Morphometric Controls on Glacier Mass Balance of the Puruogangri Ice Field, Central Tibetan Plateau
Abstract
:1. Introduction
2. Geographical Setting of the Study Area
3. Data and Methods
3.1. Glacier Mass Balance Estimation
3.1.1. TanDEM-X DEM and Glacier Mass Balance
3.1.2. Uncertainty Analysis
3.2. Glacier Boundary Delimitation
3.3. Extraction of Topographic Parameters
3.4. Ice Flow Velocity Determination
3.5. Statistical Analysis
3.6. Field Works
4. Results
4.1. Glacier Elevation Changes
4.2. Glacier Surface Velocity
4.3. Spatial Variability of Glacier Mass Balances
4.4. The Effect of Morphometric Factors on Glacier Mass Changes
5. Discussion
5.1. Morphometric Effects on Glacier Mass Balances in the TP and Its Surroundings
5.2. Climatic Influences on Glacier Mass Balance of the PIF
5.3. Surge-Type Glacier
6. Conclusions and Future Work
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Bolch, T.; Kulkarni, A.; Kääb, A.; Huggel, C.; Paul, F.; Cogley, J.; Frey, H.; Kargel, J.; Fujita, K.; Scheel, M. The state and fate of Himalayan glaciers. Science 2012, 336, 310–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, T.; Thompson, L.; Yang, W.; Yu, W.; Gao, Y.; Guo, X.; Yang, X.; Duan, K.; Zhao, H.; Xu, B. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. Chang. 2012, 2, 663–667. [Google Scholar] [CrossRef]
- Oerlemans, J. Extracting a climate signal from 169 glacier records. Science 2005, 308, 675–677. [Google Scholar] [CrossRef] [PubMed]
- Gardelle, J.; Berthier, E.; Arnaud, Y. Slight mass gain of Karakoram glaciers in the early twenty-first century. Nat. Geosci. 2012, 5, 322–325. [Google Scholar] [CrossRef]
- Kapnick, S.; Delworth, T.; Ashfaq, M.; Malyshev, S.; Milly, P. Snowfall less sensitive to warming in Karakoram than in Himalayas due to a unique seasonal cycle. Nat. Geosci. 2014, 7, 834–840. [Google Scholar] [CrossRef]
- Maussion, F.; Scherer, D.; Mölg, T.; Collier, E.; Curio, J.; Finkelnburg, R. Precipitation seasonality and variability over the Tibetan Plateau as resolved by the High Asia Reanalysis. J. Clim. 2014, 27, 1910–1927. [Google Scholar] [CrossRef]
- Curio, J.; Maussion, F.; Scherer, D. A 12-year high-resolution climatology of atmospheric water transport over the Tibetan Plateau. Earth Syst. Dyn. 2015, 6, 109–124. [Google Scholar] [CrossRef]
- Bolch, T.; Buchroithner, M.; Pieczonka, T.; Kunert, A. Planimetric and volumetric glacier changes in the Khumbu Himal, Nepal, since 1962 using Corona, Landsat TM and ASTER data. J. Glaciol. 2008, 54, 592–600. [Google Scholar] [CrossRef]
- Nuimura, T.; Fujita, K.; Yamaguchi, S.; Sharma, R. Elevation changes of glaciers revealed by multitemporal digital elevation models calibrated by GPS survey in the Khumbu region, Nepal Himalaya, 1992–2008. J. Glaciol. 2012, 58, 648–656. [Google Scholar] [CrossRef]
- Hagg, W.; Braun, L.; Uvarov, V.; Makarevich, K. A comparison of three methods of mass-balance determination in the Tuyuksu glacier region, Tien Shan, Central Asia. J. Glaciol. 2004, 50, 505–510. [Google Scholar] [CrossRef]
- Farinotti, D.; Longuevergne, L.; Moholdt, G.; Duethmann, D.; Mölg, T.; Bolch, T.; Vorogushyn, S.; Güntner, A. Substantial glacier mass loss in the Tien Shan over the past 50 years. Nat. Geosci. 2015, 8, 716–722. [Google Scholar] [CrossRef]
- Neckel, N.; Braun, A.; Kropáček, J.; Hochschild, V. Recent mass balance of the Purogangri Ice Cap, central Tibetan Plateau, by means of differential X-band SAR interferometry. Cryosphere 2013, 7, 1623–1633. [Google Scholar] [CrossRef]
- Liu, L.; Jiang, L.; Sun, Y.; Yi, C.; Wang, H.; Hsu, H. Glacier elevation changes (2012–2016) of the Puruogangri ice field on the Tibetan Plateau derived from bi-temporal TanDEM-X InSAR data. Int. J. Remote Sens. 2016, 37, 5687–5707. [Google Scholar] [CrossRef]
- Huintjes, E.; Neckel, N.; Hochschild, V.; Schneider, C. Surface energy and mass balance at the Purogangri Ice Cap, central Tibetan Plateau, 2001–2011. J. Glaciol. 2015, 61, 1048–1060. [Google Scholar] [CrossRef]
- Li, B.; Yu, Z.; Liang, Z.; Acharya, K. Hydrologic response of a high altitude glacierized basin in the central Tibetan Plateau. Glob. Planet. Chang. 2014, 118, 69–84. [Google Scholar] [CrossRef]
- Fujita, K.; Sakai, A. Modelling runoff from a Himalayan debris-covered glacier. Hydrol. Earth Syst. Sci. 2014, 11, 2441–2482. [Google Scholar] [CrossRef]
- Gao, H.; He, X.; Ye, B.; Pu, J. Modeling the runoff and glacier mass balance in a small watershed on the central Tibetan Plateau, China, from 1955 to 2008. Hydrol. Process. 2012, 26, 1593–1603. [Google Scholar] [CrossRef]
- Zhao, L.; Tian, L.; Zwinger, T.; Ding, R.; Zong, J.; Ye, Q.; Moore, J.C. Numerical simulations of Gurenhekou Glacier on the Tibetan Plateau. J. Glaciol. 2014, 60, 71–82. [Google Scholar] [CrossRef]
- Berthier, E.; Arnaud, Y.; Kumar, R.; Ahmad, S.; Wagnon, P.; Chevallier, P. Remote sensing estimates of glacier mass balances in the Himachal Pradesh (Western Himalaya, India). Remote Sens. Environ. 2007, 108, 327–338. [Google Scholar] [CrossRef] [Green Version]
- Phan, V.; Lindenbergh, R.; Menenti, M. Orientation dependent glacial changes at the Tibetan Plateau derived from 2003–2009 ICESat laser altimetry. Cryosphere 2014, 8, 2425–2463. [Google Scholar] [CrossRef] [Green Version]
- Racoviteanu, A.; Arnaud, Y.; Williams, M.; Manley, W. Spatial patterns in glacier characteristics and area changes from 1962 to 2006 in the Kanchenjunga-Sikkim area, eastern Himalaya. Cryosphere 2014, 9, 505–523. [Google Scholar] [CrossRef] [Green Version]
- Bolch, T.; Pieczonka, T.; Benn, D. Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery. Cryosphere 2011, 5, 349–358. [Google Scholar] [CrossRef] [Green Version]
- Gardelle, J.; Berthier, E.; Arnaud, Y.; Kääb, A. Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999–2011. Cryosphere 2013, 7, 1263–1286. [Google Scholar] [CrossRef] [Green Version]
- Scherler, D.; Bookhagen, B.; Strecker, M. Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nat. Geosci. 2011, 4, 156–159. [Google Scholar] [CrossRef]
- Lejeune, Y.; Bertrand, J.; Wagnon, P.; Morin, S. A physically based model of the year-round surface energy and mass balance of debris-covered glaciers. J. Glaciol. 2013, 59, 327–344. [Google Scholar] [CrossRef]
- Li, X.; Yi, C.; Chen, F.; Yao, T.; Li, X. Formation of proglacial dunes in front of the Puruogangri Icefield in the central Qinghai-Tibet Plateau: Implications for reconstructing paleoenvironmental changes since the Lateglacial. Quat. Int. 2006, 154, 122–127. [Google Scholar] [CrossRef]
- Yi, C.; Li, X.; Qu, J. Quaternary glaciation of Puruogangri—The largest modern ice field in Tibet. Quat. Int. 2002, 97–98, 111–121. [Google Scholar] [CrossRef]
- Spiess, M.; Maussion, F.; Möller, M.; Scherer, D.; Schneider, C. MODIS Derived Equilibrium Line Altitude Estimates for Purogangri Ice Cap, Tibetan Plateau, and their Relation to Climatic Predictors (2001–2012). Geogr. Ann. Ser. A Phys. Geogr. 2015, 97, 599–614. [Google Scholar] [CrossRef]
- Pu, J.; Yao, T.; Wang, N.; Ding, L.; Zhang, Q. Puruogangri ice field and its variations since the Little Ice Age of the Northern Tibetan Plateau. J. Glaciol. Geocryol. 2002, 24, 87–92. (In Chinese) [Google Scholar]
- Thompson, L.; Yao, T.; Davis, M.; Mosley-Thompson, E.; Mashiotta, T.; Lin, P.; Mikhalenko, V.; Zagorodnov, V. Holocene climate variability archived in the Puruogangri ice cap on the central Tibetan Plateau. Ann. Glaciol. 2006, 43, 61–69. [Google Scholar] [CrossRef]
- Lei, Y.; Yao, T.; Yi, C.; Wang, W.; Sheng, Y.; Li, J.; Joswiak, D. Glacier mass loss induced the rapid growth of Linggo Co on the central Tibetan Plateau. J. Glaciol. 2012, 58, 177–184. [Google Scholar] [CrossRef]
- Rabus, B.; Eineder, M.; Roth, A.; Bamler, R. The shuttle radar topography mission-a new class of digital elevation models acquired by spaceborne radar. ISPRS J. Photogramm. Remote Sens. 2003, 57, 241–262. [Google Scholar] [CrossRef]
- Paul, F.; Bolch, T.; Kääb, A.; Nagler, T.; Nuth, C.; Scharrer, K.; Shepherd, A.; Strozzi, T.; Ticconi, F.; Bhambri, R. The glaciers climate change initiative: Methods for creating glacier area, elevation change and velocity products. Remote Sens. Environ. 2013, 162, 408–426. [Google Scholar] [CrossRef]
- Huss, M. Density assumptions for converting geodetic glacier volume change to mass change. Cryosphere 2013, 7, 877–887. [Google Scholar] [CrossRef]
- Koblet, T.; Gärtner-Roer, I.; Zemp, M.; Jansson, P.; Thee, P.; Haeberli, W.; Holmlund, P. Reanalysis of multi-temporal aerial images of Storglaciären, Sweden (1959–99)-Part 1: Determination of length, area, and volume changes. Cryosphere 2010, 4, 333–343. [Google Scholar] [CrossRef] [Green Version]
- Zemp, M.; Jansson, P.; Holmlund, P.; Gärtner-Roer, I.; Koblet, T.; Thee, P.; Haeberli, W. Reanalysis of multi-temporal aerial images of Storglaciären, Sweden (1959–99)-Part 2: Comparison of glaciological and volumetric mass balances. Cryosphere 2010, 4, 345–357. [Google Scholar] [CrossRef] [Green Version]
- Raup, B.; Kääb, A.; Kargel, J.; Bishop, M.; Hamilton, G.; Lee, E.; Paul, F.; Rau, F.; Soltesz, D.; Khalsa, S. Remote sensing and GIS technology in the Global Land Ice Measurements from Space (GLIMS) project. Comput. Geosci. 2007, 33, 104–125. [Google Scholar] [CrossRef]
- Silverio, W.; Jaquet, J. Glacial cover mapping (1987–1996) of the Cordillera Blanca (Peru) using satellite imagery. Remote Sens. Environ. 2005, 95, 342–350. [Google Scholar] [CrossRef]
- Liu, L.; Jiang, L.; Wang, H. Extraction of glacier surface elevation and velocity in high Asia with ERS-1/2 Tandem SAR data: Application to Puruogangri ice field, Tibetan Plateau. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 4442–4445.
- Yasuda, T.; Furuya, M. Short-term glacier velocity changes at West Kunlun Shan, Northwest Tibet, detected by synthetic aperture radar data. Remote Sens. Environ. 2013, 128, 87–106. [Google Scholar] [CrossRef]
- Strozzi, T.; Kouraev, A.; Wiesmann, A.; Wegmüller, U.; Sharov, A.; Werner, C. Estimation of Arctic glacier motion with satellite L-band SAR data. Remote Sens. Environ. 2008, 112, 636–645. [Google Scholar] [CrossRef]
- Quincey, D.J.; Copland, L.; Mayer, C.; Bishop, M.; Luckman, A.; Belo, M. Ice velocity and climate variations for Baltoro Glacier, Pakistan. J. Glaciol. 2009, 55, 1061–1071. [Google Scholar] [CrossRef]
- Zhou, J.; Li, Z.; Li, X.; Liu, S.; Chen, Q.; Xie, C.; Tian, B. Movement estimate of the Dongkemadi Glacier on the Qinghai-Tibetan Plateau using L-band and C-band spaceborne SAR data. Int. J. Remote Sens. 2011, 32, 6911–6928. [Google Scholar] [CrossRef]
- Kääb, A.; Nuth, C.; Treichler, D.; Berthier, E. Brief Communication: Contending estimates of 2003–2008 glacier mass balance over the Pamir-Karakoram-Himalaya. Cryosphere 2015, 9, 557–564. [Google Scholar] [CrossRef]
- Wu, K.; Liu, S.; Guo, W.; Wei, J.; Xu, J.; Bao, W.; Yao, X. Glacier change in the western Nyainqentanglha Range, Tibetan Plateau using historical maps and Landsat imagery: 1970–2014. J. Mt. Sci. 2016, 13, 1358–1374. [Google Scholar] [CrossRef]
- Meier, M.F.; Post, A. What are glacier surges? Can. J. Earth Sci. 1969, 6, 807–817. [Google Scholar] [CrossRef]
- Copland, L.; Sylvestre, T.; Bishop, M.; Shroder, J.; Seong, Y.; Owen, L.; Bush, A.; Kamp, U. Expanded and recently increased glacier surging in the Karakoram. Arct. Antarct. Alp. Res. 2011, 43, 503–516. [Google Scholar] [CrossRef]
- Quincey, D.J.; Braun, M.; Glasser, N.F.; Bishop, M.P.; Hewitt, K.; Luckman, A. Karakoram glacier surge dynamics. Geophys. Res. Lett. 2011, 38, L18504. [Google Scholar] [CrossRef]
- Quincey, D.J.; Glasser, N.F.; Cook, S.J.; Luckman, A. Heterogeneity in Karakoram glacier surges. J. Geophys. Res. Earth Surf. 2015, 120, 1288–1300. [Google Scholar] [CrossRef]
- Shangguan, D.; Liu, S.; Ding, Y.; Guo, W.; Xu, J.; Jiang, Z. Characterizing the May 2015 Karayaylak Glacier surge in the eastern Pamir Plateau using remote sensing. J. Glaciol. 2016, 62, 1–10. [Google Scholar] [CrossRef]
- Guo, W.; Liu, S.; Wei, J.; Bao, W. The 2008/09 surge of central Yulinchuan glacier, northern Tibetan Plateau, as monitored by remote sensing. Ann. Glaciol. 2013, 54, 299–310. [Google Scholar] [CrossRef]
WGMS ID | Mass Balance (m·w.e.·Year−1) | Size (km2) | Altitude (m) | Slope (Degree) | Curvature | Aspect (Degree) | Velocity (m·Year−1) |
---|---|---|---|---|---|---|---|
5Z611A0002 | 0.017 | 3.51 | 5849.5 | 17.7 | 0.004 | 210.0 | 1.36 |
5Z611A0003 | 0.000 | 6.60 | 5750.3 | 10.8 | 0.008 | 234.9 | 3.40 |
5Z611A0005 | 0.009 | 5.13 | 5878.3 | 16.2 | 0.034 | 217.5 | 2.06 |
5Z611A0006 | 0.004 | 19.86 | 5833.4 | 8.7 | 0.010 | 216.9 | 3.83 |
5Z611A0008 | −0.021 | 46.28 | 5758.6 | 5.5 | 0.000 | 214.2 | 2.72 |
5Z611A0009 | −0.006 | 11.14 | 5810.4 | 9.8 | 0.005 | 237.6 | 2.90 |
5Z611A0010 | 0.003 | 50.18 | 5770.5 | 8.5 | 0.001 | 207.0 | 2.40 |
5Z611A0013 | 0.005 | 3.99 | 5824.2 | 17.0 | −0.040 | 225.0 | 1.00 |
5Z611A0014 | 0.018 | 1.34 | 5990.6 | 13.7 | 0.026 | 167.8 | 1.21 |
5Z611A0015 | 0.006 | 14.85 | 5831.0 | 9.1 | 0.008 | 189.6 | 2.55 |
5Z213E0001 | −0.018 | 6.08 | 5668.3 | 12.3 | −0.011 | 152.7 | 0.99 |
5Z213E0004 | −0.019 | 1.86 | 5622.3 | 10.7 | −0.008 | 199.3 | 2.03 |
5Z213E0008 | −0.017 | 1.79 | 5645.0 | 14.1 | −0.038 | 104.1 | 0.98 |
5Z213E0009 | −0.035 | 7.86 | 5627.2 | 10.7 | −0.023 | 130.5 | 1.78 |
5Z213E0010 | −0.008 | 32.27 | 5787.3 | 12.4 | −0.004 | 140.3 | 2.23 |
5Z513B0005 | 0.002 | 8.33 | 5841.6 | 15.5 | −0.032 | 134.1 | 1.42 |
5Z513B0007 | 0.019 | 14.34 | 5917.1 | 19.9 | 0.016 | 119.7 | 1.85 |
5Z513B0009 | 0.013 | 4.38 | 5830.6 | 21.0 | 0.056 | 80.7 | 0.86 |
5Z513B0010 | 0.008 | 13.31 | 5773.8 | 12.2 | 0.003 | 126.2 | 4.50 |
5Z513B0011 | −0.025 | 1.19 | 5552.6 | 15.1 | −0.029 | 266.7 | 0.74 |
5Z513B0013 | −0.012 | 2.34 | 5685.5 | 17.1 | −0.051 | 231.1 | 0.70 |
5Z513B0014 | −0.004 | 28.85 | 5791.0 | 15.7 | −0.009 | 173.2 | 1.90 |
5Z513B0015 | −0.006 | 1.62 | 5780.1 | 25.0 | 0.069 | 87.5 | 0.93 |
5Z513B0016 | −0.012 | 4.31 | 5720.5 | 14.0 | −0.006 | 109.7 | 1.45 |
5Z513B0022 | −0.013 | 6.17 | 5665.9 | 13.5 | −0.019 | 210.0 | 0.76 |
5Z513B0020 | −0.002 | 5.23 | 5767.3 | 18.5 | −0.001 | 98.3 | 1.17 |
5Z513B0018 | −0.007 | 53.58 | 5775.6 | 9.4 | −0.007 | 145.9 | 1.68 |
5Z513C0001 | −0.011 | 10.42 | 5657.3 | 10.6 | −0.008 | 194.4 | 1.37 |
5Z513C0002 | 0.004 | 3.45 | 5701.3 | 17.4 | 0.034 | 266.8 | 0.52 |
5Z513B0024 | −0.003 | 32.34 | 5689.2 | 16.1 | −0.011 | 165.8 | 1.42 |
Variable | Parameter Estimate | Standard Error | t | p-Value |
---|---|---|---|---|
Size | 0.002 | 0.010 | 0.174 | 0.863 |
Altitude | 0.010 | 0.002 | 6.538 | <0.001 |
Slope | 0.118 | 0.049 | 2.393 | 0.025 |
Curvature | 1.661 | 5.743 | 0.289 | 0.775 |
Aspect | 0.005 | 0.003 | 1.822 | 0.082 |
Velocity | 0.215 | 0.181 | 1.191 | 0.246 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Jiang, L.; Sun, Y.; Wang, H.; Yi, C.; Hsu, H. Morphometric Controls on Glacier Mass Balance of the Puruogangri Ice Field, Central Tibetan Plateau. Water 2016, 8, 496. https://doi.org/10.3390/w8110496
Liu L, Jiang L, Sun Y, Wang H, Yi C, Hsu H. Morphometric Controls on Glacier Mass Balance of the Puruogangri Ice Field, Central Tibetan Plateau. Water. 2016; 8(11):496. https://doi.org/10.3390/w8110496
Chicago/Turabian StyleLiu, Lin, Liming Jiang, Yafei Sun, Hansheng Wang, Chaolu Yi, and Houtse Hsu. 2016. "Morphometric Controls on Glacier Mass Balance of the Puruogangri Ice Field, Central Tibetan Plateau" Water 8, no. 11: 496. https://doi.org/10.3390/w8110496
APA StyleLiu, L., Jiang, L., Sun, Y., Wang, H., Yi, C., & Hsu, H. (2016). Morphometric Controls on Glacier Mass Balance of the Puruogangri Ice Field, Central Tibetan Plateau. Water, 8(11), 496. https://doi.org/10.3390/w8110496