Prioritization of Watersheds across Mali Using Remote Sensing Data and GIS Techniques for Agricultural Development Planning
Abstract
:1. Introduction, Rationale and Background
2. Study Area
3. Methods and Approaches
3.1. Criteria and Determining Factors
3.2. Input Data and Deriving Analysis Maps
3.2.1. Generation of Watersheds Using DEM
3.2.2. Population
3.2.3. Land Use/Land Cover
3.2.4. Slope
3.2.5. Soils
3.2.6. Rainfall
3.3. Determining Thematic Layer Weights
3.4. Integration of Thematic Layers and Spatial Model
4. Results and Discussion
4.1. Prioritization of Watersheds
4.2. Development of Spatial Model
4.3. Validation with Ground Survey Data
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Khan, M.A.; Gupta, V.P.; Moharana, P.C. Watershed prioritization using remote sensing and geographical information system: A case study from Guhiya, India. J. Arid Environ. 2001, 49, 465–475. [Google Scholar] [CrossRef]
- Jewitt, G. Can integrated water resources management sustain the provision of ecosystem goods and services? Phys. Chem. Earth A/B/C 2002, 27, 887–895. [Google Scholar] [CrossRef]
- Swallow, B.; Okono, N.; Achouri, M.; Tennyson, L. Watershed Management and Sustainable Mountain Development Working Paper No. 8. In Preparing for the Next Generation of Watershed Management Programmes and Projects, Proceedings of the African Workshop, Nairobi, Kenya, 8–10 October 2003; FAO: Rome, Italy, 2005. [Google Scholar]
- Iqbal, M.; Sajjad, H. Prioritization based on morphometric analysis if Dudhganga catchment, Kashmir valley, Inida, using remote sensing and geographical information system. Afr. J. Geo-Sci. Res. 2014, 2, 01–06. [Google Scholar]
- Moore, I.D.; Grayson, R.; Ladson, A. Digital terrain modelling: A review of hydrological, geomorphological, and biological applications. Hydrol. Process. 1991, 5, 3–30. [Google Scholar] [CrossRef]
- Panhalkar, S.; Pawar, C. Watershed Development Prioritization by Applying WERM Model and GIS Techniques in Vedaganga basin (India). ARPN J. Agric. Biol. Sci. 2011, 6, 38–44. [Google Scholar]
- Vittala, S.S.; Govindaiah, S.; Gowda, H.H. Prioritization of sub-watersheds for sustainable development and management of natural resources: An integrated approach using remote sensing, GIS and socio-economic data. Curr. Sci. 2008, 95, 345–354. [Google Scholar]
- Kamaraju, M.V.V.; Bhattacharya, A.; Sreenivasa, R.; Chandrasekhar, R.; Murthy, G.S.; Malleswara Rao, T.C.H. Ground-water potential evaluation of West Godavari District, Andhra Pradesh state, India—A GIS approach. Ground Water 1996, 34, 318–325. [Google Scholar] [CrossRef]
- Mattikalli, H.M.; Devereux, B.J.; Richards, K.S. Integration of remote sensedsatellite images with a geographical information system. Comput. Geosci. 1995, 21, 947–956. [Google Scholar] [CrossRef]
- Murthy, K.S.R. Groundwater potential in a semi-arid region of Andhra Pradesh—A geographical information system approach. Int. J. Remote Sens. 2000, 21, 1867–1884. [Google Scholar] [CrossRef]
- Sidhu, R.S.; Mehta, R.S. Delineation of groundwater potential zones in Kushawati river watershed a tributary of zauri river in goa, using remotely sensed data. In Proceedings of National Symposium on Engineering Applications of Remote Sensing and Recent Advantages; Indian Society of Remote Sensing: Dehradun, India, 1989; pp. 41–46. [Google Scholar]
- Gumma, M.K.; Pavelic, P. Mapping of groundwater potential zones across Ghana using remote sensing, geographic information systems, and spatial modeling. Environ. Monit. Assess. 2013, 185, 3561–3579. [Google Scholar] [CrossRef] [PubMed]
- Hellden, U.; Olsson, L.; Stern, M. Approaches to desertification monitoring in Sudan. In Satellite Remote Sensing in Developing Counties; Lery, L.G., Ed.; European Space Agency: Paris, France, 1982; pp. 131–144. [Google Scholar]
- Kushwaha, S.P.S. Application of Remote Sensing in Shifting Cultivation Areas; Technical Report; Abteilung Luftbildmessung and Fernerkundung, Universitat Freiburg: Freiburg, Germany, 1993; pp. 23–28. [Google Scholar]
- Smith, A.Y.; Blackwell, R.J. Development of an information data base for watershed monitoring. Photogramm. Eng. Remote Sens. 1980, 46, 1027–1038. [Google Scholar]
- Trotter, C.M. Remotely sensed data as information source for geographical information system in natural resources management: A review. Int. J. Remote Sens. 1991, 5, 225–239. [Google Scholar] [CrossRef]
- NRSA. Methodology Manual of Ground Water Prospective Zone Maps; Rajiv Gandhi National Rural Drinking Water Mission, Technical Guidelines For Preparation Of Ground Water Prospects Maps; Department of Space: Hyderabad, India, 2000; pp. 17–18. [Google Scholar]
- Javed, A.; Khanday, M.Y.; Ahmed, R. Prioritization of sub-watersheds based on morphometric and land use analysis using remote sensing and GIS techniques. J. Indian Soc. Remote Sens. 2009, 37, 261–274. [Google Scholar] [CrossRef]
- Sadeghi, S.; Jalili, K.; Nikkami, D. Land use optimization in watershed scale. Land Use Policy 2009, 26, 186–193. [Google Scholar] [CrossRef]
- Vemu, S.; Pinnamaneni, U.B. Sediment yield estimation and prioritization of watershed using remote sensing and GIS. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, 1, 529–533. [Google Scholar] [CrossRef]
- Li, K.; Coe, M.; Ramankutty, N.; De Jong, R. Modeling the hydrological impact of land-use change in West Africa. J. Hydrol. 2007, 337, 258–268. [Google Scholar] [CrossRef]
- Gumma, M.K.; Thenkabail, P.S.; Barry, B. Delineating shallow groundwater irrigated areas in the atankwidi watershed (Northern Ghana, Burkina Faso) using quickbird 0.61–2.44 meter data. Afr. J. Environ. Sci. Technol. 2010, 4, 455–664. [Google Scholar]
- Andersen, I.; Golitzen, K.G. The Niger River Basin: A Vision for Sustainable Management; The World Bank: Washington, DC, USA, 2005. [Google Scholar]
- Gumma, M.K.; Thenkabail, P.S.; Fujii, H.; Namara, R. Spatial models for selecting the most suitable areas of rice cultivation in the inland valley wetlands of Ghana using remote sensing and geographic information systems. J. Appl. Remote Sens. 2009, 3, 033537. [Google Scholar]
- Bah, M.; Cissé, S.; Diyamett, B.; Diallo, G.; Lerise, F.; Okali, D.; Okpara, E.; Olawoye, J.; Tacoli, C. Changing rural–urban linkages in Mali, Nigeria and Tanzania. Environ. Urban. 2003, 15, 13–24. [Google Scholar]
- Page, D.; Patterson, M.W.; Reeve, K. Modern migration in Ghana and Mali: A comparison of urban migration patterns. J. Glob. Initiat. Policy Pedagog. Perspect. 2010, 1, 4. [Google Scholar]
- Farvacque-Vitkovic, C.; Casalis, A.; Diop, M.; Eghoff, C. Development of the Cities of Mali—Challenges and Priorities; Africa Region Working Paper Series Number 104 a; The World Bank: Washington, DC, USA, 2007. [Google Scholar]
- Tou, J.T.; Gonzalez, R.C. Pattern Recognition Principles; Addison-Wesley Publishing Company: Reading, MA, USA, 1975. [Google Scholar]
- Thenkabail, P.S.; Enclona, E.A.; Ashton, M.S.; Legg, C.; De Dieu, M.J. Hyperion, IKONOS, ALI, and ETM+ sensors in the study of african rainforests. Remote Sens. Environ. 2004, 90, 23–43. [Google Scholar] [CrossRef]
- Gumma, M.; Thenkabail, P.; Teluguntla, P.; Rao, M.; Mohammed, I.; Whitbread, A. Mapping rice fallow cropland areas for short season grain legumes intensification in south Asia using MODIS 250 m time-series data. Int. J. Digit. Earth 2016. [Google Scholar] [CrossRef] [Green Version]
- Gumma, M.K.; Thenkabail, P.S.; Hideto, F.; Nelson, A.; Dheeravath, V.; Busia, D.; Rala, A. Mapping irrigated areas of Ghana using fusion of 30 m and 250 m resolution remote-sensing data. Remote Sens. 2011, 3, 816–835. [Google Scholar] [CrossRef]
- Murthy, K.S.R.; Mamo, A.G. Multi-criteria decision evaluation in groundwater zones identification in moyale-teltele subbasin, south Ethiopia. Int. J. Remote Sens. 2009, 30, 2729–2740. [Google Scholar] [CrossRef]
- Moran, M.S.; Peters-Lidard, C.D.; Watts, J.M.; McElroy, S. Estimating soil moisture at the watershed scale with satellite-based radar and land surface models. Can. J. Remote Sens. 2004, 30, 805–826. [Google Scholar] [CrossRef]
Climate Zone | Area (ha) | % of Total Area |
---|---|---|
Arid | 50,407,233 | 40 |
Dry sub-humid | 9,128,122 | 7 |
Humid | 305,994 | 0.2 |
Hyper arid | 39,352,637 | 31 |
Semi-Arid | 27,293,862 | 22 |
Parameter/Theme | Identified Units/Score | Area (ha) | % of Total Area (%) | Priority Class | Scores Assigned | Weightage |
---|---|---|---|---|---|---|
Population | Population Range (No. of people) | 3 | ||||
1 | 0–1000 | 1,013,630 | 80 | Very low | 1 | |
2 | 1000–2000 | 111,395 | 9 | Low | 2 | |
3 | 2000–5000 | 109,756 | 9 | Moderate | 3 | |
4 | 5000–10,000 | 21,969 | 2 | High | 4 | |
5 | 10,000–15,000 | 6334 | 1 | Very high | 5 | |
6 | 150,00–20,000 | 288 | 0.02 | Very high | 5 | |
7 | >20,000 | 1506 | 0.12 | Very high | 5 | |
Slope 90 m | Slope distribution (%) | 3 | ||||
1 | <1 (level to nearly level) | 156,338 | 12 | Very high | 5 | |
2 | >1 and ≤2 (gentle slope) | 348,312 | 28 | High | 5 | |
3 | >2 and ≤3 (gentle slope) | 376,179 | 30 | Moderate | 4 | |
4 | >3 and ≤4 (gentle slope) | 258,617 | 20 | Moderate | 3 | |
5 | >4 and ≤5 (moderate slope) | 62,198 | 5 | Low | 2 | |
6 | >5 and ≤6 (moderate slope) | 22,319 | 2 | Low | 2 | |
7 | >6 and ≤7(moderate slope) | 11,375 | 1 | Very low | 1 | |
8 | >7 and ≤8 (steep slope) | 29,541 | 2 | Very low | 1 | |
Rainfall 0.5 degrees | Annual rainfall (mm) | 5 | ||||
1 | 0–100 | 133,902 | 11 | Very low | 1 | |
2 | 100–250 | 493,785 | 39 | Very low | 1 | |
3 | 250–500 | 249,031 | 20 | Low | 2 | |
4 | 500–750 | 187,961 | 15 | Moderate | 3 | |
5 | 750–1000 | 156,833 | 12 | High | 4 | |
6 | >1000 | 43,367 | 3 | Very high | 5 | |
Land use 30 m | Land use/land cover classes | 3.5 | ||||
1 | Rainfed-cropland/rangeland | 124,603 | 10 | Very high | 5 | |
2 | Rainfed-croplands/shrublands | 108,438 | 9 | Very high | 5 | |
3 | Irrigated-croplands | 6541 | 1 | Very high | 5 | |
4 | Grasslands | 147,270 | 12 | Moderate | 3 | |
5 | Grasslands with shrubs | 64,843 | 5 | High | 4 | |
6 | Sandy desert and dunes | 706,371 | 56 | Very low | 1 | |
7 | Forests/shrublands | 101,191 | 8 | Very low | 1 | |
8 | Water | 5502 | 0 | Low | 2 | |
9 | Urban lands | 120 | 0 | Very low | 1 | |
Soils | Soil type (Source: FAO) | 4 | ||||
1 | Cambic Arenosols | 9633 | 1 | Moderate | 3 | |
2 | Chromic Vertisols | 10,985 | 1 | Moderate | 3 | |
3 | Dystric Nitosols | 8021 | 1 | High | 4 | |
4 | Eutric Cambisols | 2267 | 0 | High | 4 | |
5 | Eutric Fluvisols | 610 | 0 | Very high | 5 | |
6 | Eutric Gleysols | 124,973 | 10 | Low | 2 | |
7 | Eutric Nitosols | 12,859 | 1 | High | 4 | |
8 | Ferric Acrisols | 1177 | 0 | High | 4 | |
9 | Ferric Luvisols | 5797 | 0 | Moderate | 3 | |
10 | FLUVISOLS | 153,786 | 12 | Very high | 5 | |
11 | Gleyic Luvisols | 53,572 | 4 | Moderate | 3 | |
12 | GLEYSOLS | 4,751 | 0 | Moderate | 3 | |
13 | Gypsic Yermosols | 14,777 | 1 | Low | 2 | |
14 | Haplic Yermosols | 103,352 | 8 | Low | 2 | |
15 | LITHOSOLS | 153,088 | 12 | Very low | 1 | |
16 | Luvic Arenosols | 182,207 | 14 | Moderate | 3 | |
17 | Pellic Vertisols | 44 | 0 | Moderate | 3 | |
18 | Plinthic Acrisols | 1787 | 0 | High | 4 | |
19 | Saltbeds | 201,953 | 16 | Very low | 1 | |
20 | Solodic Planosols | 305 | 0 | Moderate | 3 | |
21 | Takyric Solonchaks | 174 | 0 | Low | 2 | |
22 | Vertic Cambisols | 4185 | 0 | High | 4 | |
23 | Water bodies | 1308 | 0 | Very low | 1 | |
24 | YERMOSOLS | 213,267 | 17 | Moderate | 3 |
Groundwater Potential Class | Total Score (%) | Area (ha) | % in Total Area |
---|---|---|---|
1st priority (very high) | 100–85 | 4,985,646 | 4 |
2nd priority (high) | 85–70 | 29,105,968 | 23 |
3rd Priority (medium) | 70–60 | 14,817,795 | 12 |
4th priority (low) | 60–45 | 51,617,548 | 41 |
5th priority (very low) | ≤45 | 25,960,891 | 21 |
Total areas | 126,487,848 | 100 |
Region | Potential Area (Mha) | ||||
---|---|---|---|---|---|
1st Priority (Very High) | 2nd Priority (High) | 3rd Priority (Medium) | 4th Priority (Low) | 5th Priority (Very Low) | |
Bamako | 0.01 | 0.02 | 0.00 | - | - |
Gao | - | 1.59 | 4.31 | 11.04 | 1.19 |
Kayes | 0.01 | 4.94 | 2.41 | 4.01 | 0.84 |
Kidal | - | 0.00 | 0.15 | 10.79 | 3.99 |
Koulikoro | 1.11 | 6.22 | 1.18 | 0.56 | 0.02 |
Mopti | 0.17 | 5.60 | 1.88 | 0.42 | 0.01 |
Sikasso | 1.83 | 4.39 | 0.79 | 0.12 | 0.02 |
Segou | 1.86 | 3.82 | 0.39 | 0.09 | 0.00 |
Timbuktu | 0.00 | 2.52 | 3.70 | 24.60 | 19.86 |
Total | 4.99 | 29.10 | 14.81 | 51.61 | 25.92 |
Classified Data | Reference Data (Classes) | Accuracy | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | Row Totals | Producers Accuracy | Users Accuracy | ||
Landsat derived classification | 01. Rainfed-croplands/Mix with shrubs | 96 | 0 | 0 | 2 | 9 | 0 | 1 | 0 | 0 | 108 | 93% | 89% |
02. Rainfed-croplands/Plantation | 1 | 82 | 3 | 4 | 5 | 0 | 13 | 0 | 1 | 109 | 96% | 75% | |
03. Irrigated-croplands | 0 | 0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 | 16 | 84% | 100% | |
04. Grasslands | 0 | 0 | 0 | 14 | 0 | 1 | 0 | 0 | 0 | 15 | 70% | 93% | |
05. Grasslands with shrubs | 0 | 0 | 0 | 0 | 14 | 0 | 0 | 0 | 0 | 14 | 50% | 100% | |
06. Sandy desert and dunes | 0 | 0 | 0 | 0 | 0 | 9 | 0 | 0 | 0 | 9 | 90% | 100% | |
07. Forests/shrublands | 6 | 3 | 0 | 0 | 0 | 0 | 34 | 0 | 0 | 43 | 71% | 79% | |
08. Water | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | - | - | |
09. Urbanlands | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 50% | 100% | |
Column Total | 103 | 85 | 19 | 20 | 28 | 10 | 48 | 0 | 2 | 315 |
Classified Data | Reference Data (Priority Classes) | Row Totals | Producers Accuracy | Users Accuracy | |||||
---|---|---|---|---|---|---|---|---|---|
01. Very High | 02. High | 03. Moderate | 04. Low | 05. Very Low | |||||
Prioritization map | 01. Very high | 80 | 7 | 6 | 0 | 0 | 93 | 90% | 86% |
02. High | 8 | 139 | 12 | 6 | 0 | 165 | 87% | 84% | |
03. Moderate | 0 | 11 | 19 | 2 | 0 | 32 | 50% | 59% | |
04. Low | 1 | 3 | 1 | 13 | 5 | 23 | 62% | 57% | |
05. Very low | 0 | 0 | 0 | 0 | 2 | 2 | 29% | 100% | |
Column Total | 89 | 160 | 38 | 21 | 7 | 315 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gumma, M.K.; Birhanu, B.Z.; Mohammed, I.A.; Tabo, R.; Whitbread, A.M. Prioritization of Watersheds across Mali Using Remote Sensing Data and GIS Techniques for Agricultural Development Planning. Water 2016, 8, 260. https://doi.org/10.3390/w8060260
Gumma MK, Birhanu BZ, Mohammed IA, Tabo R, Whitbread AM. Prioritization of Watersheds across Mali Using Remote Sensing Data and GIS Techniques for Agricultural Development Planning. Water. 2016; 8(6):260. https://doi.org/10.3390/w8060260
Chicago/Turabian StyleGumma, Murali Krishna, Birhanu Zemadim Birhanu, Irshad A. Mohammed, Ramadjita Tabo, and Anthony M. Whitbread. 2016. "Prioritization of Watersheds across Mali Using Remote Sensing Data and GIS Techniques for Agricultural Development Planning" Water 8, no. 6: 260. https://doi.org/10.3390/w8060260
APA StyleGumma, M. K., Birhanu, B. Z., Mohammed, I. A., Tabo, R., & Whitbread, A. M. (2016). Prioritization of Watersheds across Mali Using Remote Sensing Data and GIS Techniques for Agricultural Development Planning. Water, 8(6), 260. https://doi.org/10.3390/w8060260