of combined sewer wastewater and stormwater in a hybrid constructed wetland system in southern Spain and its further reuse. Ecol. Eng. 2013, 50, 13–20. [Google Scholar] [CrossRef]
- Mburu, N.; Tebitendwa, S.M.; van Bruggen, J.J.A.; Rousseau, D.P.L.; Lens, P.N.L. Performance comparison and economics analysis of waste stabilization ponds and horizontal subsurface flow constructed wetlands treating domestic wastewater: A case study of the Juja sewage treatment works. Environ. Manag. 2013, 128, 220–225. [Google Scholar] [CrossRef]
- Chang, J.-J.; Wu, S.-Q.; Dai, Y.-R.; Liang, W.; Wu, Z.-B. Treatment performance of integrated vertical-flow constructed wetland plots for domestic wastewater. Ecol. Eng. 2012, 44, 152–159. [Google Scholar] [CrossRef]
- Pan, J.; Zhang, H.; Li, W.; Ke, F. Full-scale experiment on domestic wastewater treatment by combining artificial aeration vertical- and horizontal-flow constructed wetlands system. Water Air Soil Pollut. 2012, 223, 5673–5683. [Google Scholar] [CrossRef]
- Osem, Y.; Chen, Y.; Levinson, D.; Hadar, Y. The effects of plant roots on microbial community structure in aerated wastewater-treatment reactors. Ecol. Eng. 2007, 29, 133–142. [Google Scholar] [CrossRef]
- Abdel-Raouf, N.; Al-Homaidan, A.A.; Ibraheem, I.B.M. Microalgae and wastewater treatment. Saudi J. Biol. Sci. 2012, 19, 257–275. [Google Scholar] [CrossRef] [PubMed]
- Dhote, S.; Dixit, S. Water quality improvement through macrophytes—A review. Environ. Monit. Assess. 2009, 152, 149–153. [Google Scholar] [CrossRef] [PubMed]
- Kumari, M.; Tripathi, B.D. Effect of aeration and mixed culture of Eichhornia crassipes and Salvinia natans on removal of wastewater pollutants. Ecol. Eng. 2014, 62, 48–53. [Google Scholar] [CrossRef]
- Olukanni, D.O.; Kokumo, K.O. Efficiency assessment of a constructed wetland using Eichhornia crassipes for wastewater treatment. Am. J. Eng. Res. 2013, 2, 450–454. [Google Scholar]
- Rezania, S.; Din, M.F.M.; Ponraj, M.; Sairan, F.M.; binti Kamaruddin, S.F. Nutrient uptake and wastewater purification with water hyacinth and its effect on plant growth in batch system. Environ. Treat. Tech. 2013, 1, 81–85. [Google Scholar]
- Truijen, G.; van der Heijden, P.G.M. Constructed Wetland and Aquatic Treatment Systems for Fish Farms in Egypt: Desk Study Report; Centre for Development Innovation, Wageningen UR: Wageningen, Netherlands, 2013. [Google Scholar]
- Sooknah, R. A review of the mechanisms of pollutant removal in water hyacinth systems. Sci. Technol. 2000, 6, 49–57. [Google Scholar]
- Valipour, A.; Raman, V.K.; Motallebi, P. Application of shallow pond water hyacinth system for domestic wastewater treatment in the presence of high total dissolved solids (TDS) and heavy metal salts. Environ. Eng. Manag. 2010, 9, 853–860. [Google Scholar]
- Valipour, A.; Raman, V.K.; Ghole, V.S. Phytoremidation of domestic wastewater using Eichhornia crassipes. Environ. Sci. Eng. 2011, 53, 183–190. [Google Scholar]
- Valipour, A.; Raman, V.K.; Ghole, V.S. A new approach in wetland systems for domestic wastewater treatment using Phragmites sp. Ecol. Eng. 2009, 35, 1797–1803. [Google Scholar] [CrossRef]
- Valipour, A.; Raman, V.K.; Ghole, V.S. Application of patent bio-rack wetland system using phragmites sp. for domestic wastewater treatment in the presence of high total dissolved solids (TDS) and heavy metal salts. Environ. Sci. Eng. 2011, 53, 281–288. [Google Scholar]
- Wang, J.; Zhang, L.; Lu, S.; Jin, X.; Gan, S. Contaminant removal from low concentration polluted river water by the bio-rack wetlands. Environ. Sci. 2012, 24, 1006–1013. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, L.-Y.; Lu, S.-Y.; Gan, S.; Jin, X.-C. Removal of N and P from river water treated by the bio-rack wetland planted with Thalia dealbata and Acorus calamus Linn. J. Jilin Univ. Earth Sci. Ed. 2012, Z1, 408–414. [Google Scholar]
- Marchand, L.; Nsanganwimana, F.; Oustri_ere, N.; Grebenshchykova, Z.; Lizama-Allende, K.; Mench, M. Copper removal from water using a bio-rack system either unplanted or planted with Phragmites australis, Juncus articulates and Phalaris arundinacea. Ecol. Eng. 2014, 64, 291–300. [Google Scholar] [CrossRef]
- Valipour, A.; Hamnabard, N.; Woo, K.S.; Ahn, Y.H. Performance of high-rate constructed phytoremediation process with attached growth for domestic wastewater treatment: Effect of high TDS and Cu. J. Environ. Manage. 2014, 145, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Jamshidi, S.; Akbarzadeh, A.; Woo, K.S.; Valipour, A. Wastewater treatment using integrated anaerobic baffled reactor and Bio-rack wetland planted with Phragmites sp. and Typha sp. Environ. Health. Sci. Eng. 2014, 12, 131–143. [Google Scholar] [CrossRef]
- Valipour, A.; Azizi, S.; Raman, V.K.; Jamshidi, S.; Hamnabard, N. The comparative evaluation on the performance of two phytoremediation systems for domestic wastewater treatment. Environ. Sci. Eng. 2012, in press. [Google Scholar]
- Tangahu, B.V.; Abdullah, S.R.S.; Basri, H.; Idris, M.; Anuar, N.; Mukhlisin, M. A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int. J. Chem. Eng. 2011, 2011, 1–31. [Google Scholar] [CrossRef]
- Heers, M. Constructed Wetlands under Different Geographic Conditions: Evaluation of the Suitability and Criteria for the Choice of Plants Including Productive Species. Master Thesis, Faculty of Life Sciences, Hamburg University of Applied Sciences, Hamburg, Germany, 2006. [Google Scholar]
- American Public Health Association; American Water Works Association; Water Environment Federation. Standard Methods for the Examination of Water and Wastewater, 21st ed.; APHA: Washington, DC, USA, 2005. [Google Scholar]
- Holt, J.G.; Krieg, N.R.; Sneath, P.H.A.; Staley, J.T.; Williams, S.T. Bergey’s Manual of Determinative Bacteriology; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 1994. [Google Scholar]
- Abd-Alla, M.H.; Omar, S.A.; Karanxha, S. The impact of pesticides on arbuscular mycorrhizal and nitrogen-fixing symbioses in legumes. Appl. Soil Ecol. 2000, 14, 191–200. [Google Scholar] [CrossRef]
- Kaseva, M.E. Performance of a sub-surface flow constructed wetland in polishing pre-treated wastewater-a tropical case study. Water Res. 2004, 38, 681–687. [Google Scholar] [CrossRef] [PubMed]
- Kalra, Y.P. Handbook of Reference Methods for Plant Analysis; CRC Press: Boca Raton, FL, USA, 1998. [Google Scholar]
- His, I.; Andème-Onzighi, C.; Morvan, C.; Driouich, A. Microscopic studies on mature flax fibers embedded in LR white: Immunogold localization of cell wall matrix polysaccharides. Histochem. Cytochem. 2001, 49, 1525–1535. [Google Scholar] [CrossRef]
- Chunkao, K.; Nimpee, C.; Duangmal, K. The King’s initiatives using water hyacinth to remove heavy metals and plant nutrients from wastewater through Bueng Makkasan in Bangkok, Thailand. Ecol. Eng. 2012, 39, 40–52. [Google Scholar] [CrossRef]
- Wiessner, A.; Kuschk, P.; Kappelmeyer, U.; Bederski, O.; Müller, R.A.; Kästner, M. Influence of helophytes on redox reactions in their rhizosphere. In Phytoremediation and Rhizoremediation; Mackova, M., Dowling, D.N., Macek, T., Eds.; Springer: Dordrecht, The Netherlands, 2006; Volume 9A, pp. 69–82. [Google Scholar]
- Brix, H. Plants used in constructed wetlands and their functions. In Proceedings of the 1st International Seminar on the Use of Aquatic Macrophytes for Wastewater Treatment in Constructed Wetlands, Lisboa, Portugal, 8–10 May 2003; pp. 81–109.
- Kalubowila, S.; Jayaweera, M.; Nanayakkara, C.M.; Gunatilleke, D.N.D.S. Floating wetlands for management of algal washout from waste stabilization pond effluent: Case study at hikkaduwa waste stabilization ponds. Eng. J. Inst. Eng. Sri Lanka 2014, 46, 63–74. [Google Scholar]
- Kim, Y.; Giokas, D.L.; Chung, P.G.; Lee, D.R. Design of water hyacinth ponds for removing algal particles from waste stabilization ponds. Water Sci. Technol. 2003, 48, 115–123. [Google Scholar] [PubMed]
- Zhang, D.; Gersberg, R.M.; Keat, T.S. Constructed wetlands in China. Ecol. Eng. 2009, 35, 1367–1378. [Google Scholar] [CrossRef]
- Hondulas, J.L. Treatment of Polluted Water using Wetland Plants in a Floating Habitat. U.S. Patent 5,337,516, 16 August 1994. [Google Scholar]
- Kivaisi, A.K. The potential for constructed wetlands for wastewater treatment and reuse in developing countries: A review. Ecol. Eng. 2001, 16, 545–560. [Google Scholar] [CrossRef]
- Chaudhry, Q.; Blom-Zandstra, M.; Gupta, S.; Joner, E.J. Utilising the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment. Environ. Sci. Pollut. Res. 2005, 12, 34–48. [Google Scholar] [CrossRef]
- Sim, C.H. The Use of Constructed Wetlands for Wastewater Treatment; Wetlands International, Malaysia Office: Petaling Jaya, Selangor, Malaysia, 2003. [Google Scholar]
- Dong, Y.; Wiliński, P.R.; Dzakpasu, M.; Scholz, M. Impact of hydraulic loading rate and season on water contaminant reductions within integrated constructed wetlands. Wetlands 2011, 31, 499–509. [Google Scholar] [CrossRef]
- Davis, M.L. Water and Wastewater Engineering: Design Principle and Practice; McGraw-Hill: New York, NY, USA, 2010. [Google Scholar]
- Economic Social Commission for Western Asia (ESCWA). Wastewater Treatment Technologies: A General Review; E/ESCWA/SDPD/6; United Nations: New York, NY, USA, 2003. [Google Scholar]
- Halverson, N.V. Review of Constructed Subsurface Flow vs. Surface Flow Wetlands; WSRC-TR-2004-00509; Westinghouse Savannah River Company, Savannah River Site: Aiken, SC, USA, 2004. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valipour, A.; Raman, V.K.; Ahn, Y.-H. Effectiveness of Domestic Wastewater Treatment Using a Bio-Hedge Water Hyacinth Wetland System. Water 2015, 7, 329-347. https://doi.org/10.3390/w7010329
Valipour A, Raman VK, Ahn Y-H. Effectiveness of Domestic Wastewater Treatment Using a Bio-Hedge Water Hyacinth Wetland System. Water. 2015; 7(1):329-347. https://doi.org/10.3390/w7010329
Chicago/Turabian StyleValipour, Alireza, Venkatraman Kalyan Raman, and Young-Ho Ahn. 2015. "Effectiveness of Domestic Wastewater Treatment Using a Bio-Hedge Water Hyacinth Wetland System" Water 7, no. 1: 329-347. https://doi.org/10.3390/w7010329
APA StyleValipour, A., Raman, V. K., & Ahn, Y. -H. (2015). Effectiveness of Domestic Wastewater Treatment Using a Bio-Hedge Water Hyacinth Wetland System. Water, 7(1), 329-347. https://doi.org/10.3390/w7010329