Land Application-Based Olive Mill Wastewater Μanagement
Abstract
:1. Introduction
2. Materials and Methods
Parameters | Applied OMW |
---|---|
pH | 6.22 (0.28) |
EC | 7.15 (0.25) |
COD | 21,862 (2,92) |
NH4+-N | 17.61 (2.48) |
TKN | 167.8 (29.16) |
Org-N | 150.2 (22.16) |
NO3− | 2.11 (0.04) |
In-P | 21.5 (3.65) |
TP | 63.87 (16.89) |
Total phenols | 1,386 (151.67) |
3. Results
3.1. Storage of Olive Mill Wastewater
3.2. Applied Hydraulic and Nutrient Loads
Year | Hydraulic Load (mm) | Nitrogen (kg/ha) | Phosphorus (kg/ha) |
---|---|---|---|
2003 | 318.18 | 531.36 | 176.59 |
2004 | 1767.97 | 2952.50 | 981.22 |
3.3. Soil Solution Samples
3.4. Soil Samples
3.5. Biomass Production and Nutrient Recovery
Parameter | Year | Trunk | Shoots | Leaves | Total | Removal (%) |
---|---|---|---|---|---|---|
Biomass yield (kg/ha) | 2003 | 1,676 (201) | 993 (138) | 2,500 (358) | 5,170 (694) | - |
2004 | 10,389 (1,078) | 5,389 (475) | 6,993 (930) | 22,771 (2,316) | - | |
N (kg/ha) | 2003 | 19.64 (2.7) | 13.77 (2.5) | 101.20 (12.7) | 134.61 (17.8) | 25.33 |
2004 | 51.89 (7.3) | 29.53 (5.1) | 134.74 (27.6) | 216.16 (38.2) | 7.32 | |
P (kg/ha) | 2003 | 1.51 (0.2) | 0.92 (0.2) | 6.02 (0.6) | 8.45 (0.9) | 4.79 |
2004 | 6.81 (1.4) | 4.80 (0.9) | 10.64 (2.4) | 22.26 (4.5) | 2.27 | |
NUE-N (kg/kg) | 2003 | 85.80 (3.9) | 73.28 (3.3) | 24.58 (0.9) | 38.38 (1.1) | - |
2004 | 185.07 (7.8) | 194.83 (30.7) | 51.39 (4.1) | 102.97 (5.6) | - | |
NUE-P (kg/kg) | 2003 | 1,109.03 (12.2) | 1,131.37 (139.1) | 411.43 (26.1) | 608.00 (17.8) | - |
2004 | 1,980.96 (409.7) | 1,168.09 (119.6) | 680.89 (48.4) | 1,132.40 (119.7) | - | |
WUE (g/kg) | 2003 | - | - | - | 1.62 | - |
2004 | - | - | - | 1.29 | - |
4. Discussion
5. Conclusions
- Land application has a great potential for organic matter and phenol assimilation and they can be effectively used for OMW detoxification;
- OMW can efficiently contribute to the long-term increase in soil organic matter and nutrients (particularly P) which is of great importance for the Mediterranean olive-oil producing countries where soils have relatively low organic matter content and prone to progressive degradation;
- Enhancement of soil fertility resulting from OMW application can sustain eucalyptus trees and provide remarkable biomass yield. This yield, however, may be negatively affected by low inorganic N availability in the soil and/or possible toxicity phenomena in the early growth stages of vegetation;
- The organic matter and phenols concentrations in the soil appear to be affected by their initial contents in the applied OMW. This suggests the application of appropriate strategies before the OMW application in the field to reduce organic matter and phenols loadings;
- Further work is needed to elucidate: (i) the potential effects on physical properties of soil; and (ii) the potential effect of OMW and vegetation on microbial community and activity involved in critical processes in the soil, particularly those included in C and N cycling and phenol degradation.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Nassar, N.N.; Arar, L.A.; Marei, N.N.; Abu Ghanim, M.M.; Dwekat, M.S.; Sawalha, S.H. Treatment of olive mill based wastewater by means of magnetic nanoparticles: Decolourization, dephenolization and COD removal. Environ. Nanotechnol. Monit. Manag. 2014, 1–2, 14–23. [Google Scholar] [CrossRef]
- Kavvadias, V.; Doula, M.K.; Komnitsas, K.; Liakopoulou, N. Disposal of olive oil mill wastes in evaporation ponds: Effects on soil properties. J. Hazard. Mater. 2010, 182, 144–155. [Google Scholar] [CrossRef] [PubMed]
- Sierra, J.; Martí, E.; Garau, M.A.; Cruañas, R. Effects of the agronomic use of olive oil mill wastewater: Field experiment. Sci. Total Environ. 2007, 378, 90–94. [Google Scholar] [CrossRef] [PubMed]
- Saadi, I.; Laor, Y.; Raviv, M.; Medina, S. Land spreading of olive mill wastewater: Effects on soil microbial activity and potential phytotoxicity. Chemosphere 2007, 66, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Casa, R.; D’Annibale, A.; Pieruccetti, F.; Stazi, S.R.; Giovannozzi Sermanni, G.; Lo Cascio, B. Reduction of the phenolic components in olive-mill wastewater by an enzymatic treatment and its impact on durum wheat (Triticum durum Desf.) germinability. Chemosphere 2003, 50, 959–966. [Google Scholar] [CrossRef] [PubMed]
- Cabrera, F.; López, R.; Martinez-Bordiú, A.; Dupuy de Lome, E.; Murillo, J.M. Land treatment of olive oil mill wastewater. Int. Biodeterior. Biodegrad. 1996, 38, 215–225. [Google Scholar] [CrossRef]
- Mekki, A.; Dhouib, A.; Sayadi, S. Changes in microbial and soil properties following amendment with treated and untreated olive mill wastewater. Microbiol. Res. 2006, 161, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Piotrowska, A.; Iamarino, G.; Rao, M.A.; Gianfreda, L. Short-term effects of olive mill waste water (OMW) on chemical and biochemical properties of a semiarid Mediterranean soil. Soil Biol. Biochem. 2006, 38, 600–610. [Google Scholar] [CrossRef]
- Dungait, J.A.J.; Hopkins, D.W.; Gregory, A.S.; Whitmore, A.P. Soil organic matter turnover is governed by accessibility not recalcitrance. Glob. Change Biol. 2012, 18, 1781–1796. [Google Scholar] [CrossRef]
- Von Lützow, M.; Kögel-Knabner, I.; Ludwig, B.; Matzner, E.; Flessa, H.; Ekschmitt, K.; Guggenberger, G.; Marschner, B.; Kalbitz, K. Stabilization mechanisms of organic matter in four temperate soils: Development and application of a conceptual model. J. Plant Nutr. Soil Sci. 2008, 171, 111–124. [Google Scholar] [CrossRef]
- López-Piñeiro, A.; Albarrán, A.; Rato Nunes, J.M.; Peña, D.; Cabrera, D. Long-term impacts of de-oiled two-phase olive mill waste on soil chemical properties, enzyme activities and productivity in an olive grove. Soil Tillage Res. 2011, 114, 175–182. [Google Scholar] [CrossRef]
- Chartzoulakis, K.; Psarras, G.; Moutsopoulou, M.; Stefanoudaki, E. Application of olive mill wastewater to a Cretan olive orchard: Effects on soil properties, plant performance and the environment. Agric. Ecosyst. Environ. 2010, 138, 293–298. [Google Scholar] [CrossRef]
- Bodini, S.F.; Cicalini, A.R.; Santori, F. Rhizosphere dynamics during phytoremediation of olive mill wastewater. Bioresour. Technol. 2011, 102, 4383–4389. [Google Scholar] [CrossRef] [PubMed]
- Gamba, C.; Piovanelli, C.; Papini, R.; Pezzarossa, B.; Ceccarini, L.; Bonari, E. Soil microbial characteristics and mineral nitrogen availability as affected by olive oil waste water applied to cultivated soil. Commun. Soil Sci. Plant Anal. 2005, 36, 937–950. [Google Scholar] [CrossRef]
- Karpouzas, D.G.; Rousidou, C.; Papadopoulou, K.K.; Bekris, F.; Zervakis, G.I.; Singh, B.K.; Ehaliotis, C. Effect of continuous olive mill wastewater applications, in the presence and absence of nitrogen fertilization, on the structure of rhizosphere–soil fungal communities. FEMS Microbiol. Ecol. 2009, 70, 388–401. [Google Scholar] [CrossRef] [PubMed]
- Barbera, A.C.; Maucieri, C.; Cavallaro, V.; Ioppolo, A.; Spagna, G. Effects of spreading olive mill wastewater on soil properties and crops, a review. Agric. Water Manag. 2013, 119, 43–53. [Google Scholar] [CrossRef]
- Mahmoud, M.; Janssen, M.; Haboub, N.; Nassour, A.; Lennartz, B. The impact of olive mill wastewater application on flow and transport properties in soils. Soil Tillage Res. 2010, 107, 36–41. [Google Scholar] [CrossRef]
- Mahmoud, M.; Janssen, M.; Peth, S.; Horn, R.; Lennartz, B. Long-term impact of irrigation with olive mill wastewater on aggregate properties in the top soil. Soil Tillage Res. 2012, 124, 24–31. [Google Scholar] [CrossRef]
- Osanai, Y.; Flittner, A.; Janes, J.; Theobald, P.; Pendall, E.; Newton, P.D.; Hovenden, M. Decomposition and nitrogen transformation rates in a temperate grassland vary among co-occurring plant species. Plant Soil 2012, 350, 365–378. [Google Scholar] [CrossRef]
- Vesterdal, L.; Elberling, B.; Christiansen, J.R.; Callesen, I.; Schmidt, I.K. Soil respiration and rates of soil carbon turnover differ among six common European tree species. Forest Ecol. Manag. 2012, 264, 185–196. [Google Scholar] [CrossRef]
- Haichar, F.E.Z.; Santaella, C.; Heulin, T.; Achouak, W. Root exudates mediated interactions belowground. Soil Biol. Biochem. 2014, 77, 69–80. [Google Scholar] [CrossRef]
- Shi, S.; Richardson, A.E.; O’Callaghan, M.; DeAngelis, K.M.; Jones, E.E.; Stewart, A.; Firestone, M.K.; Condron, L.M. Effects of selected root exudate components on soil bacterial communities. FEMS Microbiol. Ecol. 2011, 77, 600–610. [Google Scholar] [CrossRef] [PubMed]
- Paranychianakis, N.; Angelakis, A.; Leverenz, H.; Tchobanoglous, G. Treatment of wastewater with slow rate systems: A review of treatment processes and plant functions. Crit. Reviews Environ. Sci. Technol. 2006, 36, 187–259. [Google Scholar] [CrossRef]
- Reed, S.C.; Crites, R.W.; Middlebrooks, E.J. Natural Systems for Waste Management and Treatment; McGraw-Hill, Inc.: New York, NY, USA, 1995. [Google Scholar]
- Swennenhuis, J. CROPWAT 8.0.; Water Resources Development and Management Service of FAO: Rome, Italy, 2009. [Google Scholar]
- Apha, A. Standard Methods for the Examination of Water and Wastewater, 19th ed.; American Public Health Association: Washington, DC, USA, 1995. [Google Scholar]
- Garcı́a Garcı́a, I.; Jiménez Peña, P.R.; Bonilla Venceslada, J.L.; Martı́n Martı́n, A.; Martı́n Santos, M.A.; Ramos Gómez, E. Removal of phenol compounds from olive mill wastewater using Phanerochaete chrysosporium, Aspergillus niger, Aspergillus terreus and Geotrichum candidum. Process Biochem. 2000, 35, 751–758. [Google Scholar] [CrossRef]
- Page, A.L. Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties; American Society of Agronomy, Soil Science Society of America: Madison, WI, USA, 1982. [Google Scholar]
- Statistics, I.S. (Ed.) SPSS Version 21.0 for Microsoft Windows Platform; SPSS Inc.: Chicago, IL, USA, 2012.
- Millán, B.; Lucas, R.; Robles, A.; García, T.; Alvarez de Cienfuegos, G.; Gálvez, A. A study on the microbiota from olive-mill wastewater (OMW) disposal lagoons, with emphasis on filamentous fungi and their biodegradative potential. Microbiol. Res. 2000, 155, 143–147. [Google Scholar] [CrossRef] [PubMed]
- Robles, A.; Lucas, R.; de Cienfuegos, G.A.; Gálvez, A. Biomass production and detoxification of wastewaters from the olive oil industry by strains of Penicillium isolated from wastewater disposal ponds. Bioresour. Technol. 2000, 74, 217–221. [Google Scholar] [CrossRef]
- Cecchi, A.; Koskinen, W.; Cheng, H.H.; Haider, K. Sorption-desorption of phenolic acids as affected by soil properties. Biol. Fertil. Soils 2004, 39, 235–242. [Google Scholar] [CrossRef]
- Karpouzas, D.G.; Ntougias, S.; Iskidou, E.; Rousidou, C.; Papadopoulou, K.K.; Zervakis, G.I.; Ehaliotis, C. Olive mill wastewater affects the structure of soil bacterial communities. Appl. Soil Ecol. 2010, 45, 101–111. [Google Scholar] [CrossRef]
- Tsiknia, M.; Tzanakakis, V.; Oikonomidis, D.; Paranychianakis, N.; Nikolaidis, N. Effects of olive mill wastewater on soil carbon and nitrogen cycling. Appl. Microbiol. Biotechnol. 2014, 98, 2739–2749. [Google Scholar] [CrossRef] [PubMed]
- Tzanakakis, V.A.; Paranychianakis, N.V.; Londra, P.A.; Angelakis, A.N. Effluent application to the land: Changes in soil properties and treatment potential. Ecol. Eng. 2011, 37, 1757–1764. [Google Scholar] [CrossRef]
- Rietz, D.N.; Haynes, R.J. Effects of irrigation-induced salinity and sodicity on soil microbial activity. Soil Biol. Biochem. 2003, 35, 845–854. [Google Scholar] [CrossRef]
- Setia, R.; Marschner, P.; Baldock, J.; Chittleborough, D.; Smith, P.; Smith, J. Salinity effects on carbon mineralization in soils of varying texture. Soil Biol. Biochem. 2011, 43, 1908–1916. [Google Scholar] [CrossRef]
- Wichern, J.; Wichern, F.; Joergensen, R.G. Impact of salinity on soil microbial communities and the decomposition of maize in acidic soils. Geoderma 2006, 137, 100–108. [Google Scholar] [CrossRef]
- Mohamed, D.J.; Martiny, J.B.H. Patterns of fungal diversity and composition along a salinity gradient. ISME J. 2011, 5, 379–388. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.B.; Sims, R.E. H.; Horne, D.J. Biomass production and nutrient cycling in Eucalyptus short rotation energy forests in New Zealand. I: Biomass and nutrient accumulation. Bioresour. Technol. 2002, 85, 273–283. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.; Bhati, M. Growth, biomass production, and nutrient composition of eucalyptus seedlings irrigated with municipal effluent in loamy sand soil of Indian desert. J. Plant Nutr. 2003, 26, 2469–2488. [Google Scholar] [CrossRef]
- Shah, F.U.R.; Ahmad, N.; Masood, K.R.; Peralta-Videa, J.R.; Zahid, D.M.; Zubair, M. Growth, biomass production, and nutrient composition of eucalyptus seedlings irrigated with municipal effluent in loamy sand soil of Indian desert. Int. J. Phytoremed. 2010, 12, 343–357. [Google Scholar] [CrossRef]
- Tzanakakis, V.A.; Paranychianakis, N.V.; Angelakis, A.N. Nutrient removal and biomass production in land treatment systems receiving domestic effluent. Ecol. Eng. 2009, 35, 1485–1492. [Google Scholar] [CrossRef]
- Ucisik, A.S.; Trapp, S. Uptake, removal, accumulation, and phytotoxicity of phenol in willow trees (Salix viminalis). Environ. Toxicol. Chem. 2006, 25, 2455–2460. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kapellakis, I.; Tzanakakis, V.A.; Angelakis, A.N. Land Application-Based Olive Mill Wastewater Μanagement. Water 2015, 7, 362-376. https://doi.org/10.3390/w7020362
Kapellakis I, Tzanakakis VA, Angelakis AN. Land Application-Based Olive Mill Wastewater Μanagement. Water. 2015; 7(2):362-376. https://doi.org/10.3390/w7020362
Chicago/Turabian StyleKapellakis, Iosif, Vasileios A. Tzanakakis, and Andreas N. Angelakis. 2015. "Land Application-Based Olive Mill Wastewater Μanagement" Water 7, no. 2: 362-376. https://doi.org/10.3390/w7020362
APA StyleKapellakis, I., Tzanakakis, V. A., & Angelakis, A. N. (2015). Land Application-Based Olive Mill Wastewater Μanagement. Water, 7(2), 362-376. https://doi.org/10.3390/w7020362