Performance Evaluation of a Floating Treatment Wetland in an Urban Catchment
Abstract
:1. Introduction
2. Site Description
3. Sampling Protocol and Methodology
Performance Metrics
4. Results and Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Hogg, E.H.; Wein, R.W. The contribution of Typha components to floating mat buoyancy. Ecology 1988, 69, 1025–1031. [Google Scholar] [CrossRef]
- Mitsch, W.J.; Gosselink, J.G. Wetlands; Van Nostrand Reinhold: New York, NY, USA, 1993. [Google Scholar]
- Hoeger, S. Schwimmkampen: Germany’s artificial floating islands. J. Soil Water Conserv. 1988, 43, 304–306. [Google Scholar]
- Burgess, N.D.; Hirons, G.J. Creation and management of artificial nesting sites for wetland birds. J. Environ. Manag. 1992, 34, 285–295. [Google Scholar] [CrossRef]
- Smith, M.P.; Kalin, M. Floating wetland vegetation covers for suspended solids removal, in Treatment Wetlands for Water Quality Improvement. In Proceedings of the Quebec 2000 Conference, Quebec City, QC, Canada, 6–12 August 2000; CH2MHILL: Quebec City, QC, Canada, 2000. [Google Scholar]
- Dunlop, C.L.; Blokpoel, H.L.; Jarvie, S. Nesting rafts as a management tool for a declining common tern (Sterna hirundo) colony. Colonial Waterbirds 1991, 14, 116–120. [Google Scholar] [CrossRef]
- Lundholm, J.T.; Simser, W.L. Regeneration of submerged macrophyte populations in a disturbed Lake Ontario coastal marsh. J. Gt. Lakes Res. 1999, 25, 395–400. [Google Scholar] [CrossRef]
- Kerr-Upal, M.; Seasons, M.; Mulamoottil, G. Retrofitting a stormwater management facility with a wetland component. J. Environ. Sci. Health 2000, 35, 1289–1307. [Google Scholar] [CrossRef]
- Headley, T.R.; Tanner, C.C. Floating treatment wetlands: An innovative option for stormwater quality applications. In Proceedings of the 11th International Conference on Wetland Systems for Water Pollution Control, Indore, India, 1–7 November 2008.
- Tanner, C.C.; Sukias, J.; Park, J.; Yates, C.; Headley, T.R. Floating Treatment Wetlands: A new tool for nutrient management in lakes and waterways. Methods 2011, 2008, 2011. [Google Scholar]
- Borne, K.E. Floating treatment wetland influences on the fate and removal performance of phosphorus in stormwater retention ponds. Ecol. Eng. 2014, 69, 76–82. [Google Scholar] [CrossRef]
- Borne, K.E.; Fassman, E.A.; Tanner, C.C. Floating treatment wetland retrofit to improve stormwater pond performance for suspended solids, copper and zinc. Ecol. Eng. 2013, 54, 173–182. [Google Scholar] [CrossRef]
- Borne, K.; Fassman-Beck, E.; Tanner, C. Floating Treatment Wetland influences on the fate of metals in road runoff retention ponds. Water Res. 2014, 48, 430–442. [Google Scholar] [CrossRef] [PubMed]
- Bartucca, M.L.; Mimmo, T.; Cesco, S.; Del Buono, D. Nitrate removal from polluted water by using a vegetated floating system. Sci. Total Environ. 2016, 542, 803–808. [Google Scholar] [CrossRef] [PubMed]
- Winston, R.J.; Hunt, W.F.; Kennedy, S.G.; Merriman, L.S.; Chandler, J.; Brown, D. Evaluation of floating treatment wetlands as retrofits to existing stormwater retention ponds. Ecol. Eng. 2013, 54, 254–265. [Google Scholar] [CrossRef]
- Stewart, F.M.; Mulholland, T.; Cunningham, A.B.; Kania, B.G.; Osterlund, M.T. Floating islands as an alternative to constructed wetlands for treatment of excess nutrients from agricultural and municipal wastes-results of laboratory-scale tests. Land Contam. Reclam. 2008, 16, 25–33. [Google Scholar] [CrossRef]
- Technical Guidance Manual for Evaluating Emerging Stormwater Treatment Technologies, Technology Assessment Protocol-Ecology (TAPE); Washington Department of Ecology: Washington, WA, USA, 2011.
- Wong, G. Proprietary Devices Evaluation Protocol (PDEP) for Stormwater Quality Treatment Devices; Auckland Regional Council: Auckland, New Zealand, 2012. [Google Scholar]
- Lenhart, H.A.; Hunt, W.F. Evaluating four storm-water performance metrics with a North Carolina Coastal Plain storm-water wetland. J. Environ. Eng. 2011, 137, 155–162. [Google Scholar] [CrossRef]
- Burton, A.; Pitt, R. Stormwater Effects Handbook: A Toolbox for Watershed Managers, Scientists and Engineers. 2015. Available online: http://unix.eng.ua.edu/~rpitt/Publications/BooksandReports/ (accessed on 6 June 2016).
- State Planning Policy; State of Queensland: Brisbane, Australia, 2013.
- Nichols, P.; Lucke, T.; Drapper, D. Field and Evaluation Methods Used to Test the Performance of a Stormceptor® Class 1 Stormwater Treatment Device in Australia. Sustainability 2015, 7, 16311–16323. [Google Scholar] [CrossRef]
Parameter | Bribie Lakes |
---|---|
Minimum storm duration | 5 min |
Catchment type | Urban Residential |
Stormwater treatment device type | Floating Treatment Wetlands (101.2 m2) (variable water depth, 1.5 m) |
Desired number of valid sampling events | 15 |
Minimum rainfall depth | 2.0 mm |
Minimum antecedent dry period | 6 h, depending on influent concentrations |
Minimum hydrograph sampling | First 60% of hydrograph |
Desired number of water sub-samples | Minimum 8 influent and 8 effluent subsamples per event |
Sampling method | Auto-sampler (ISCO), flow-weighted in 5000 L intervals |
Data management | Campbell Scientific CR800 Data logger with Ethernet Modem |
Total suspended solids (TSS) | APHA (2005) 2540 D |
Total Nitrogen and species | APHA (2005) 4500 N, APHA (2005) 4500 NH3, APHA (2005) 4500 NO3 |
Total Phosphorus and Orthophosphate | APHA (2005) 4500 P |
Event Date | Parameter | TSS | TP | TN | |||
---|---|---|---|---|---|---|---|
In (mg/L) | Out (mg/L) | In (mg/L) | Out (mg/L) | In (mg/L) | Out (mg/L) | ||
LOD (mg/L) | Rain Depth (mm) | 1 | 0.005 | 0.1 | |||
28 September 2015 | 2.0 | 323 | 51 | 0.28 | 0.1 | 1.00 | 0.25 |
23 October 2015 | 3.8 | 11 | 4 | 0.03 | 0.02 | 0.70 | 0.30 |
7 November 2015 | 13.2 | 414 | 24 | 0.28 | 0.03 | 3.20 | 0.70 |
14 November 2015 | 16.6 | 26 | 16 | 0.05 | 0.05 | 1.10 | 0.70 |
29 November 2015 | 12.4 | 270 | 28 | 0.14 | 0.02 | 2.20 | 1.30 |
30 January 2016 | 3.4 | 50 | 26 | 0.04 | 0.04 | 1.10 | 2.20 |
1 February 2016 | 20.4 | 19 | 36 | 0.04 | 0.07 | 0.80 | 1.60 |
6 February 2016 | 10.8 | 19 | 24 | 0.05 | 0.03 | 0.60 | 0.80 |
13 February 2016 | 25.6 | 37 | 19 | 0.05 | 0.03 | 1.40 | 2.10 |
6 March 2016 | 6.2 | 56 | 15 | 0.10 | 0.11 | 1.20 | 1.10 |
Mean | – | 122.5 | 24.3 | 0.106 | 0.05 | 1.33 | 1.105 |
Efficiency Ratio | – | 80% | 53% | 17% |
Event | Peak Flow (L/s) | Volume (kL) |
---|---|---|
28 September 2015 1 | – | – |
23 October 2015 | 100 | 279.3 |
7 November 2015 | 1340 | 511.9 |
14 November 2015 | 2335 | 531.0 |
29 November 2015 | 1160 | 361.0 |
30 January 2016 | 24 | 234.9 |
1 February 2016 | 93 | 281.0 |
6 February 2016 | 126 | 611.6 |
13 February 2016 | 320 | 563.0 |
6 March 2016 | 151 | 148.6 |
TSS | TP | TN |
---|---|---|
76% | 55% | 17% |
FTW | p-Value (Two-Tailed) | ||
---|---|---|---|
Parameter | TSS | TP | TN |
0.015 * | 0.042 * | 0.35 |
Parameter | TSS | TP | TN |
---|---|---|---|
Number of samples required | 26 | 36 | 150 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nichols, P.; Lucke, T.; Drapper, D.; Walker, C. Performance Evaluation of a Floating Treatment Wetland in an Urban Catchment. Water 2016, 8, 244. https://doi.org/10.3390/w8060244
Nichols P, Lucke T, Drapper D, Walker C. Performance Evaluation of a Floating Treatment Wetland in an Urban Catchment. Water. 2016; 8(6):244. https://doi.org/10.3390/w8060244
Chicago/Turabian StyleNichols, Peter, Terry Lucke, Darren Drapper, and Chris Walker. 2016. "Performance Evaluation of a Floating Treatment Wetland in an Urban Catchment" Water 8, no. 6: 244. https://doi.org/10.3390/w8060244
APA StyleNichols, P., Lucke, T., Drapper, D., & Walker, C. (2016). Performance Evaluation of a Floating Treatment Wetland in an Urban Catchment. Water, 8(6), 244. https://doi.org/10.3390/w8060244