Estimating the Rainwater Potential per Household in an Urban Area: Case Study in Central Mexico
Abstract
:1. Introduction
2. Description of the Study Area
2.1. Location
2.2. Hydrology
2.3. Climate
2.4. Population and Drinking Water Service
3. Materials and Methods
3.1. Temporary Distribution of Rainwater
- CVm is the coefficient of variation of the monthly rainfall;
- Sv is the standard deviation of the monthly rainfall (mm);
- Va is the mean of the monthly rainfall (mm).
3.2. Potential of Rainwater Harvesting and Water Demand per Household
- VR is the monthly volume of rainwater harvested per household (m3);
- R is the monthly rainfall depth (mm);
- Hra is the household roof area (m2);
- Rc is the runoff coefficient (without units) = 0.70. This value indicates a 30% loss.
Hra (m2) | n | Wnc (m3/month) |
---|---|---|
45 | 3.7 | 14.067 |
50 | 4.1 | 15.588 |
100 | 4.5 | 17.109 |
200 | 5.1 | 19.390 |
Ecological Device | Consumption in L | Avcmax | Avcmin |
---|---|---|---|
Flush toilet | 4.8 L/flush | 8 flushes/day/person | 6 flushes/day/person |
Washing machine | 70 L/load | 5 loads/week | 4 loads/week |
- Wa is the available water (m3/month);
- VR is the monthly volume of rainwater harvested from roof areas (m3);
- Iv is the initial volume in storage that is equal to the monthly volume necessary for the flush toilet, washing machine and their combined use (m3).
4. Results and Discussion
4.1. Rainfall Temporary Distribution
Annual Average Rainfall (mm) | |
---|---|
Mean | 1.56737 × 10−16 |
Variance | 1 |
Asymmetry | −0.030880758 |
Kurtosis | 0.149400907 |
Standard deviation | 1 |
4.2. Potential of Rainwater Harvesting and Water Consumption per Household
Month | 45 m2 | 50 m2 | 100 m2 | 200 m2 |
---|---|---|---|---|
January | 1.010 | 1.122 | 2.244 | 4.489 |
February | 2.349 | 2.610 | 5.219 | 10.439 |
March | 1.908 | 2.120 | 4.239 | 8.479 |
April | 2.150 | 2.389 | 4.778 | 9.557 |
May | 4.050 | 4.500 | 8.999 | 17.999 |
June | 4.009 | 4.454 | 8.908 | 17.817 |
July | 7.540 | 8.378 | 16.755 | 33.511 |
August | 4.626 | 5.140 | 10.280 | 20.561 |
September | 6.664 | 7.405 | 14.809 | 29.619 |
October | 5.401 | 6.001 | 12.002 | 24.005 |
November | 2.238 | 2.487 | 4.974 | 9.949 |
December | 0.720 | 0.800 | 1.600 | 3.201 |
Water Consumption of Ecological Devices | 45 m2 | 50 m2 | 100 m2 | 200 m2 |
---|---|---|---|---|
Wnc (m3/month) | 14.07 | 15.59 | 17.11 | 19.39 |
Toilet, Avcmax | 4.32 | 4.78 | 5.25 | 5.95 |
Toilet, Avcmin | 3.24 | 3.59 | 3.94 | 4.46 |
Washing machine, Avcmax | 1.23 | 1.37 | 1.50 | 1.70 |
Washing machine, Avcmin | 1.12 | 1.24 | 1.36 | 1.55 |
Combined use, Avcmax | 5.44 | 6.03 | 6.62 | 7.50 |
Combined use, Avcmin | 2.00 | 2.21 | 2.43 | 2.76 |
4.3. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Willuweit, L.; O’Sullivan, J.J. A decision support tool for sustainable planning of urban water systems: Comes across the dynamic urban water simulation model. Water Res. 2013, 47, 7206–7220. [Google Scholar] [CrossRef] [PubMed]
- Belmeziti, A.; Coutard, O.; de Gouvello, B. A new methodology for evaluating potential for potable water savings (PPWS) by using rainwater harvesting at the urban level: The case of the municipality of Colombes (Paris Region). Water 2013, 5, 312–326. [Google Scholar] [CrossRef]
- African Development Bank. Rainwater Harvesting Handbook: Assessment of Best Practices and Experience in Water Harvesting; African Development Bank: Abidjan, Côte d’Ivoire, 2008. [Google Scholar]
- Sapkota, M.; Arora, M.; Malano, H.; Moglia, M.; Sharma, A.; George, B.; Pamminger, F. An overview of hybrid water supply systems in the context of urban water management: Challenges and opportunities. Water 2015, 7, 153–174. [Google Scholar] [CrossRef]
- Liaw, C.H.; Chiang, Y.C. Dimensionless analysis for designing domestic rainwater harvesting systems at the regional level in northern Taiwan. Water 2014, 6, 3913–3933. [Google Scholar] [CrossRef]
- Villarreal, E.L.; Dixon, A. Analysis of a rainwater collection system for domestic water supply in Ringdansen, Norrköping, Sweden. Build. Environ. 2005, 40, 1174–1184. [Google Scholar] [CrossRef]
- Khastagir, A.; Jayasuriya, N. Optimal sizing of rain-water tanks for domestic water conservation. J. Hydrol. 2010, 381, 181–188. [Google Scholar] [CrossRef]
- Imteaz, M.A.; Adeboye, O.B.; Rayburg, S.; Shanableh, A. Rainwater harvesting potential for southwest Nigeria using daily water balance model. Resour. Conserv. Recycl. 2012, 62, 51–55. [Google Scholar] [CrossRef]
- Imteaz, M.A.; Ahsan, A.; Shanableh, A. Reliability analysis of rainwater tanks using daily water balance model: Variations within a large city. Resour. Conserv. Recycl. 2013, 77, 37–43. [Google Scholar] [CrossRef]
- Rahman, A.; Keane, J.; Imteaz, M.A. Rainwater harvesting in greater Sydney: Water savings, reliability and economic benefits. Resour. Conserv. Recycl. 2012, 61, 16–21. [Google Scholar] [CrossRef]
- Su, M.D.; Lin, C.H.; Chang, L.F.; Kang, J.L.; Lin, M.C. A probabilistic approach to rainwater harvesting systems design and evaluation. Resour. Conserv. Recycl. 2009, 53, 393–399. [Google Scholar] [CrossRef]
- Jones, M.P.; Hunt, W.F. Performance of rainwater harvesting systems in the Southeastern United States. Resour. Conser. Recycl. 2010, 54, 623–629. [Google Scholar] [CrossRef]
- United Nations Development Programme (UNDP). Pilot Deployment of Harvesting of Rain-Water, as a Measure of Adaptation to Climate Change; University of Guanajuato: Guanajuato, Mexico, 2013. [Google Scholar]
- Lluvia Para Todos: Por un Mexico Sustenable en Agua. Available online: http://islaurbana.mx/contenido/biblioteca/presentaciones/IslaUrbana-CaptaciondeLluvia.pdf (accessed on 10 March 2015). (In Spanish)
- Water Management in the Metropolitan Area of Mexico City: The Hard Way to Learn. Available online: http://hydrologie.org/ACT/Marseille/works-pdf/wchp5-3.pdf (accessed on 3 April 2015).
- Mazari-Hiriart, M. Water Latin America. Inter-American Association of Sanitary and Environmental Engineering (AIDIS). Available online: http://www.preventionweb.net/english/professional/contacts/v.php?id=3650 (accessed on 23 June 2015).
- Salazar-Adams, A.; Pineda-Pablos, N. Factors that affect the water demand for domestic use in Mexico. Reg. Soc. 2010, 49, 3–16. [Google Scholar]
- Estadísticas del Agua en México. Available online: http://www.conagua.gob.mx/CONAGUA07/Publicaciones/Publicaciones/EAM2014.pdf (accessed on 2 February 2015). (In Spanish).
- Neri-Ramírez, E.; Rubiños-Panta, J.E.; Palacios-Velez, O.L.; Oropeza-Mota, J.L.; Flores-Magdaleno, H.; Ocampo-Fletes, I. Evaluation of the sustainability of the aquifer Cuautitlan-Pachuca through the use of the MESMIS methodology. Chapingo Mag. 2013, 19, 273–285. [Google Scholar]
- Galindo-Castillo, E.; Otazo-Sanchez, E.M.; Gordillo-Martínez, A.J.; Arellano-Islas, S.; González-Ramírez, C.A.; Reyes-Gutierrez, L.R. Impact, technology and environmental toxicology. In Depletion of the Aquifer Cuautitlan-Pachuca: Water Balance 1990–2010; Universidad Autónoma del Estado de Hidalgo: Pachuca, Mexico, 2011. [Google Scholar]
- Amaya-Ventura, M.L. Institutional aspects of water management in Pachuca, Hidalgo. Mex. J. Soc. 2011, 73, 509–537. [Google Scholar]
- Huizar-Álvarez, R. Hydrogeological map of the Río de las Avenidas basin in Pachuca, Mexico. Invest. Geogr. Geol. Inst. Bull. 1993, 27, 95–131. [Google Scholar]
- National Water Comission-Meteorological National Service. Available online: http://smn.cna.gob.mx (accessed on 8 December 2014).
- Consejo Estatal de Población de Hidalgo. Available online: http://www.conapo.gob.mx/es/CONAPO/Hidalgo (accessed on 31 January 2015). (In Spanish)
- Comisión De Agua Y Alcantarillado De Sistemas Intermunicipales. Available online: http://caasim.hidalgo.gob.mx (accessed on 12 November 2014). (In Spanish)
- Aladenola, O.O.; Adeboye, O.B. Assessing the potential for rainwater harvesting. Water Resour. Manag. 2010, 24, 2129–2137. [Google Scholar] [CrossRef]
- Ahammed, F.; Alankarage-Hewa, G.; Argue, J.R. Variability of annual daily maximum rainfall of Dhaka, Bangladesh. Atmos. Res. 2014, 137, 176–182. [Google Scholar] [CrossRef]
- United Nations Environment Programme. Potential for Rainwater Harvesting in Africa: A GIS Overview. Available online: http://www.unep.org/pdf/RWH_in_Africa-final.pdf (accessed on 8 January 2015).
- Secretaria de Desarrollo Agrario, Territorial Y Urbano. Available online: http://www.conavi.gob.mx/images/documentos/plan_nacional_desarrollo_2013/2014/programa_nacional_de_vivienda_2014-2018.pdf (accessed on 2 December 2014). (In Spanish)
- National Institute of Ecology and Climatic Change. Sustainable Household. Habits and Bathroom Technologies. Available online: http://www.inecc.gob.mx (accessed on 8 January 2015).
- Anaya-Garduño, M. Rainwater Harvesting. Solution Fall from Heaven; National Institute of Ecology and Climatic Change: Mexico City, Mexico, 2011. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lizárraga-Mendiola, L.; Vázquez-Rodríguez, G.; Blanco-Piñón, A.; Rangel-Martínez, Y.; González-Sandoval, M. Estimating the Rainwater Potential per Household in an Urban Area: Case Study in Central Mexico. Water 2015, 7, 4622-4637. https://doi.org/10.3390/w7094622
Lizárraga-Mendiola L, Vázquez-Rodríguez G, Blanco-Piñón A, Rangel-Martínez Y, González-Sandoval M. Estimating the Rainwater Potential per Household in an Urban Area: Case Study in Central Mexico. Water. 2015; 7(9):4622-4637. https://doi.org/10.3390/w7094622
Chicago/Turabian StyleLizárraga-Mendiola, Liliana, Gabriela Vázquez-Rodríguez, Alberto Blanco-Piñón, Yamile Rangel-Martínez, and María González-Sandoval. 2015. "Estimating the Rainwater Potential per Household in an Urban Area: Case Study in Central Mexico" Water 7, no. 9: 4622-4637. https://doi.org/10.3390/w7094622
APA StyleLizárraga-Mendiola, L., Vázquez-Rodríguez, G., Blanco-Piñón, A., Rangel-Martínez, Y., & González-Sandoval, M. (2015). Estimating the Rainwater Potential per Household in an Urban Area: Case Study in Central Mexico. Water, 7(9), 4622-4637. https://doi.org/10.3390/w7094622