An Integrated Framework for Assessment of Hybrid Water Supply Systems †
Abstract
:1. Introduction
2. Conceptual Framework
2.1. Urban Water Cycle
2.2. System Boundary
2.3. Variables
3. Framework to Evaluate Hybrid Water Supply Systems
3.1. Physical System Analysis
3.1.1. Understanding the Local Conditions and Current System Capacity
3.1.2. Establishing Specific Objectives
3.1.3. Setting the Evaluation Criteria and Their Weight Elicitation
- Reduction in potable water demand from centralized WSS
- Reduction in wastewater discharges both flow rate and volumes
- Reduction in contaminant loads of wastewater flow
- Reduction in stormwater flows both intensity and volumes
- Reduction contaminant loads from stormwater to receiving water
- Improvement of supply reliability of fit for purpose water
3.1.4. Water Supply Servicing Options
3.1.5. Developing Scenarios
3.1.6. Analysis of Scenarios
3.2. Proposed Ranking Method
3.2.1. Scenario Evaluation
3.2.2. Ranking of Scenarios
3.2.3. Preferred Set of Scenarios and Future Scenario Analysis
4. Case Study Application
Use | Demand (L/Cap/Day) |
---|---|
Toilet | 21.6 |
Bathroom | 62.5 |
Laundry | 26.8 |
Kitchen | 22.7 |
- I
- Scenario 1: This conventional scenario considers only a centralized water supply system scenario where the entire water demand is met by potable water. Please refer to the schematic diagram of the scenario in Figure A1. This scenario represents the conventional water supply system.
- II
- Scenario 2: The centralized system is combined with treated recycled water (Class A water) via 3rd pipe. This scenario represents a typical scenario that illustrates the effects of a decentralized water supply option on the centralized water infrastructure. In addition, this case reflects the existing water supply system in the area. In this scenario (as shown in Figure A2), wastewater is collected at development level and distributed through a dual reticulation system for toilet flushing and garden irrigation after treatment. The remaining water demand is met from potable water supply. The implementation of this alternative system must always consider the use of suitable wastewater technology and its management to prevent any contamination risk from the recycled water. This aspect, however, is not dealt within the scope of this paper.
- I
- Condition 1—Scenarios are run with 10% increase in population
- II
- Condition 2—Scenarios are run with changed climatic condition at a daily time scale. Climate data (Precipitation and Temperature) from 2030–2055 based on the RCP (Representative Concentration Pathway) 8.5 high emission scenarios are chosen for illustration purpose. RCP 8.5 is based on rising radiative forcing pathways leading to 8.5 W/m2 (~1370 ppm CO2 eq) by 2100 [64]. This scenario represents a High RCP characterized by increasing greenhouse gas emissions over time that lead to high greenhouse gas concentration levels [64]. A high RCP scenario was chosen for this analysis to represent the worst-case future scenario. Detail information of calculations related to greenhouse gas concentration is adopted from Meinshausen et al. (2011) [65]. In this scenario, average and maximum temperature increase is predicted to be 10% and 7%, respectively. Maximum precipitation increases by 0.3%, mean precipitation decrease by 1.1% and the number of wet days (precipitation ≥ 1 mm/day) decreases by 4.6%.
5. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix
Measure | EPA Guidelines [68] | Observed at Aurora (12 Month Period from July 2010–June 2011 |
---|---|---|
E. coli | Median over 12 months (<10 organisms/100 mL) | 0 organisms/100 mL |
Biochemical Oxygen Demand (BOD) | <10 mg/L | 1.18 mg/L |
Suspended Solids (SS) | <5 mg/L | 1.86 mg/L |
Turbidity | <5 NTU | 1.06 NTU |
pH | 6–9 | 6.9–7.8 |
Criteria | Sub Criteria | Scenarios | |
---|---|---|---|
1 | 2 | ||
Potable water supply | Volume (mL/year) | 1036 | 860 |
Peak day (mL/day) | 6.11 | 5.05 | |
Sewage flow | Volume (mL/year) | 678 | 511 |
Peak day (mL/day) | 31.74 | 31.52 | |
Stormwater flow | Volume (mL/year) | 2490 | 2490 |
Peak day (mL/day) | 1808 | 1808 | |
Sewage contaminants concentration | TN (mg/L) | 59.1 | 78.1 |
TP (mg/L) | 15.5 | 20.6 | |
TSS (mg/L) | 259.3 | 343.7 | |
BOD (mg/L) | 207.5 | 275.1 | |
COD (mg/L) | 459.2 | 608.7 | |
Stormwater contaminants loads | TN (kg/year) | 4856 | 4856 |
TP (kg/year) | 375 | 375 | |
TSS (kg/year) | 101,349 | 101,349 | |
BOD (kg/year) | 14,951 | 14,951 | |
COD (kg/year) | 69,995 | 69,995 | |
Supply Reliability | Percentage | 100 | 96 |
Contaminants | Untreated Domestic Wastewater [61] | Untreated Domestic Wastewater [62] | Untreated Municipal Wastewater with Minor Contributions of Industrial Wastewater [63] |
---|---|---|---|
Total Nitrogen (TN) (mg/L) | 20–85 | 20–85 | 30–100 |
Total Phosphorous (TP) (mg/L) | 4–15 | 6–20 | 6–25 |
Total Suspended Solids (TSS) (mg/L) | 100–350 | 100–350 | 250–600 |
BOD (mg/L) | 110–400 | 100–300 | 230–560 |
COD (mg/L) | 250–1000 | - | 500–1200 |
Criteria | Sub Criteria | Condition | |||
---|---|---|---|---|---|
Population Increase by 10% | Climate Change (RCP 8.5) | ||||
Scenario 1 | Scenario 2 | Scenario 1 | Scenario 2 | ||
Potable water supply | Volume (mL/year) | 1174 | 978 | 1075 | 893 |
Peak day (mL/day) | 7.02 | 5.86 | 6.11 | 5.05 | |
Sewage flow | Volume (mL/year) | 718 | 542 | 710 | 537 |
Peak day (mL/day) | 32.04 | 31.80 | 31.47 | 31.25 | |
Stormwater flow | Volume (mL/year) | 2579 | 2579 | 2583 | 2583 |
Peak day (mL/day) | 1822 | 1822 | 1794 | 1794 | |
Sewage contaminants concentration | TN (mg/L) | 60.9 | 80.4 | 58.7 | 77.3 |
TP (mg/L) | 16.0 | 21.2 | 15.4 | 20.4 | |
TSS (mg/L) | 266.8 | 353.1 | 257.4 | 340.2 | |
BOD (mg/L) | 213.6 | 282.6 | 206.0 | 272.3 | |
COD (mg/L) | 472.5 | 625.4 | 455.8 | 602.5 | |
Stormwater contaminants loads | TN (kg/year) | 5101 | 5101 | 4832 | 4832 |
TP (kg/year) | 394 | 394 | 373 | 373 | |
TSS (kg/year) | 107,079 | 107,079 | 100,635 | 100,635 | |
BOD (kg/year) | 15,907 | 15,907 | 14,802 | 14,802 | |
COD (kg/year) | 74,578 | 74,578 | 69,297 | 69,297 | |
Supply Reliability | Percentage | 100 | 96 | 100 | 96 |
References
- Sitzenfrei, R.; Rauch, W. Investigating transitions of centralized water infrastructure to decentralized solutions—An integrated approach. Procedia Eng. 2014, 70, 1549–1557. [Google Scholar] [CrossRef]
- Marlow, D.R.; Moglia, M.; Cook, S.; Beale, D.J. Towards sustainable urban water management: A critical reassessment. Water Res. 2013, 47, 7150–7161. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Yigitcanlar, T.; Egodawatta, P.K.; Goonetilleke, A. Sustainable water provision: Challenges, alternative strategies and sources in the era of climate change. In Sustainable Urban and Regional Infrastructure Development: Technologies, Applications and Management; Yigitcanlar, T., Ed.; IGI Global: Hershey, PA, USA, 2010; pp. 17–30. [Google Scholar]
- Sapkota, M.; Arora, M.; Malano, H.; Moglia, M.; Sharma, A.; George, B.; Pamminger, F. An overview of hybrid water supply systems in the context of urban water management: Challenges and opportunities. Water 2015, 7, 153–174. [Google Scholar] [CrossRef]
- Schramm, E.; Felmeden, J. Towards more resilient water infrastructures. In Resilient Cities 2: Cities and Adaptation to Climate Change—Proceedings of the Global Forum 2011; Otto-Zimmermann, K., Ed.; Springer: Berlin, Germany, 2012; Volume 2, pp. 177–186. [Google Scholar]
- Großmann, K.; Bontje, M.; Haase, A.; Mykhnenko, V. Shrinking cities: Notes for the further research agenda. Cities 2013, 35, 221–225. [Google Scholar] [CrossRef]
- Daigger, G.T. Evolving urban water and residuals management paradigms: Water reclamation and reuse, decentralization, and resource recovery. Water Environ. Res. 2009, 81, 809–823. [Google Scholar] [CrossRef] [PubMed]
- Swamee, P.K.; Bhargava, R.; Sharma, A. Noncircular sewer design. J. Environ. Eng. 1987, 113, 824–833. [Google Scholar] [CrossRef]
- Sharma, A.K.; Tjandraatmadja, G.; Cook, S.; Gardner, T. Decentralised systems—Definition and drivers in the current context. Water Sci. Technol. 2013, 67, 2091–2101. [Google Scholar] [CrossRef] [PubMed]
- Skinner, R. Adaptation to climate change in melbourne: Changing the fundamental planning assumptions. In International Adaptation Forum on Climate Change Impacts on Water Supply, Washington, DC, USA, 27 January 2010; p. 24.
- Rozos, E.; Makropoulos, C. Assessing the combined benefits of water recycling technologies by modelling the total urban water cycle. Urban Water 2012, 9, 1–10. [Google Scholar] [CrossRef]
- Gikas, P.; Tchobanoglous, G. The role of satellite and decentralized strategies in water resources management. J. Environ. Manag. 2009, 90, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Bieker, S.; Cornel, P.; Wagner, M. Semicentralised supply and treatment systems: Integrated infrastructure solutions for fast growing urban areas. Water Sci. Technol. 2010, 61, 2905–2913. [Google Scholar] [CrossRef] [PubMed]
- Weber, B.; Cornel, P.; Wagner, M. Semi-centralised supply and treatment systems for (fast growing) urban areas. Water Sci. Technol. 2007, 55, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Coombes, P.J.; Kuczera, G. Integrated urban water cycle management: Moving towards system understanding. In Proceedings of the 2nd National Conference on Water Sensitive Urban Design, Brisbane, Australia, 2–4 September 2002.
- Butler, D.; Makropoulos, C. Water Related Infrastructure for Sustainable Communities; Environment Agency: Bristol, UK, 2006; p. 125. [Google Scholar]
- Makropoulos, C.K.; Butler, D. Distributed water infrastructure for sustainable communities. Water Resour. Manag. 2010, 24, 2795–2816. [Google Scholar] [CrossRef]
- Sharma, A.; Cook, S.; Tjandraatmadja, G.; Gregory, A. Impediments and constraints in the uptake of water sensitive urban design measures in greenfield and infill developments. Water Sci. Technol. 2012, 65, 340–352. [Google Scholar] [CrossRef] [PubMed]
- Tjandraatmadja, G.; Burn, S.; McLaughlin, M.; Biswas, T. Rethinking urban water systems: Revisiting concepts in urban wastewater collection and treatment to ensure infrastructure sustainability. Water Sci. Technol. Water Supply 2005, 5, 145–154. [Google Scholar]
- Marleni, N.; Gray, S.; Sharma, A.; Burn, S.; Muttil, N. Impact of water source management practices in residential areas on sewer networks—A review. Water Sci. Technol. 2012, 65, 624–642. [Google Scholar] [CrossRef] [PubMed]
- Sapkota, M.; Arora, M.; Malano, H.; George, B.; Nawarathna, B.; Sharma, A.; Moglia, M. Development of a Framework to Evaluate the Hybrid Water Supply Systems. In Proceedings of the 20th International Congress on Modelling and Simulation, Adelaide, Australia, 1–6 December 2013; pp. 2387–2393.
- Poustie, M.S.; Deletic, A.; Brown, R.R.; Wong, T.; de Haana, F.J.; Skinner, R. Sustainable urban water futures in developing countries: The centralised, decentralised or hybrid dilemma. Urban Water 2015, 12. [Google Scholar] [CrossRef]
- Cook, S.; Tjandraatmadja, G.; Marleni, N. Impact of Source Management Strategies On quality and Loads in Residential Wastewater—Scenario Analysis; CSIRO Water for a Healthy Country National Research Flagship: Melbourne, Australia, 2010. [Google Scholar]
- Abrishamchi, A.; Ebrahimian, A.; Tajrishi, M.; Mariño, M.A. Case study: Application of multicriteria decision making to urban water supply. J. Water Resour. Plan. Manag. 2005, 131, 326–335. [Google Scholar] [CrossRef]
- Libralato, G.; Ghirardini, A.V.; Avezzù, F. To centralise or to decentralise: An overview of the most recent trends in wastewater treatment management. J. Environ. Manag. 2012, 94, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Hering, J.G.; Waite, T.D.; Luthy, R.G.; Drewes, J.E.; Sedlak, D.L. A changing framework for urban water systems. Environ. Sci. Technol. 2013, 47, 10721–10726. [Google Scholar] [CrossRef] [PubMed]
- Coombes, P.J.; Cullen, A.; Bethke, K. Towards sustainable cities—Integrated water cycle management (iwcm) at the existing principal activity centre at doncaster hill. In Proceedings of the 34th World Congress of the International Association for Hydro-Environment Research and Engineering: 33rd Hydrology and Water Resources Symposium and 10th Conference on Hydraulics in Water Engineering, Brisbane, Australia, 26 June–1 July 2011; Valentine, E.M., Apelt, C.J., Ball, J., Chanson, H., Cox, R., Ettema, R., Kuczera, G., Lambert, M., Melville, B.W., Sargison, J.E., Eds.; Engineers Australia: Barton, Australia, 2011; pp. 2631–2638. [Google Scholar]
- Graddon, A.R.; Kuczera, G.; Hardy, M.J. A flexible modelling environment for integrated urban water harvesting and re-use. Water Sci. Technol. 2011, 63, 2268–2278. [Google Scholar] [CrossRef] [PubMed]
- Graddon, A.R.; Kuczera, G.; Hardy, M.J. The modelling of urban water supply, harvesting and recycling systems using network linear programs. In Proceedings of the H2009: 32nd Hydrology and Water Resources Symposium, Barton, Australia, 30 November–3 December 2009; Engineers Australia: Newcastle, Australia, 2009; pp. 865–876. [Google Scholar]
- Sharma, A.K.; Cook, S.; Chong, M.N. Monitoring and validation of decentralised water and wastewater systems for increased uptake. Water Sci. Technol. 2013, 67, 2576–2581. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Grant, A.L.; Grant, T.; Pamminger, F.; Opray, L. Environmental and economic assessment of urban water services for a greenfield development. Environ. Eng. Sci. 2009, 26, 921–934. [Google Scholar] [CrossRef]
- Cook, S.; Sharma, A.; Chong, M. Performance analysis of a communal residential rainwater system for potable supply: A case study in brisbane, australia. Water Resour. Manag. 2013, 27, 4865–4876. [Google Scholar] [CrossRef]
- Last, E.M. City Water Balance a New Scoping Tool for Integrated Urban Water Management Options. Ph.D. Thesis, The University of Birmingham, Birmingham, UK, 2010. [Google Scholar]
- Mousseau, V. Eliciting information concerning the relative importance of criteria. In Advances in Multicriteria Analysis; Pardalos, P.M., Siskos, Y., Zopounidis, C., Eds.; Springer-Verlag: Berlin, Germany, 1995; pp. 17–43. [Google Scholar]
- Mitchell, V.G.; Mein, R.G.; McMahon, T.A. Modelling the urban water cycle. Environ. Model. Softw. 2001, 16, 615–629. [Google Scholar] [CrossRef]
- Maheepala, S.; Leighton, B.; Mirza, F.; Rahilly, M.; Rahman, J. Hydro planner—A linked modelling system for water quantity and quality simulation of total water cycle. In OzWater 07 Conference; Australian Water Services Association: Sydney, Australia, 2007. [Google Scholar]
- Stewardson, M.J.; Clark, R.D.S.; Cresswell, D.J.; McMahon, T.A. Modelling to assist integrated management of urban water resources. In Proceedings of the Second International Symposium on Urban Stormwater Management 1995: Integrated Management of Urban Environments, Melbourne, Australia, 11–13 July 1995; Institution of Engineers, Australia: Barton, Australia, 1995; pp. 107–112. [Google Scholar]
- Hardy, M.J.; Kuczera, G.; Coombes, P.J. Integrated urban water cycle management: The urbancycle model. Water Sci. Technol. 2005, 52, 1–9. [Google Scholar] [PubMed]
- Mitchell, V.G.; Diaper, C.; Gray, S.R.; Rahilly, M.; Technolgy, C.M.A.I. Uvq: Modelling the movement of water and contaminants through the total urban water cycle. In Proceedings of the 28th International Hydrology and Water Resources Symposium, Wollongong, Australia, 10–13 November 2003; p. 8.
- Clarke, L.; Lurz, J.; Wise, M.; Edmonds, J.; Kim, S.; Smith, S.; Pitcher, H. Model Documentation for the Minicam Climate Change Science Program Stabilization Scenarios: Ccsp Product 2.1 A; Pacific Northwest National Laboratory: Richland, WA, USA, 2007. [Google Scholar]
- Snowdon, D.; Hardy, M.J.; Rahman, J.M. Urban developer: A model architecture for manageably building urban water cycle models spanning multiple scales. In Proceedings of the 19th International Congress on Modelling and Simulation, Perth, Australia, 12–16 December 2011.
- Mitchell, V.G.; Diaper, C. Simulating the urban water and contaminant cycle. Environ. Model. Softw. 2006, 21, 129–134. [Google Scholar] [CrossRef]
- Lai, E.; Lundie, S.; Ashbolt, N.J. Review of multi-criteria decision aid for integrated sustainability assessment of urban water systems. Urban Water J. 2008, 5, 315–327. [Google Scholar] [CrossRef]
- Hajkowicz, S.; Collins, K. A review of multiple criteria analysis for water resource planning and management. Water Resour. Manag. 2007, 21, 1553–1566. [Google Scholar] [CrossRef]
- Mutikanga, H.E.; Sharma, S.K.; Vairavamoorthy, K. Multi-criteria decision analysis: A strategic planning tool for water loss management. Water Resour. Manag. 2011, 25, 3947–3969. [Google Scholar] [CrossRef]
- Moglia, M.; Kinsman, D.; Maheepala, S. Multi-Criteria Decision Assessment Methods to Identify Total Water Cycle Management Strategies; Urban Water Security Research Alliance: Queensland, Australia, 2012; Techincal Report No. 101. [Google Scholar]
- Moglia, M.; Sharma, A.K.; Maheepala, S. Multi-criteria decision assessments using subjective logic: Methodology and the case of urban water strategies. J. Hydrol. 2012, 452–453, 180–189. [Google Scholar] [CrossRef]
- Pomerol, J.-C.; Barba-Romero, S. Multicriterion Decision in Management: Principles and Practice; Springer Science & Business Media: New York, NY, USA, 2000; Volume 25. [Google Scholar]
- Brans, J.P.; Mareschal, B. The promcalc & gaia decision support system for multicriteria decision aid. Decis. Support Syst. 1994, 12, 297–310. [Google Scholar]
- Brans, J.P.; Mareschal, B. Promethee methods. In Multiple Criteria Decision Analysis: State of the Art Surveys; Figueira, J., Greco, S., Eds.; Springer Science + Business Media, Inc.: New York, NY, USA, 2005; pp. 163–195. [Google Scholar]
- Kodikara, P.N.; Perera, B.J.C.; Kularathna, M.D.U.P. Stakeholder preference elicitation and modelling in multi-criteria decision analysis—A case study on urban water supply. Eur. J. Oper. Res. 2010, 206, 209–220. [Google Scholar] [CrossRef]
- De Smet, Y.; Lidouh, K. An introduction to multicriteria decision aid: The promethee and gaia methods. In Business Intelligence; Aufaure, M.-A., Zimányi, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 150–176. [Google Scholar]
- Hayez, Q.; de Smet, Y.; Bonney, J. D-Sight: A new decision making software to address multi-criteria problems. Int. J. Decis. Support Syst. Technol. 2012, 4, 1–23. [Google Scholar] [CrossRef]
- Wong, T.H.F.; Brown, R.R. The water sensitive city: Principles for practice. Water Sci. Technol. 2009, 60, 673–682. [Google Scholar] [CrossRef] [PubMed]
- Xue, X.; Schoen, M.E.; Ma, X.C.; Hawkins, T.R.; Ashbolt, N.J.; Cashdollar, J.; Garland, J. Critical insights for a sustainability framework to address integrated community water services: Technical metrics and approaches. Water Res. 2015, 77, 155–169. [Google Scholar] [CrossRef] [PubMed]
- VicUrban. Aurora Development Part 2; Victoria Growth Area Authority: Whittlesea, Australia, 2007; p. 87. [Google Scholar]
- Department of Transport, Planning and Local Infrastructure. Victoria in Future 2014 (VIF 2014); Department of Transport, Planning and Local Infrastructure: Melbourne, Australia, 2014. [Google Scholar]
- Sharma, A.; Grant, A.; Gray, S.; Mitchell, G. Sustainability of Alternative Water and Sewerage Servicing Options—YVW; Kalkallo and Box Hill Pac Developments; CSIRO Urban Water: Highett, Australia, 2005. [Google Scholar]
- ABS. Environmental Issues: Water Use and Conservation; Australian Bureau of Statistics: Canberra, Australia, 2010. [Google Scholar]
- Sharma, A.; Tjandraatmadja, G.; Grant, A.; Grant, T.; Pamminger, F. Sustainable sewerage servicing options for peri-urban areas with failing septic systems. Water Sci. Technol. 2010, 62, 570–585. [Google Scholar] [CrossRef] [PubMed]
- Metcalf and Eddy Inc.; Tchobanoglous, G.; Burton, F.L.; Stensel, H.D. Wastewater Engineering: Treatment and Reuse, 4th ed.; McGraw-Hill: New York, NY, USA, 2003. [Google Scholar]
- FAO. Wastewater Treatment and Use in Agriculture; Food and Agriculture Organization of the United Nations: Rome, Italy, 1992. [Google Scholar]
- Henze, M.; Comeau, Y. Wastewater characterization. In Biological Wastewater Treatment: Principles, Modelling and Design; Henze, M., van Loosdrecht, M.C.M., Ekama, G.A., Brdjanov, D., Eds.; IWA Publishing: London, UK, 2008; pp. 33–52. [Google Scholar]
- Riahi, K.; Grübler, A.; Nakicenovic, N. Scenarios of long-term socio-economic and environmental development under climate stabilization. Technol. Forecast. Soc. Chang. 2007, 74, 887–935. [Google Scholar] [CrossRef]
- Meinshausen, M.; Smith, S.; Calvin, J.K.; Daniel, J.S.; Kainuma, M.L.T.; Lamarque, J.F.; Matsumoto, K.; Montzka, S.A.; Raper, S.C.B.; Riahi, K.; et al. The rcp greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Chang. 2011, 109, 213–241. [Google Scholar] [CrossRef]
- Mein, R.G.; Apostolidis, N. A simple hydrologic model for sewer inflow/infiltration. In Proceedings of the International Symposium on Urban Stormwater Management, Sydney, Australia, 4–7 February 1992; Barton, A., Ed.; Engineers Australia: Sydney, Australia; pp. 204–208.
- Mankad, A.; Tapsuwan, S. Review of socio-economic drivers of community acceptance and adoption of decentralised water systems. J. Environ. Manag. 2011, 92, 380–391. [Google Scholar] [CrossRef] [PubMed]
- EPA Victoria. Guidelines for Environmental Management: Use of Reclaimed Water; EPA Victoria: Victoria, Australia, 2003. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sapkota, M.; Arora, M.; Malano, H.; Moglia, M.; Sharma, A.; George, B.; Pamminger, F. An Integrated Framework for Assessment of Hybrid Water Supply Systems. Water 2016, 8, 4. https://doi.org/10.3390/w8010004
Sapkota M, Arora M, Malano H, Moglia M, Sharma A, George B, Pamminger F. An Integrated Framework for Assessment of Hybrid Water Supply Systems. Water. 2016; 8(1):4. https://doi.org/10.3390/w8010004
Chicago/Turabian StyleSapkota, Mukta, Meenakshi Arora, Hector Malano, Magnus Moglia, Ashok Sharma, Biju George, and Francis Pamminger. 2016. "An Integrated Framework for Assessment of Hybrid Water Supply Systems" Water 8, no. 1: 4. https://doi.org/10.3390/w8010004
APA StyleSapkota, M., Arora, M., Malano, H., Moglia, M., Sharma, A., George, B., & Pamminger, F. (2016). An Integrated Framework for Assessment of Hybrid Water Supply Systems. Water, 8(1), 4. https://doi.org/10.3390/w8010004