Geospatial Techniques for Improved Water Management in Jordan
Abstract
:1. Introduction
2. Study Areas and Data Collection
2.1. Study Areas
2.2. Remote Sensing Data
2.3. Ground Data
2.4. MWI Data
3. Methodology
3.1. Processing of Remote Sensing Data
3.2. Extraction and Analysis of NDVI Profiles
3.3. Mapping Irrigated Fields
3.4. Assessment of Groundwater Abstraction Records
4. Results and Discussion
4.1. Ground Surveys
4.2. Crop Maps and Irrigated Areas
4.2.1. Irrigation in Yarmouk
4.2.2. Irrigation in Amman-Zarqa
4.2.3. Irrigation in Azraq
4.3. Mapping Accuracy
4.4. Assessment of Groundwater Abstraction Records
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Safriel, U.; Adeel, Z.; Niemeijer, D. Drylands Systems. In Ecosystems and Human Wellbeing: Current State and Trends; Hassan, R., Scholes, R., Ash, N., Eds.; Island Press: Washington, DC, USA, 2005; Volume 1, pp. 623–662. [Google Scholar]
- IUCN Global Drylands Initiative. Available online: http://www.iucn.org/drylands (accessed on 25 August 2015).
- Al-Bakri, J.T.; Salahat, M.; Suleiman, A.; Suifan, M.; Hamdan, M.R.; Khresat, S.; Kandakji, T. Impact of climate and land use changes on water and food security in Jordan: Implications for transcending “The Tragedy of the Commons”. Sustainability 2013, 5, 724–748. [Google Scholar] [CrossRef]
- MWI (Ministry of Water and Irrigation, Jordan). Water for Life: Jordan’s Water Strategy, 2008–2022; MWI: Amman, Jordan, 2009.
- Al-Bakri, J.T.; Duqqah, M.; Brewer, T. Application of remote sensing and GIS for modeling and assessment of land use/cover change in Amman/Jordan. J. Geogr. Inf. Syst. 2013, 5, 509–519. [Google Scholar] [CrossRef]
- Department of Statistics, Jordan. Available online: http://www.dos.gov.jo (accessed on 20 September 2015).
- UNHCR (The UN Refugee Agency). A Briefing Note on Syrian Refugees, 2013. Available online: http://www.unhcr.org/ (accessed on 20 September 2015).
- DoS (Department of Statistics, Jordan). Iraqis in Jordan: Their Number and Characteristics; DoS, Fafo and UNFPA: Amman, Jordan, 2007.
- Schacht, K.; Gönster, S.; Jüschke, E.; Chen, Y.; Tarchitzky, J.; Al-Bakri, J.; Al-Karablieh, E.; Marschner, B. Evaluation of soil sensitivity towards the irrigation with treated wastewater in the Jordan River region. Water 2011, 3, 1092–1111. [Google Scholar] [CrossRef]
- Ozdogan, M.; Yang, Y.; Allez, G.; Cervantes, C. Remote sensing of irrigated agriculture: Opportunities and challenges. Remote Sens. 2010, 2, 2274–2304. [Google Scholar] [CrossRef]
- Inglada, J.; Arias, M.; Tardy, B.; Hagolle, O.; Valero, S.; Morin, D.; Dedieu, G.; Sepulcre, G.; Bontemps, S.; Defourny, P.; Koetz, B. Assessment of an operational system for crop type map production using high temporal and spatial resolution satellite optical imagery. Remote Sens. 2015, 7, 12356–12379. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.; Karimi, P.; Rebelo, L.-M.; Duan, Z.; Senay, G.; Muthuwatte, L.; Smakhtin, V. Earth observation based assessment of the water production and water consumption of Nile Basin agro-ecosystems. Remote Sens. 2014, 6, 10306–10334. [Google Scholar] [CrossRef]
- Gowda, P.H.; Chávez, J.L.; Howell, T.A.; Marek, T.H.; New, L.L. Surface Energy balance based evapotranspiration mapping in the Texas High Plains. Sensors 2008, 8, 5186–5201. [Google Scholar] [CrossRef]
- Liou, Y.-A.; Kar, S.K. Evapotranspiration estimation with remote sensing and various surface energy balance algorithms—A Review. Energies 2014, 7, 2821–2849. [Google Scholar] [CrossRef]
- Godfrey, J.M.; Chalmers, K. Water Accounting: International Approaches to Policy and Decision-Making; Edward Elgar Publishing: Cheltenham, UK, 2012; p. 336. [Google Scholar]
- Dost, R.; Bastidas; Obando, E.B.; Bastiaanssen, W. Water Accounting through Remote Sensing; A Background Report on Water Accounting Plus (WA+) in the Awash River Basin; Land and Water Division, Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2013; p. 56. [Google Scholar]
- Karimi, P.; Bastiaanssen, W.; Molden, D. Water Accounting Plus (WA+)—A water accounting procedure for complex river basins based on satellite measurements. Hydrol. Earth Syst. Sci. 2013, 17, 2459–2472. [Google Scholar] [CrossRef]
- Karimi, P.; Bastiaanssen, W.; Molden, D.; Cheema, M. Basin-wide water accounting using remote sensing data: The case of transboundary Indus Basin. Hydrol. Earth Syst. Sci. 2013, 17, 2473–2486. [Google Scholar] [CrossRef]
- Karimi, P.; Bastiaanssen, W.G.M.; Sood, A.; Hoogeveen, J.; Peiser, L.; Dost, R. Spatial evapotranspiration, rainfall and land use data in water accounting—Part 2: Reliability of water accounting results for policy decisions in the Awash basin. Hydrol. Earth Syst. Sci. Discuss. 2015, 19, 1125–1167. [Google Scholar]
- Al-Bakri, J.T. Crop Mapping and Validation of ALEXI-ET in Azraq and Mafraq Areas; A Report for Regional Coordination on Improved Water Resources Management and Capacity Building; Ministry of Water and Irrigation: Amman, Jordan, 2015; pp. 19–31.
- Al-Bakri, J.T. Crop Mapping for Azraq and Ramtha Areas; A Report for the Advanced on-job Training on the Use of Remote Sensing in Crop Mapping and Evapotranspiration; Ministry of Water and Irrigation: Amman, Jordan, 2014. [CrossRef]
- Vörösmarty, C.J. Global water assessment and potential contributions from Earth Systems Science. Aqua. Sci. 2002, 64, 328–351. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M.; Molden, D.J.; Makin, I.W. Remote sensing for irrigated agriculture: Examples from research and possible applications. Agric. Water Manag. 2000, 46, 137–155. [Google Scholar] [CrossRef]
- GIZ (Gesellschaft für Internationale Zusammenarbeit). The Azraq Dilemma: Past, Present and Future Groundwater Management; German-Jordanian Programme “Management of Water Resources”, MWI (Ministry of Water and Irrigation, Jordan): Amman, Jordan, 2012; pp. 6–12.
- MWI (Ministry of Water and Irrigation, Jordan). Water Budget for Year 2013; Ministry of Water and Irrigation: Amman, Jordan, 2014; pp. 14–17.
- Al-Wer, I. Zarqa River Rehabilitation and Sustainable Management. Master’s Thesis, Department of Land and Water Resources Engineering, KTH Stockholm, Sweden, 2009. [Google Scholar]
- Abdulla, F.; Eshtawi, T.; Assaf, H. Assessment of the impact of potential climate Change on the water balance of semi-arid watershed. Water Resour. Manag. 2009, 23, 2051–2068. [Google Scholar]
- Al-Bakri, J.T.; Suleiman, A.; Abdulla, F.; Ayad, J. Potential impacts of climate change on the rainfed agriculture of a semi-arid basin in Jordan. Phys. Chem. Earth 2011, 35, 125–134. [Google Scholar] [CrossRef]
- Al-Bakri, J.T.; Brown, L.; Dedalof, Z.; Berg, A.; Nickling, W.; Khresat, S.; Salahat, M.; Saoub, H. Modelling desertification risk in the north-west of Jordan using geospatial and remote sensing techniques. Geomatics Nat. Hazards Risk 2014. [Google Scholar] [CrossRef]
- The Highland Water Forum: Dialogue for Sustainability. Available online: https://highlandwaterforum.wordpress.com/ (accessed on 17 October 2015).
- Jensen, J.R. Introductory Digital Image Processing: A Remote Sensing Perspective, 3rd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2006; pp. 337–406. [Google Scholar]
- El-Magd, I.A.; Tanton, T.W. Improvements in land use mapping for irrigated agriculture from satellite sensor data using a multi-stage maximum likelihood classification. Int. J. Remote Sens. 2003, 24, 4197–4206. [Google Scholar] [CrossRef]
- Simonneaux, V.; Duchemin, B.; Helson, D.; Raki, E.; Olioso, A.; Chehbouni, A. The use of high-resolution image time series for crop classification and evapotranspiration estimate over an irrigated area in central Morocco. Int. J. Remote Sens. 2008, 29, 95–116. [Google Scholar] [CrossRef] [Green Version]
- Mclver, D.K.; Friedl, M.A. Estimating pixel-scale land cover classification confidence using non-parametric machine learning methods. IEEE Trans. Geo-Sci. Remote Sens. 2001, 39, 1959–1968. [Google Scholar] [CrossRef]
- Mclver, D.K.; Friedl, M.A. Using prior probabilities in decision-tree remotely sensed data. Remote Sens. Environ. 2002, 81, 253–261. [Google Scholar] [CrossRef]
- Gumma, M.K.; Thenkabail, P.S.; Nelson, A. Mapping irrigated areas using MODIS 250 meter time-series data: A study on Krishna River Basin (India). Water 2011, 3, 113–131. [Google Scholar] [CrossRef]
- Gumma, M.K.; Thenkabail, P.S.; Hideto, F.; Nelson, A.; Dheeravath, V.; Busia, D.; Rala, A. Mapping irrigated areas of Ghana using fusion of 30 m and 250 m resolution remote-sensing data. Remote Sens. 2011, 3, 816–835. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sens. Environ. 2012, 118, 83–94. [Google Scholar] [CrossRef]
- Smith, M.; Milton, E. The use of Empirical Line Method to Calibrate Remotely Sensed Data to Reflectance. Int. J. Remote Sens. 1999, 20, 2653–2662. [Google Scholar] [CrossRef]
- Du, Y.; Teillet, P.; Cihlar, J. Radiometric Normalization of Multitemporal High-resolution Satellite Images with Quality Control of Land Cover Change Detection. Remote Sens. Environ. 2002, 82, 123–134. [Google Scholar] [CrossRef]
- Jensen, J.R. Introductory Digital Image Processing: A Remote Sensing Perspective, 3rd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2005; pp. 337–406. [Google Scholar]
- Pulighe, G.; Baiocchi, V.; Lupia, F. Horizontal accuracy assessment of very high resolution Google Earth images in the city of Rome, Italy. Int. J. Digital Earth. 2015. [Google Scholar] [CrossRef]
- Eastman, J.R.; Filk, M. Long sequence time series evaluation using standardized principal components. Photogramm. Eng. Remote Sens. 1993, 59, 991–996. [Google Scholar]
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Bastiaanssen, W.; Menenti, M.; Feddes, R.; Holtslag, A. A remote sensing surface energy balance algorithm for land (SEBAL) 1. Formulation. J. Hydrol. 1998, 212, 198–212. [Google Scholar] [CrossRef]
- Bastiaanssen, W.; Pelgrum, H.; Wang, J.; Ma, Y.; Moreno, J.; Roerink, G.; van der Wal, T. A remote sensing surface energy balance algorithm for land (SEBAL) 2. Validation. J. Hydrol. 1998, 212, 213–229. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.A.; Raes, D.; Smith, M. Crop Evapotranspiration; FAO Irrigation and Drainage Paper 56; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 1998; p. 293. [Google Scholar]
- Allen, R.G.; Pereira, L.A. Estimating crop coefficients from fraction of ground cover and height. Irrig. Sci. 2009, 28, 17–34. [Google Scholar] [CrossRef]
- FAO (Food and Agriculture Organization of UN), Land and Water Division: ETo Calculator. Available online: http://www.fao.org/nr/water/eto.html (accessed on 22 October 2015).
- Abu-Awwad, A.; Blair, S. Economic Efficiency of Water Use by Irrigated Crops in Al’Azraq Area. Jordan J. Agric. Sci. 2013, 9, 525–543. [Google Scholar]
- Mazahrih, N.T. Evapotranspiration Measurements and Modeling for Bermuda Grass, Alfalfa, Cucumber, and Tomato Grown under Protected Cultivation in the Central Jordan Valley. Ph.D. Thesis, The University of Jordan, Amman, Jordan, 2011. [Google Scholar]
- Suwwan, M.; Judah, O. Influence of Plastic Mulching on Growth, yield and Soil Moisture Conservation in Plastic House Tomatoes. Dirasat 1985, 12, 21–32. [Google Scholar]
- Al-Bakri, J.T.; Taylor, J.C.; Brewer, T.R. Monitoring land use change in the Badia transition zone in Jordan using aerial photography and satellite imagery. Geogr. J. 2001, 167, 248–262. [Google Scholar]
- JTN (The Jordan Times). Satellite Remote Sensing Uncovers violations on Underground Water Resources. Available online: http://www.jordantimes.com/news/local/satellite-remote-sensing-uncovers-violations-underground-water-resources#sthash.f4mMEUaF.dpufhttp://www.jordantimes.com/news/local/satellite-remote-sensing-uncovers-violations-underground-water-resources (accessed on 25 October 2015).
- Hamdan, I. Hydrogeological and Hydrological Investigation for Azraq Basin—North East Jordan; Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ): Amman, Jordan, 2010. [Google Scholar]
- Campos, I.; Neale, C.M.U.; Calera, A.; Balbontín, C.; González-Piqueras, J. Assessing satellite-based basal crop coefficients for irrigated grapes (Vitis vinifera L.). Agricul. Water Manag. 2010, 98, 45–54. [Google Scholar] [CrossRef]
- Salman, A.Z.; Al-Karablieh, E. Measuring the willingness of farmers to pay for groundwater in the highland areas of Jordan. Agricul. Water Manag. 2004, 68, 61–76. [Google Scholar] [CrossRef]
- Margane, A.; Al-Qadi, M.; Al-Kurdi, O. Updating the Groundwater Contour Map of the A7/B2 Aquifer in North Jordan; Technical Cooperation Project ’Syrian Refugee Response’, Technical Report No. 1; Bundesanstalt für Geowissenschaften und Rohstoffe (BGR) and Ministry of Water and Irrigation, Jordan (MWI): Amman, Jordan; p. 129.
- El-Naqa, A.; Al-Momani, M.; Kilani, S.; Hammouri, N. Groundwater Deterioration of Shallow Groundwater Aquifers Due to Overexploitation in Northeast Jordan. Clean 2007, 35, 156–166. [Google Scholar] [CrossRef]
- Law Amending the Law of the Water Authority (In Arabic). Law number 22, 2014. Jordan Prime Ministry, Official Gazette: Amman, Jordan, 2014; pp. 3385–3390. [Google Scholar]
Basin | Groundwater Safe Yield (MCM) | Number of Agricultural Wells | Groundwater Use (MCM) | Surface Water Used in Irrigation (MCM) | |
---|---|---|---|---|---|
Agricultural | Non-Agricultural | ||||
Yarmouk | 40 | 129 | 36.4 | 9.4 | 3.8 |
Amman-Zarqa | 88 | 590 | 63.9 | 92.4 | 15 |
Azraq | 24 | 488 | 37.6 | 21.0 | - |
Satellite Data | Path/Row | Band (Wavelength in µm) | Use | Processing |
---|---|---|---|---|
Landsat 8 OLI | 174/37 for Yarmouk, 174/37 and 174/38 for Amman-Zarqa, and 173/38 for Azraq. | B1 (0.43–0.45), B2 (0.45–0.51), B3 (0.53 –0.59), B4 (0.64–0.67), B5 (0.85–0.88), B6 (1.57–1.65), B7 (2.11–2.29). | Crop type identification | 1. Atmospheric correction 2. Vegetation index |
RapidEye | Mosaic datasets covering the three basins. | B1 (0.44–0.51), B2 (0.52–0.59), B3 (0.63 –0.68), B4 (0.69–0.73), B5 (0.76–0.85). | Delineation of fields | 1. Geometric correction. 2. Visual interpretation |
Crop Category | Sub-Categories and Description |
---|---|
Olives | Farms of irrigated olive trees with different ground cover, depending on age and spacing. The class included three levels of cover that were grouped in the final map: low (<40%); medium (40%–60%); and high (>60%). |
Fruit trees | Farms of deciduous orchards of peaches, apricots, stone fruits and table grapes grown on trellis. The sub-category of this class includes citrus in the northwest of Yarmouk. |
Alfalfa and forage crops | Open spaces and farms cultivated with alfalfa under center pivot and solid sets of sprinkler irrigation systems in Azraq and fields of alfalfa and forage crops in the two other basins. The class includes barley fields cultivated under sprinkler irrigation. |
Mixed cropping | Farms with two or more crop types, found mainly in Azraq. The fields include combinations of date palm, olives and alfalfa in the small landholdings near urban areas. The class is characterized by 100% ground cover for farms that included alfalfa in combination with olives, date palm and fruit trees. |
Vegetables (Open fields) | Vegetables grown during February-June, March-July, April-August, June-September, July-October and September-December. The main irrigated crop is tomato. Other irrigated crops are melon, water melon, eggplant, zucchini, cauliflower, pepper and lettuce. |
Vegetables and nursery plantations (Plastic houses) | Vegetables grown in plastic houses in the area of Mafraq and near Muwaqar in the middle west of the basin. The main crops are tomato and watermelon in Mafraq, and tomato and other vegetables in Muwaqar. The other sub-category of this class includes nurseries the lower part of Zarqa River between the WWTP and KTD and in the area of Baqa’a where some of the plastic houses are used as nurseries. |
Class | Yarmouk | Amman-Zarqa | Azraq | |||
---|---|---|---|---|---|---|
Area (ha) | % | Area (ha) | % | Area (ha) | % | |
Olives | 2018 | 34.1 | 4986 | 27.5 | 3050 | 39.0 |
Fruit trees | 837 | 14.1 | 4118 | 22.7 | 1286 | 16.5 |
Alfalfa and forage crops | 187 | 3.2 | 638 | 3.5 | 587 | 7.5 |
Mixed cropping | - | - | 439 | 2.4 | 425 | 5.4 |
Vegetables (Open fields) | 2763 | 46.7 | 7737 | 42.7 | 2465 | 31.6 |
Vegetables and nursery plantations (Plastic houses) | 115 | 1.9 | 210 | 1.2 | - | - |
Total | 5920 | 18,128 | 7811 |
Classified Image Data | Reference Data | ||||||||
Class | Olives | Alfalfa & Forage | Fruit Trees | Vegetables | Barley | Mixed | Totals | Mapping Accuracy (%) | |
Olives | 89 | 6 | 2 | - | - | 97 | 92 | ||
Alfalfa & Forage | 2 | 32 | - | - | - | - | 34 | 94 | |
Fruit Trees | 24 | - | 44 | - | - | - | 68 | 65 | |
Vegetables | - | 1 | - | 75 | - | 3 | 79 | 95 | |
Barley | - | - | - | 9 | 1 | 10 | 90 | ||
Mixed | - | 2 | - | - | 20 | 22 | 91 | ||
Totals | 115 | 35 | 50 | 77 | 9 | 24 | 310 | 86.8 |
Month * | ETo (mm) | Crop Evapotranspiration (ETc) in mm | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Olives | Fruit Trees | Mixed | Alfalfa | Vegetables | ||||||
October | 104 | 67 | 67 | 80 | 97 | - | - | - | - | 77 |
November | 62 | 39 | 25 | 45 | 55 | - | - | - | - | - |
December | 36 | 10 | -- | 15 | 41 | - | - | - | - | - |
January | 45 | 15 | -- | 10 | 43 | - | - | - | - | - |
February | 65 | 22 | -- | 28 | 75 | 26 | - | - | - | - |
March | 102 | 62 | 49 | 72 | 88 | 72 | 41 | - | - | - |
April | 158 | 102 | 110 | 122 | 147 | 158 | 110 | 63 | - | - |
May | 176 | 102 | 116 | 129 | 157 | 101 | 176 | 123 | - | - |
June | 203 | 119 | 183 | 158 | 190 | 41 | 117 | 203 | 81 | - |
July | 242 | 149 | 218 | 188 | 226 | -- | 48 | 139 | 162 | 97 |
August | 237 | 130 | 190 | 184 | 221 | -- | -- | 47 | 213 | 158 |
September | 156 | 96 | 109 | 121 | 145 | -- | -- | -- | 130 | 140 |
Total | 1586 | 915 | 1067 | 1151 | 1484 | 397 | 493 | 576 | 586 | 472 |
Class | Yarmouk | Amman-Zarqa | Azraq | |||
---|---|---|---|---|---|---|
ETc * (mm) | NCWR (MCM) | ETc * (mm) | NCWR (MCM) | ETc * (mm) | NCWR (MCM) | |
Olives | 700 | 14.1 | 726 | 36.2 | 887 | 27.0 |
Fruit trees | 714 | 6.0 | 765 | 31.5 | 762 | 9.8 |
Alfalfa and forage crops | 1213 | 2.3 | 1206 | 7.7 | 1320 | 7.8 |
Mixed cropping | - | - | 888 | 3.9 | 1148 | 4.9 |
Vegetables (Open fields) | 538 | 14.5 | 441 | 34.1 | 494 | 12.2 |
Vegetables and nursery plantations (Plastic houses) | 800 | 0.9 | 800 | 1.7 | - | -- |
Total | 37.8 | 115.1 | 61.7 |
Basin | Safe Yield (MCM) | Groundwater Abstraction for Irrigation | Agricultural Abstraction/Safe Yield (%) | Abstraction/Safe Yield * (%) | |
---|---|---|---|---|---|
MWI Records | Remote Sensing | ||||
Yarmouk | 40 | 36.4 | 48 | 120 | 144 |
Amman-Zarqa | 88 | 63.9 | 104 | 118 | 224 |
Azraq | 24 | 37.6 | 67 | 279 | 367 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Bakri, J.T.; Shawash, S.; Ghanim, A.; Abdelkhaleq, R. Geospatial Techniques for Improved Water Management in Jordan. Water 2016, 8, 132. https://doi.org/10.3390/w8040132
Al-Bakri JT, Shawash S, Ghanim A, Abdelkhaleq R. Geospatial Techniques for Improved Water Management in Jordan. Water. 2016; 8(4):132. https://doi.org/10.3390/w8040132
Chicago/Turabian StyleAl-Bakri, Jawad T., Sari Shawash, Ali Ghanim, and Rania Abdelkhaleq. 2016. "Geospatial Techniques for Improved Water Management in Jordan" Water 8, no. 4: 132. https://doi.org/10.3390/w8040132
APA StyleAl-Bakri, J. T., Shawash, S., Ghanim, A., & Abdelkhaleq, R. (2016). Geospatial Techniques for Improved Water Management in Jordan. Water, 8(4), 132. https://doi.org/10.3390/w8040132