1. Introduction
Increasing stress on water supplies worldwide, coupled with population growth, has led many water managers to seek alternative water sources to meet demand. Desalination of seawater or brackish water is one such alternative water source, but it has important environmental, economic, and performance tradeoffs [
1]. For example, saline sources are abundant and drought-resistant. However, removing dissolved solids (salts) from saline water requires significantly more energy than is required for treating conventional surface water or groundwater sources (see [
2,
3] and the sources cited therein for representative comparisons). There are other concerns, such as additional cost over conventional water supplies [
4,
5] and environmental impacts of concentrated salt and waste chemical disposal [
6,
7,
8]. Despite these concerns, worldwide desalination capacity continues to rise [
9].
While desalination capacity is projected to increase globally [
10], energy-water planners and policymakers lack straightforward decision support tools that can help estimate the energy requirements of new facilities with minimal site-specific data, for engaging community members in desalination conversations [
11]. Full engineering designs typically include energy requirements as part of the plant specifications, yet those plans are usually completed late in the planning process. However, for many stakeholders, it would be valuable to understand the energy implications of different design considerations early in the process, before critical siting decisions and design specifications have been made. Unfortunately, based on personal conversations with policymakers, few such openly accessible easy-to-use tools exist for estimating energy requirements based on specific operational parameters. Commercial membrane manufacturers offer desalination process modeling software, such as ROSA (Reverse Osmosis System Analysis) by Dow [
12] and IMSDesign (Integrated Membrane Solutions Design) by Hydranautics [
13], but these software packages require detailed inputs regarding operations and water chemistry, which can be a knowledge barrier in early stage decision-making. Furthermore, because the performance depends on a wide range of operational parameters, the actual energy requirements are a non-obvious result of many factors. This manuscript seeks to fill that knowledge gap by use of a meta-regression analysis to create a predictive model of desalination’s energy requirements based on a range of relevant factors with minimal data inputs. It is the intent that this methodology would be useful for planners and decision-makers with publicly available data.
In the context of increasing desalination capacity and concern over energy consumption, we surveyed peer-reviewed desalination literature and the DesalData database by Global Water Intelligence [
14] and conducted statistical analyses to determine which operational factors most influence the specific energy consumption (SEC)—that is, total desalination plant energy consumption per unit volume of product water, measured in equivalent kWh/m
—of desalination processes. While published data are limited in terms of scope and specificity, we assembled a database from various sources to reflect as many factors as plausible that we anticipate influence SEC of desalination processes. Scientific- and statistically-based results pertaining to SEC and water cost are presented here in a policy-making context to better aid decision-making regarding future desalination plant installations.
2. Background
Historically, desalination has been confined to areas with scarce water resources and abundant energy supplies needed to drive the desalting processes, such as the Middle East, or other isolated island communities. As the risk and reality of water scarcity faced other areas over time, desalination capacity increased worldwide in locations outside the Middle East as well, including the United States, Spain, Japan, and many others [
9]. Worldwide desalination capacity has reportedly increased to a total of nearly 87 million cubic meters per day (m
/day) as of 2015 [
15].
Two primary technologies drive desalination operations: thermal and membrane processes. Thermal-based desalination uses energy in the form of heat (or removed heat in the case of freeze desalination) to separate water from dissolved solids. Common examples of thermal-based desalination systems include multi-stage flash (MSF), multiple effect distillation (MED), and multi-effect boiling (MEB) operations. Membrane-based desalination uses electricity to power high-pressure pumps feeding semi-permeable membranes to filter out dissolved solids. Of the membrane-based desalination technologies commercially available, reverse osmosis (RO) is the most common with applications in both seawater reverse osmosis (SWRO) and brackish water reverse osmosis (BWRO). In both thermal- and membrane-based desalination operations, the end result is a product water stream containing fewer dissolved solids and a concentrate waste stream containing more dissolved solids. With the development of membrane technologies, desalination operations gradually shifted from being primarily thermal-based to more membrane-based, with 56% of the worldwide capacity and 96% of the United States capacity using membrane technologies by 2006 [
9]. Many innovative desalination technologies have emerged in recent years, including forward osmosis, humidification–dehumidification, membrane distillation, and others [
16,
17]; however, RO remains “the benchmark for comparison for any new desalination technology” [
18].
A substantial amount of the shift toward membrane-based desalination has been motivated by lower energy requirements, as shown by the equivalent SEC in
Table 1. Here, we make the distinction between thermal energy and electrical energy. While both are measured in kilowatt-hours (kWh), the two quantities are not directly comparable. To generate electrical energy (kWh
) in a typical thermal power plant, energy undergoes transformations from chemical to thermal to mechanical to electrical energy. Since each energy transformation incurs some efficiency loss, the direct comparison of thermal energy (kWh
) with electrical energy (kWh
) is inappropriate. For this analysis, we have converted reported thermal energy values to equivalent electrical energy values using the relationship suggested by Semiat based on an assumed 45% efficiency of a modern power plant [
16], such that equivalent electric kWh/m
= kWh
/m
+ 0.45 kWh
/m
. Note that this relationship is only appropriate for thermoelectric power plants. For the remainder of this analysis, we will report SEC in equivalent electric kWh/m
; note, however, that many peer-reviewed literature sources are vague on the distinction between thermal energy and electrical energy use.
As shown in
Table 1, reported SEC varies widely in practice across desalination technologies. For a given desalination technology, SEC can span a broad range due to different operational and water quality factors. For SWRO, as for many other desalination technologies, the SEC of commercial systems has decreased over time, dropping from an average of 20 kWh/m
in 1980 to 1.62 kWh/m
in 2005 [
9]. While advances have been made in decreasing SEC, especially for RO operations, separating dissolved solids from water requires a minimum amount of energy, which is process-independent [
29] but varies with system recovery [
30,
31,
32]. The theoretical minimum SEC has been calculated based on thermodynamic constraints at approximately 1.06 kWh/m
for desalinating raw (incoming) water with total dissolved solids (TDS) concentration of 35,000 mg/L at 50% recovery (defined as the ratio of product water flow to raw water flow) [
16,
18,
33]. As the recovery of a seawater desalination system approaches zero, the minimum theoretical energy approaches 0.7 kWh/m
[
34]. For BWRO systems, the theoretical minimum specific energy consumption has been calculated at approximately 0.2 kWh/m
; however, Avlonitis et al. state that a theoretical minimum SEC for BWRO might not exist due to the lack of dominance of concentration polarization across the membrane that is present in SWRO systems [
35]. Mathematically, the ideal SEC for desalination increases as temperature increases, yet the opposite is true in actual RO systems as salt and water fluxes increase at higher temperatures [
35], with diffusion through the membranes increasing at an estimated rate of 3% to 5% per
C [
36] up to varying limits of commercial membranes [
37], thereby reducing SEC.
Many operational and water quality factors can influence SEC for a given desalination technology [
38,
39,
40]. For example, RO facilities with larger treatment capacity often observe economies of scale in terms of SEC due to efficiency gains associated with larger pumps [
16]. Similarly, use of energy recovery technologies can substantially reduce the SEC of membrane-based desalination; however, the capital costs of such systems can be prohibitively expensive for small-scale SWRO (<100 m
/day capacity) [
41]. In SWRO applications, Pelton turbines (typical energy savings of 35% to 42% compared to a baseline without energy recovery equipment) for energy recovery are generally applicable for ≤5000 m
/day capacity, while isobaric energy recovery devices (typical energy savings of 55% to 60%) are suited for >5000 m
/day [
42]. Approaches to reduce SEC include use of high permeability membranes [
43], use of energy recovery devices, intermediate chemical demineralization, use of renewable energy, and optimal process configuration [
44]. With advanced materials, increased water-solute selectivity has become more important than additional increases in water permeability, since increasing permeability negligibly decreases SEC [
45,
46,
47]. Since reported energy consumption typically represents 19% to 44% of the cost of desalination [
16,
23,
25,
48,
49,
50], understanding which factors most significantly affect the SEC of desalination processes becomes important for the future environmental and social sustainability of desalination as an alternative water source.
3. Methodology
To determine the significance level of factors affecting SEC for desalination processes, we completed multiple linear regression analyses of SEC and cost as a function of various factors. The general form of the model is shown in Equation (
1):
where
y represents the dependent variable (in this case, SEC or cost), each
(for
i = 1 …
n) is an independent explanatory variable, and each
(for
i = 0 …
n) is a best-fit coefficient such that the error term
ϵ is minimized. The use of multiple linear regression statistical techniques assumes certain characteristics about the model and the data on which it is based. In particular, statistical hypothesis testing is recommended to examine significance of individual coefficients, overall model significance, equality of two or more coefficients, satisfaction of restrictions for regression coefficients, stability of the model over time, and the functional form of the model [
51].
We used the open-source statistical program R to create our multiple linear regression models. Based on the hypothesis tests for multiple linear regression given in Gujarati [
51], we critically examined our model results to check for each of the following criteria:
Significance of individual coefficients
Overall model significance
No (or little) multicollinearity
No (or little) heteroscedasticity
No (or little) autocorrelation.
The presence of multicollinearity, often quantified with a variance inflation factor, indicates a linear relationship between two or more explanatory variables
, which are assumed to be independent. For example, the product water flow rate,
, and the raw water flow rate,
, are related to each other via the recovery,
R, as the ratio between the two explanatory variables. Consequently, some multicollinearity is expected between
and
. Some suggest, however, that since “sometimes we have no choice over the data we have available for empirical analysis,” a certain degree of multicollinearity is not detrimental to a regression model if the model’s objective is predictive only [
51]. Heteroscedasticity and autocorrelation are indications of non-constant variance and serial correlation (trending) among the model residual values (i.e., the difference between observed and predicted values), respectively. Significant heteroscedasticity and autocorrelation would indicate an inappropriate statistical model formulation (e.g., linear model versus non-linear model).
We completed the statistical analyses of SEC and cost using two distinct datasets: (1) data collected from published literature representing small-scale (product water flow: 0.7 to 220 m
/day) desalination systems; and (2) data reported in the DesalData database representing municipal-scale (product water flow: 2500 to 368,000 m
/day) systems. The small-scale database contained SEC data of desalination processes reported in peer-reviewed literature published since 2000 [
16,
19,
20,
21,
22,
27,
35,
36,
41,
42,
52,
53,
54,
55,
56,
57,
58,
59,
60,
61], including information for the raw water flow rate
(m
/day), product water flow rate
(m
/day), recovery
R (unitless), year
, raw water TDS
(mg/L), product water TDS
(mg/L), operating (feed) pressure
P (bar), energy recovery
(binary variable, unitless), and temperature
T (
C). These desalination factors, summarized in
Table 2, represented the explanatory variables in our multiple linear regression model for small-scale desalination facilities, referred to here as the small-scale model. Recovery was included as “inverse recovery” in the models as
since SEC is proportional to this value [
40,
47]. The use of energy recovery systems was included as a binary variable with 0 indicating no energy recovery technology and 1 indicating the use of at least one energy recovery device, since the amount of energy savings is not often reported and different energy recovery technologies save similar percentages of operational energy [
42]. For literature data where no raw water TDS values were reported, we assumed values of 35,000 mg/L for seawater and 10,000 mg/L for brackish water. Note that while many literature sources include some data on SEC of thermal desalination processes, our database (
n = 45) included only RO membrane-based technologies due to the statistical requirement for complete datasets when employing multiple linear regression techniques.
The municipal-scale database contained SEC data of desalination processes reported in the DesalData database from Global Water Intelligence [
14], reflecting actual operations at desalination facilities worldwide. Although the DesalData database is extensive in its reporting with information on over 18,000 facilities, several parameters are either not requested by Global Water Intelligence or not reported by the desalination plants, with 74 facilities reporting SEC. Consequently, our municipal-scale database (
n = 36) contained SEC data including year
, raw water TDS
(mg/L), and product water TDS
(mg/L) only, to maintain complete datasets.
Based on literature, energy consumption is a non-negligible determinant of the cost of desalinated water, representing as much as 44% of costs [
16,
23,
48,
49,
50]. To quantify the statistical significance of SEC related to desalination economics, we completed an economic statistical analysis considering both product water cost
($/m
) and engineering-procurement-construction (EPC) price
($) based on data from the DesalData database. As a small data sample (
n = 16 for
;
n = 28 for
), these cost data give a limited yet robust view of desalinated water economics.
To complement the multiple linear regression models of the small-scale and municipal-scale databases, we performed relative importance analyses of the coefficient estimates based on the technique presented by Tomidandel and LeBreton [
62]. Relative importance analysis partitions the variance explained by a multiple linear regression model among the predictors (i.e.,
’s) such that the relative importance weights of the coefficients sum to the model’s
R value. Since “standardized regression weights do not appropriately partition variance when predictors are correlated,” relative importance analysis is one approach to coping with multicollinearity challenges [
62]. We completed the relative importance analyses of factors in our small-scale and municipal-scale databases using a customized version of R code available from Tomidandel and LeBreton [
63].
Because desalination is an energy-intensive process, its operation often causes the emission of greenhouse gases (GHGs). These GHG emissions associated with electricity consumption vary in time and space, as different electricity grids rely on different fuels with different associated GHG emissions. To quantify the GHG emissions from SEC at modeled desalination operations, we used empirical SEC and GHG data for U.S. desalination facilities to geographically represent the air emissions from major desalination plants. The resulting GHG analysis represents a first-order quantification of GHG emissions from electricity consumption for desalination; higher order impacts, such as GHG emissions associated with chemical consumption, infrastructure materials, or other operations, are excluded in this estimate.
5. Policy and Sustainability Implications
High electricity requirements for RO operations often translate into high associated GHG emissions. Since many U.S. electricity and GHG policy decisions are state-based, we quantified the GHG emissions (as carbon dioxide equivalent, CO
e) associated with selected desalination facilities nationwide, as shown in
Figure 3. Since different locations utilize a different mix of electricity fuels (with different associated GHG emissions), electricity consumption and GHG emissions produced in one facility are not necessarily reflective of another site. For example, electricity generated in California produces fewer GHG emissions on average than electricity generated in Texas. Consequently, SWRO operations in California (with higher SEC) have lower associated GHG emissions per unit of desalinated water than BWRO operations in Texas (with lower SEC).
In response to severe and on-going drought, cities in California have renewed interest in seawater desalination as a water source; however, energy requirements, environmental impacts, and costs continue to be cited as criticisms. Some view desalination as a risky option when plants are constructed before strong demand exists, yet others view desalination plant construction as a long-term infrastructure investment [
66]. Based on our statistical analysis of SEC and associated GHG emissions, desalination in California might lead to fewer GHG emissions than similarly sized operations elsewhere due to the lower CO
e emissions from California-generated electricity.
The GHG emissions associated with water-related energy reveal the importance of drought management and water conservation as an approach to reducing CO
e emissions under various state and federal emission policies. Using our municipal-scale multiple linear regression model, we estimated SEC for the recently-opened Carlsbad Desalination Project in southern California to be
= 3.5 ± 0.23 kWh/m
, with the statistical uncertainty estimate successfully predicting the reported (likely conservative) SEC value of 3.6 kWh/m
[
67]. Based on the model by Stokes and Horvath [
68] of electricity and associated GHG emissions for water in southern California, replacing the current imported water supply in southern California with desalinated water from the Carlsbad facility would increase electricity consumption by a factor of 2.1. Consequently, a target reduction in municipal water use of over 53% is necessary to avoid increasing GHG emissions in response to substituting desalination for the baseline water supplies in southern California. This target reduction percentage might notably decrease over time given the observed trend of increasing cost (both in terms of economics and energy) of marginal water withdrawal and decreasing cost of desalination and reuse [
50]. Integrating desalination operations with renewable electricity generation [
1,
69,
70,
71] is another option to increase the sustainability of desalination.
6. Model Limitations
The small-scale and municipal-scale models demonstrate strong statistical goodness-of-fit measures (e.g.,
R, model F-statistic) for predicting SEC in RO desalination; however, these models are empirical and depend on the underlying data. As such, the trends are reflective of the data range under consideration. Caution should be exercised in extrapolating SEC results. SEC has generally decreased over time [
9], but the theoretical minimum of 1.06 kWh/m
(for
35,000 mg/L and
0.50) constrains the lower bounds [
16,
18,
33]. Actual RO operations are not reversible thermodynamic processes such that SEC is larger than the theoretical minimum [
18]. Extrapolating input data, such as initial year of operations or raw water TDS, outside the bound of the empirical data, shown in
Table 2, can lead to misleading and incorrect values of SEC.
Although we have compiled a thorough database with information on many desalination factors affecting SEC for both small- and municipal-scale operations, our database is not exhaustive of all the factors that affect energy use in desalination processes. Comparing the small-scale and municipal-scale models, fewer explanatory variables are necessary to predict SEC at the municipal-scale; however, a limited number of variables can miss important factors in a modeling and prediction effort. In particular, very little data were available regarding management of concentrate waste streams, which can affect overall facility sustainability and energy consumption. For inland RO facilities, management and disposal of concentrated dissolved solids and waste chemical streams can be a significant factor influencing overall energy consumption and desalination cost since inland facilities have limited disposal options, including evaporation ponds, zero liquid discharge systems, or deep well injection. Notably some of these disposal options might be socially, politically, or legally unacceptable. Coastal RO facilities typically discharge concentrate waste to a saline surface water body (ocean, bay, or gulf), which has lower associated energy consumption and cost but can still affect overall operations and sustainability.
Other technologies, such as integrating related systems, can also affect energy consumption and cost of desalination operations. For example, co-locating desalination facilities with thermoelectric power plants can be mutually beneficial for both operations by sharing common raw water intake structures, blending of concentrate discharge to reduce adverse environmental impacts, and utilization of elevated temperature raw water to reduce SEC at the desalination facility [
72]. Emerging technologies for concentrate management have increased overall product water recovery while generating a solid “waste” gypsum product that can be a marketable by-product when desalination facilities integrate or cooperate with other manufacturers. Such approaches to desalination operations affect the overall SEC and cost, but these technologies and integrated systems are beyond the scope of our statistical analyses.
7. Conclusions
Using meta-data and empirical data of desalination processes compiled from peer-reviewed literature and the DesalData database, we completed multiple linear regression statistical analyses to determine which operational factors affect specific energy consumption in desalination processes. Based on the statistical evaluation of our models, we show that the best statistical fit for predicting SEC in small-scale (0.7 m
/day ≤
≤ 220 m
/day) RO processes is given as follows:
where
represents the estimated specific energy consumption (kWh/m
),
is raw water flow rate (m
/day),
is product water flow rate (m
/day),
R is recovery,
is raw water TDS (mg/L),
is product water TDS (mg/L),
P is pressure (bar),
represents the use of energy recovery systems (a binary variable), and
T is temperature (
C). Each of the coefficient estimates was shown to be statistically significant, such that the model is a useful predictive tool in approximating SEC for small-scale RO membrane-based desalination processes. Our model suggests that use of energy recovery equipment, and increasing pressure, temperature, and product water flow rate each decrease SEC overall. Water quality (
and
), pressure, and use of energy recovery equipment were the most important factors in explaining the variation in SEC, based on relative importance analysis.
In municipal-scale (2500 m
/day ≤
≤ 368,000 m
/day) RO operations, our best statistical fit model for predicting SEC is given as follows:
where
is the initial year of operations. Like the small-scale model, each of the coefficient estimates was shown to be statistically significant. Using the municipal-scale model in a predictive capacity, we estimated the SEC for the Carlsbad Desalination Project within quantified uncertainty.
Our model of the factors affecting product water cost and EPC price showed only limited statistically significant relationships with SEC. Consequently, we deduce that other factors absent from the municipal-scale dataset likely have statistically significant influence over product water cost and EPC price, such as concentrate management and disposal or other site-specific information. Future research work could quantify these other factors affecting cost to determine the statistical significance and magnitude of influence on desalinated water cost.
As populations grow and areas continue to experience water stress, desalination might become increasingly attractive as an alternative water supply. Understanding the operational factors that affect SEC and the associated GHG emissions can be useful in a policy-making context to evaluate proposed desalination facilities in terms of environmental and social sustainability. While our multiple linear regression statistical models are based solely on small-scale meta-data and municipal-scale empirical data, the predictive capacity of our models and relative magnitudes and significance of coefficient estimates can prove a useful initial step for estimating SEC for other RO membrane-based desalination processes. This initial modeling step can motivate future in-depth membrane design models and studies as desalination projects move forward.