Spatio-Temporal Patterns and Source Identification of Water Pollution in Lake Taihu (China)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Monitoring Program
2.2. Multivariate Statistical Analysis
2.3. Data Pretreatment
3. Results and Discussion
3.1. Temporal Similarity and Variation
3.2. Spatial Similarity and Variation
3.3. Identification of Potential Pollution Sources
4. Conclusions and Implications
Supplementary Files
Supplementary File 1Acknowledgments
Author Contributions
Conflicts of Interest
References
- Nyairo, W.N.; Owuor, P.O.; Kengara, F.O. Effect of anthropogenic activities on the water quality of Amala and Nyangores tributaries of River Mara in Kenya. Environ. Monit. Assess. 2015, 187, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Niu, Y.; Pang, Y.; Yu, H. Assessment of Heavy Metal Pollution in Sediments of Inflow Rivers to Lake Taihu, China. Bull. Environ. Contam. Toxicol. 2015, 95, 618–623. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Guo, H.; Liu, Y.; Zhou, F.; Yu, Y.; Wang, Z. Water environmental planning and management at the watershed scale: A case study of Lake Qilu, China. Front. Environ. Sci. Eng. China 2008, 2, 157–162. [Google Scholar] [CrossRef]
- Bozelli, R.L.; Caliman, A.; Guariento, R.D.; Carneiro, L.S.; Santangelo, J.M.; Figueiredo-Barros, M.P.; Leala, J.J.F.; Rocha, A.M.; Quesado, L.B.; Lopes, P.M.; et al. Interactive effects of environmental variability and human impacts on the long-term dynamics of an Amazonian floodplain lake and a South Atlantic coastal lagoon. Limnologica 2009, 39, 306–313. [Google Scholar] [CrossRef]
- Chen, K.; Wang, X.; Li, D.; Li, Z. Driving force of the morphological change of the urban lake ecosystem: A case study of Wuhan, 1990–2013. Ecol. Model. 2015, 318, 204–209. [Google Scholar] [CrossRef]
- Zhou, F.; Liu, Y.; Guo, H. Application of multivariate statistical methods to water quality assessment of the watercourses in northwestern new territories, Hong Kong. Environ. Monit. Assess. 2007, 132, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, P.; Wang, D.; Wang, Y. Assessment of temporal and spatial variations in water quality using multivariate statistical methods: A case study of the Xin’anjiang River, China. Front. Environ. Sci. Eng. 2014, 8, 895–904. [Google Scholar] [CrossRef]
- Yang, Y.H.; Zhou, F.; Guo, H.C.; Sheng, H.; Liu, H.; Dao, X.; He, C.J. Analysis of spatial and temporal water pollution patterns in Lake Dianchi using multivariate statistical methods. Environ. Monit. Assess. 2010, 170, 407–416. [Google Scholar] [CrossRef] [PubMed]
- Magyar, N.; Hatvani, I.G.; Székely, I.K.; Herzig, A.; Dinka, M.; Kovács, J. Application of multivariate statistical methods in determining spatial changes in water quality in the Austrian part of Neusiedler See. Ecol. Eng. 2013, 55, 82–92. [Google Scholar] [CrossRef]
- Singh, U.B.; Ahluwalia, A.S.; Jindal, R.; Sharma, C. Water Quality Assessment of Some Freshwater Bodies Supporting Vegetation in and Around Chandigarh (India), Using Multivariate Statistical Methods. Water Qual. Expo. Health 2013, 5, 149–161. [Google Scholar] [CrossRef]
- Jiang, Y.; Guo, H.; Jia, Y.; Cao, Y.; Hu, C. Principal component analysis and hierarchical cluster analyses of arsenic groundwater geochemistry in the Hetao basin, Inner Mongolia. Chem. Erde Geochem. 2015, 75, 197–205. [Google Scholar] [CrossRef]
- Sinha, K.; Das Saha, P. Assessment of water quality index using cluster analysis and artificial neural network modeling: A case study of the Hooghly River basin, West Bengal, India. Desalin. Water Treat. 2015, 54, 28–36. [Google Scholar] [CrossRef]
- Kim, S.W.; Park, J.S.; Kim, D.; Oh, J.M. Runoff characteristics of non-point pollutants caused by different land uses and a spatial overlay analysis with spatial distribution of industrial cluster: A case study of the Lake Sihwa watershed. Environ. Earth Sci. 2014, 71, 483–496. [Google Scholar] [CrossRef]
- Kamble, S.R.; Vijay, R. Assessment of water quality using cluster analysis in coastal region of Mumbai, India. Environ. Monit. Assess. 2011, 178, 321–332. [Google Scholar] [CrossRef] [PubMed]
- Yerel, S.; Anagun, A.S. Assessment of water quality observation stations using cluster analysis and ordinal logistic regression technique. Int. J. Environ. Pollut. 2010, 42, 344–358. [Google Scholar] [CrossRef]
- Ban, X.; Wu, Q.; Pan, B.; Du, Y.; Feng, Q. Application of Composite Water Quality Identification Index on the water quality evaluation in spatial and temporal variations: A case study in Honghu Lake, China. Environ. Monit. Assess. 2014, 186, 4237–4247. [Google Scholar] [CrossRef] [PubMed]
- Cid, F.D.; Antón, R.I.; Pardo, R.; Vega, M.; Caviedes-Vidal, E. Modelling spatial and temporal variations in the water quality of an artificial water reservoir in the semiarid Midwest of Argentina. Anal. Chim. Acta 2011, 705, 243–252. [Google Scholar] [CrossRef] [PubMed]
- Varol, M.; Gökot, B.; Bekleyen, A.; Şen, B. Spatial and temporal variations in surface water quality of the dam reservoirs in the Tigris River basin, Turkey. Catena 2012, 92, 11–21. [Google Scholar] [CrossRef]
- Guo, H.C.; Liu, L.; Huang, G.H.; Fuller, G.A.; Zou, R.; Yin, Y.Y. A system dynamics approach for regional environmental planning and management: A study for the Lake Erhai Basin. Environ. Manag. 2001, 61, 93–111. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Guo, H.; Yu, Y.; Dai, Y.; Zhou, F. Ecological-economic modeling as a tool for watershed management: A case study of Lake Qionghai watershed, China. Limnologica 2008, 38, 89–104. [Google Scholar] [CrossRef]
- Qin, B.; Xu, P.; Wu, Q.; Luo, L.; Zhang, Y. Environmental issues of Lake Taihu, China. Hydrobiologia 2007, 581, 3–14. [Google Scholar] [CrossRef]
- Shen, P.P.; Shi, Q.; Hua, Z.C.; Kong, F.X.; Wang, Z.G.; Zhuang, S.X.; Chen, D.C. Analysis of microcystins in cyanobacteria blooms and surface water samples from Meiliang Bay, Taihu Lake, China. Environ. Int. 2003, 29, 641–647. [Google Scholar] [CrossRef]
- Qin, B.Q.; Zhu, G.; Gao, G.; Zhang, Y.; Li, W.; Paerl, H.W.; Carmichael, W.W. A drinking water crisis in Lake Taihu, China: Linkage to climatic variability and lake management. Environ. Manag. 2010, 45, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Ding, S.; Fan, C.; Liu, T.; Shi, D.; Zhang, L. Organic phosphorus species in surface sediments of a large, shallow, eutrophic lake, Lake Taihu, China. Environ. Pollut. 2009, 157, 2507–2513. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Guo, H.; Hao, Z. Spatial distribution of heavy metals in Hong Kong’s marine sediments and their human impacts: A GIS-based chemometric approach. Mar. Pollut. Bull. 2007, 54, 1372–1384. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Huang, G.H.; Guo, H.; Zhang, W.; Hao, Z. Spatio-temporal patterns and source apportionment of coastal water pollution in eastern Hong Kong. Water Res. 2007, 41, 3429–3439. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, C.; Wu, W.; Mo, Z.; Wang, Z. Persistent organic pollutants in water and surface sediments of Taihu Lake, China and risk assessment. Chemosphere 2003, 50, 557–562. [Google Scholar] [CrossRef]
- Yan, S.W.; Yu, H.; Zhang, L.; Xu, J.; Wang, Z. Water quantity and pollutant fluxes of inflow and outflow rivers of Lake Taihu, 2009. J. Lake Sci. 2011, 23, 855–862. (In Chinese) [Google Scholar]
- Singh, K.P.; Malik, A.; Mohan, D.; Sinha, S. Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)—A case study. Water Res. 2004, 38, 3980–3992. [Google Scholar] [CrossRef] [PubMed]
- Pekey, H.; Karakas, D.; Bakoglu, M. Source apportionment of trace metals in surface waters of a polluted stream using multivariate statistical analyses. Mar. Pollut. Bull. 2004, 49, 809–818. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Shang, Z.Y.; Ciais, P.; Tao, S.; Piao, S.L.; Raymond, P.; He, C.F.; Li, B.G.; Wang, R.; Wang, X.H.; et al. A new high-resolution N2O emission inventory for China in 2008. Environ. Sci. Technol. 2014, 48, 8538–8547. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.K.; Zhou, F.; Leip, A.; Fu, B.J.; Yang, H.; Chen, Y.; Gao, S.S.; Shang, Z.Y. Precipitation and clay content explain half of nitrogen runoff variability in Chinese paddy fields. Agric. Ecosyst. Environ. 2015. submitted. [Google Scholar]
- Yang, Y.; Wang, C.; Guo, H.; Sheng, H.; Zhou, F. An integrated SOM-based multivariate approach for spatio-temporal patterns identification and source apportionment of pollution in complex river network. Environ. Pollut. 2012, 168, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Ma, C.; Huo, S.; Xi, B.; Qian, G. Performance assessment of water quality monitoring system and identification of pollution source using pattern recognition techniques: A case study of Chaohu Lake, China. Desalin. Water Treat. 2012, 47, 182–197. [Google Scholar] [CrossRef]
Variable | Mean | Min | Max | SD | CV | Analytical Method * |
---|---|---|---|---|---|---|
Temp (°C) | 18.32 | 2.10 | 34.10 | 8.56 | 46.70 | Thermometer |
pH | 7.47 | 6.25 | 8.91 | 0.33 | 4.49 | Glass electrode |
Cond (ms/m) | 63.69 | 10.70 | 794.00 | 37.72 | 59.22 | Electrical conductivity meter |
DO (mg/L) | 6.30 | 0.60 | 13.38 | 2.39 | 38.01 | Iodometric |
CODMn (mg/L) | 5.25 | 0.60 | 13.80 | 1.31 | 24.92 | Potassium permanganate method |
BOD5 (mg/L) | 4.08 | 0.60 | 14.40 | 1.62 | 39.63 | Dilution and inoculation test |
NH4+–N (mg/L) | 1.35 | 0.01 | 15.40 | 1.30 | 96.41 | N-reagent colorimetry |
TP (mg/L) | 0.18 | 0.01 | 0.96 | 0.09 | 53.10 | Ammonium molybdate spectrophotometry |
Petro (mg/L) | 0.06 | 0.01 | 0.96 | 0.07 | 107.94 | Infrared spectrophotometric method |
V-ArOH (mg/L) | 0.00 | 0.00 | 0.31 | 0.01 | 338.71 | Spectrophotometric determination with 4-amino-antipyrin |
Pb (mg/L) | 0.01 | 0.00 | 0.04 | 0.01 | 107.34 | Atomic absorption spectrophotometry |
No. of Clusters | Group | Temporal Variation | Spatial Variation | ||||||
---|---|---|---|---|---|---|---|---|---|
% Correct | 1st | 2nd | 3rd | % Correct | 1st | 2nd | 3rd | ||
Two clusters | 1st | 93.57 | 655 | 45 | – | 95.22 | 857 | 43 | – |
2nd | 94.60 | 27 | 473 | – | 69.00 | 93 | 207 | – | |
Total | 94.00 | 682 | 518 | – | 88.67 | 950 | 250 | – | |
Three clusters | 1st | 91.86 | 643 | 57 | 0 | 84.72 | 305 | 2 | 53 |
2nd | 80.67 | 22 | 242 | 36 | 69.67 | 1 | 209 | 90 | |
3rd | 76.50 | 0 | 47 | 153 | 86.85 | 25 | 46 | 469 | |
Total | 86.50 | 665 | 346 | 189 | 81.92 | 331 | 257 | 612 |
Variables | VFs for Cluster A | VFs for Cluster B | |||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | |
Petro | 0.82 | 0.13 | −0.09 | 0.00 | −0.14 | 0.05 | −0.01 | 0.74 | 0.17 |
Pb | 0.82 | −0.06 | 0.15 | −0.02 | −0.09 | −0.05 | −0.02 | −0.05 | 0.83 |
V-ArOH | 0.48 | 0.35 | 0.48 | 0.03 | −0.01 | 0.23 | 0.01 | 0.09 | 0.69 |
TP | 0.06 | 0.79 | 0.22 | 0.01 | −0.22 | 0.82 | 0.03 | 0.11 | 0.05 |
CODMn | 0.12 | 0.71 | 0.32 | 0.10 | 0.30 | 0.83 | 0.10 | −0.06 | 0.14 |
BOD5 | −0.60 | 0.64 | −0.03 | −0.05 | −0.02 | 0.69 | 0.08 | 0.31 | 0.16 |
Cond | −0.01 | 0.11 | 0.85 | −0.09 | −0.13 | 0.69 | 0.02 | −0.08 | −0.07 |
NH4+–N | 0.07 | 0.23 | 0.80 | 0.12 | 0.22 | 0.72 | −0.05 | 0.44 | 0.12 |
DO | −0.14 | −0.20 | −0.14 | 0.89 | −0.05 | −0.30 | −0.83 | −0.23 | −0.07 |
Temp | −0.17 | −0.31 | −0.19 | −0.80 | −0.05 | −0.12 | 0.92 | −0.09 | −0.07 |
pH | −0.20 | −0.04 | 0.02 | −0.02 | 0.93 | −0.10 | −0.11 | −0.77 | 0.16 |
Eigenvalue | 2.04 | 1.88 | 1.84 | 1.46 | 1.10 | 2.99 | 1.58 | 1.51 | 1.29 |
% Total variance | 18.58 | 17.09 | 16.70 | 13.29 | 9.97 | 27.14 | 14.33 | 13.77 | 11.72 |
Cumulative % variance | 18.6 | 35.7 | 52.4 | 65.7 | 75.6 | 27.1 | 41.5 | 55.2 | 67.0 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Zhao, K.; Wu, Y.; Gao, S.; Cao, W.; Bo, Y.; Shang, Z.; Wu, J.; Zhou, F. Spatio-Temporal Patterns and Source Identification of Water Pollution in Lake Taihu (China). Water 2016, 8, 86. https://doi.org/10.3390/w8030086
Chen Y, Zhao K, Wu Y, Gao S, Cao W, Bo Y, Shang Z, Wu J, Zhou F. Spatio-Temporal Patterns and Source Identification of Water Pollution in Lake Taihu (China). Water. 2016; 8(3):86. https://doi.org/10.3390/w8030086
Chicago/Turabian StyleChen, Yan, Kangping Zhao, Yueying Wu, Shuoshuo Gao, Wei Cao, Yan Bo, Ziyin Shang, Jing Wu, and Feng Zhou. 2016. "Spatio-Temporal Patterns and Source Identification of Water Pollution in Lake Taihu (China)" Water 8, no. 3: 86. https://doi.org/10.3390/w8030086
APA StyleChen, Y., Zhao, K., Wu, Y., Gao, S., Cao, W., Bo, Y., Shang, Z., Wu, J., & Zhou, F. (2016). Spatio-Temporal Patterns and Source Identification of Water Pollution in Lake Taihu (China). Water, 8(3), 86. https://doi.org/10.3390/w8030086