Study on Applicability of Conceptual Hydrological Models for Flood Forecasting in Humid, Semi-Humid Semi-Arid and Arid Basins in China
Abstract
:1. Introduction
2. Data and Methods
2.1. XAJ Model
2.2. NS Model
2.3. MIX Model
2.4. SCE-UA Method
2.5. Information Theory Based Data Analysis Method
- (a)
- We adopt the PMI-based input variable selection method to select the most significant input variables. This operation will determine the minimum set of input variables that can satisfactorily represents the rainfall-runoff mapping relationship contained in the original data set.
- (b)
- Compute the mutual information (MI) between the selected input variables and the output discharge time series for the study watershed.
- (c)
- Compare MI of different types of watersheds. A higher MI value indicates that the useful information contained in the rainfall-runoff mapping relationship is sufficient. On the other hand, lower MI value indicates a mapping relationship with insufficient information.
2.6. Descriptions of the Nine Study Watersheds
3. Results and Discussion
3.1. Data Analysis of the 9 Study Watersheds
3.1.1. Rainfall-Runoff Data Analysis
3.1.2. Areal Mean Rainfall and Runoff Analysis Based on Information Theory
3.2. Model Performance Comparisons Based on Boxplots
3.2.1. Total Volume Relative Error
3.2.2. Peak Flow Relative Error
3.2.3. Peak Flooding Time Error
3.2.4. NSCE
3.3. Model Performance Comparisons Based on Scatter Plots
3.4. General Performance of the Models
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lei, T.; Li, L.; Kan, G.; Zhang, Z.; Sun, T.; Zhang, X.; Ma, J.; Huang, S. Automatic registration of unmanned aerial vehicle remote sensing images based on an improved SIFT algorithm. In Proceedings of the Eighth International Conference on Digital Image Processing (ICDIP 2016), Chengdu, China, 20–22 May 2016. [Google Scholar]
- Lei, T.; Pang, Z.; Wang, X.; Li, L.; Fu, J.; Kan, G.; Zhang, X.; Ding, L.; Li, J.; Huang, S.; et al. Drought and carbon cycling of grassland ecosystems under global change: A review. Water 2016, 8, 460. [Google Scholar] [CrossRef]
- Hall, J.; Arheimer, B.; Aronica, G.T.; Bilibasi, A.; Bohac, M.; Bonacci, O.; Borga, M.; Burlando, P.; Castellarin, A.; Chirico, G.B.; et al. A European Flood Database: Facilitating comprehensive flood research beyond administrative boundaries. In Changes in Flood Risk and Perception in Catchments and Cities; Proceedings of the International Association of Hydrologic Sciences, (PIAHS, ISSN 0144-7815, Volume 370); Rogger, M., Ed.; Copernicus Publications—International Association of Hydrologic: Stanford, CA, USA, 2015; pp. 89–95. [Google Scholar]
- Farkas, C.; Kværnø, S.; Engebretsen, A.; Deelstra, J. Applying profile- and catchment-based mathematical models for evaluating the run-off from a Nordic catchment. J. Hydrol. Hydromech. 2016, 64, 218–225. [Google Scholar] [CrossRef]
- Nester, T.; Komma, J.; Blöschl, G. Real time flood forecasting in the Upper Danube basin. J. Hydrol. Hydromech. 2016, 64, 404–414. [Google Scholar] [CrossRef]
- Zuo, D.; Cai, S.; Xu, Z.; Li, F.; Sun, W.; Yang, X.; Kan, G.; Liu, P. Spatiotemporal patterns of drought at various time scales in Shandong Province of Eastern China. Theor. Appl. Climatol. 2016. [Google Scholar] [CrossRef]
- Blöschl, G.; Hall, J.; Parajka, J.; Perdigão, R.A.P.; Merz, B.; Arheimer, B.; Aronica, G.T.; Bilibashi, A.; Bonacci, O.; Borga, M.; et al. Changing climate shifts timing of European floods. Science 2017, 357, 588–590. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Kan, G.; Liang, K.; Li, J.; Hong, Y.; Zuo, D.; Lei, T.; Xu, W.; Zhang, M.; Shi, W.; et al. Air quality analysis and forecast for environment and public health protection: A case study in Beijing, China. Transylv. Rev. 2016, XXIV, 3575–3593. [Google Scholar]
- Dong, J.; Zheng, C.; Li, Z.; Kan, G.; Zhao, M.; Yang, N. SCE-UA algorithm for economic load dispatch of generators with value-point effects. J. Hydroelectr. Eng. 2014, 33, 277–285. (In Chinese) [Google Scholar]
- Dong, J.; Zheng, C.; Kan, G.; Wen, J.; Zhao, M.; Yu, J. Applying the ensemble artificial neural network-based hybrid data-driven model to daily total load forecasting. Neural Comput. Appl. 2015, 26, 603–611. [Google Scholar] [CrossRef]
- Dong, J.; Zheng, C.; Kan, G.; Zhao, M. Optimal scheduling of hydrothermal system with network and ramping via SCE-UA method. Open Cybern. Syst. J. 2015, 7, 55–64. [Google Scholar] [CrossRef]
- Kan, G.; Liu, Z.; Li, Z.; Yao, C.; Zhou, S. Couping Xinanjiang runoff generation model with improved BP flow concentration model. Adv. Water Sci. 2012, 23, 21–28. (In Chinese) [Google Scholar]
- Kan, G.; Li, Z.; Liu, Z.; Li, Q.; Hu, Y. An improved neural network model and its application to hydrological simulation. J. Hohai Univ. 2013, 41, 294–299. (In Chinese) [Google Scholar]
- Kan, G.; Li, Z.; Liu, Z.; Yao, C.; Zhang, H. Application and study on coupling of conceptual hydrological model and neural network model. J. Hydroelectr. Eng. 2013, 32, 9–13. (In Chinese) [Google Scholar]
- Li, Z.; Huang, P.; Yao, C.; Li, Q.; Zhao, L.; Yu, Z. Application of flexible-structure hydrological models in different runoff generation regions. Adv. Water Sci. 2014, 25, 28–35. (In Chinese) [Google Scholar]
- Zhao, L.; Kan, G.; Li, Z. Building and application of XPBK neural network model. Yellow River 2014, 36, 30–32. (In Chinese) [Google Scholar]
- Kan, G.; Yao, C.; Li, Q.; Li, Z.; Yu, Z.; Liu, Z.; Ding, L.; He, X.; Liang, K. Improving event-based rainfall-runoff simulation using an ensemble artificial neural network based hybrid data-driven model. Stoch. Environ. Res. Risk Assess. 2015, 29, 1345–1370. [Google Scholar] [CrossRef]
- Kan, G.; Li, J.; Zhang, X.; Ding, L.; He, X.; Liang, K.; Jiang, X.; Ren, M.; Li, H.; Wang, F.; et al. A new hybrid data-driven model for event-based rainfall-runoff simulation. Neural Comput. Appl. 2015, 28, 2519–2534. [Google Scholar] [CrossRef]
- Kan, G.; He, X.; Ding, L.; Li, J.; Lei, T.; Liang, K.; Hong, Y. An improved hybrid data-driven model and its application in daily rainfall-runoff simulation. In Proceedings of the 6th Digital Earth Summit on IOP Conference Series: Earth and Environmental Science, Beijing, China, 7–8 July 2016; Volume 46. [Google Scholar]
- Kan, G.; He, X.; Li, J.; Ding, L.; Zhang, D.; Lei, T.; Hong, Y.; Liang, K.; Zuo, D.; Bao, Z.; et al. A novel hybrid data-driven model for multi-input single-output system simulation. Neural Comput. Appl. 2016. [Google Scholar] [CrossRef]
- Kan, G.; Liang, K.; Li, J.; Ding, L.; He, X.; Hu, Y.; Amo-Boateng, M. Accelerating the SCE-UA global optimization method based on multi-core CPU and many-core GPU. Adv. Meteorol. 2016, 2016, 8483728. [Google Scholar] [CrossRef]
- Kan, G.; Lei, T.; Liang, K.; Li, J.; Ding, L.; He, X.; Yu, H.; Zhang, D.; Zuo, D.; Bao, Z.; et al. A multi-core CPU and many-core GPU based fast parallel shuffled complex evolution global optimization approach. IEEE Trans. Parallel Distrib. Syst. 2016. [Google Scholar] [CrossRef]
- Kan, G.; Zhang, M.; Liang, K.; Wang, H.; Jiang, Y.; Li, J.; Ding, L.; He, X.; Hong, Y.; Zuo, D.; et al. Improving water quantity simulation & forecasting to solve the energy-water-food nexus issue by using heterogeneous computing accelerated global optimization method. Appl. Energy 2016. [Google Scholar] [CrossRef]
- Zhao, R.; Zhuang, Y.; Fang, L.; Liu, X.; Zhuang, Q. The Xinanjiang Model, Hydrological Forecasting—Prévisions hydrologi, Proceedings Oxford Symposium; IAHS-AISH Press: Wallingford, UK, 1980; No. 129; pp. 351–356. Available online: http://hydrologie.org/redbooks/a129/iahs_129_0351.pdf (accessed on 18 September 2017).
- Zhao, R. Watershed Hydrological Model-Xinanjiang Model and Northern Shaanxi Model; Water Resources and Electric Power Press: Beijing, China, 1983. [Google Scholar]
- Zhao, R. The Xinanjiang model applied in China. J. Hydrol. 1992, 135, 371–381. [Google Scholar]
- Zhao, R. A non-linear system model for basin concentration. J. Hydrol. 1993, 142, 477–482. [Google Scholar]
- Zhao, R. Anthology of Hydrological Forecasting; Water Resources and Electric Power Press: Beijing, China, 1994. [Google Scholar]
- Huang, P.; Li, Z.; Yao, C.; Hu, C.; Zhang, J. Application and comparison of hydrological models for semi-arid and semi-humid regions. J. Hydroelectr. Eng. 2013, 32, 4–9. (In Chinese) [Google Scholar]
- Li, Z.; Kan, G.; Yao, C.; Liu, Z.; Li, Q.; Yu, S. Improved neural network model and its application in hydrological simulation. J. Hydrol. Eng. 2014, 19, 04014019-1–04014019-17. [Google Scholar] [CrossRef]
- Li, Z.; Huang, P.; Zhang, Y.; Yao, C.; Yan, M.; Huo, W. Study on spatial combination model of infiltration-excess and saturation-excess runoff in semi-humid watersheds. Yellow River 2015, 37, 1–6. (In Chinese) [Google Scholar]
- Bao, W.; Wang, C. Vertically-mixed runoff generation model and its application. J. China Hydrol. 1997, 3, 18–21. (In Chinese) [Google Scholar]
- Bao, W.; Zhao, L.; Wang, J.; Wang, H.; Qian, K. Linearized calibration of vertically-mixed runoff model parameters. J. Hydroelectr. Eng. 2014, 33, 85–91. (In Chinese) [Google Scholar]
- Wang, Q.; Shen, G.; Wang, H. Application and improvement of vertical-mixed runoff model in different regions. Water Sav. Irrig. 2012, 5, 11–15. (In Chinese) [Google Scholar]
- Wen, S.; Cai, T. Application of improved vertical mixed runoff model in Dalinghe river basin. Water Resour. Hydropower Northeast China 2015, 4, 45–48. (In Chinese) [Google Scholar]
- Li, Z.; Kong, X.; Zhang, C. Improving Xin’anjiang model. J. China Hydrol. 1998, 4, 19–23. (In Chinese) [Google Scholar]
- Qu, S.; Bao, W.; Zhang, M.; Ji, H.; Hu, Q. Comparison of Xin’anjiang model with vertically-mixed runoff model. J. Hohai Univ. (Nat. Sci.) 2003, 32, 374–377. (In Chinese) [Google Scholar]
- Duan, Q. A Global Optimization Strategy for Efficient and Effective Calibration of Hydrologic Models. Ph.D. Thesis, Department of Hydrology and Water Resources, University of Arizona, Tucson, AZ, USA, 1991. [Google Scholar]
- Duan, Q.; Sorooshian, S.; Gupta, V. Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour. Res. 1992, 28, 1015–1031. [Google Scholar] [CrossRef]
- Duan, Q.; Gupta, V.K.; Sorooshian, S. Shuffled complex evolution approach for effective and efficient global minimization. J. Optim. Theory Appl. 1993, 76, 501–521. [Google Scholar] [CrossRef]
- Duan, Q.; Sorooshian, S.; Gupta, V. Optimal use of the SCE-UA global optimization method for calibrating watershed models. J. Hydrol. 1994, 158, 265–284. [Google Scholar] [CrossRef]
- Bowden, G.J.; Dandy, G.C.; Maier, H.R. Input determination for neural network models in water resources applications. Part 1-background and methodology. J. Hydrol. 2005, 301, 75–92. [Google Scholar] [CrossRef]
- Bowden, G.J.; Maier, H.R.; Dandy, G.C. Input determination for neural network models in water resources applications. Part 2. Case study: Forecasting salinity in a river. J. Hydrol. 2005, 301, 93–107. [Google Scholar] [CrossRef]
- May, R.J.; Dandy, G.C.; Maier, H.R.; Nixon, J.B. Application of partial mutual information variable selection to ANN forecasting of water quality in water distribution systems. Environ. Model. Softw. 2008, 23, 1289–1299. [Google Scholar] [CrossRef]
- May, R.J.; Maier, H.R.; Dandy, G.C.; Gayani Fernando, T.M.K. Non-linear variable selection for artificial neural networks using partial mutual information. Environ. Model. Softw. 2008, 23, 1312–1326. [Google Scholar] [CrossRef]
- Sharma, A. Seasonal to internannual rainfall probabilistic forecasts for improved water supply management: Part 1-A strategy for system predictor identification. J. Hydrol. 2000, 239, 232–239. [Google Scholar] [CrossRef]
- Sharma, A. Seasonal to interannual rainfall probabilistic forecasts for improved water supply management: Part 3-A nonparametric probabilistic forecast model. J. Hydrol. 2000, 239, 249–258. [Google Scholar] [CrossRef]
- Li, C.; Cheng, X.; Li, N.; Du, X.; Yu, Q.; Kan, G. A framework for flood risk analysis and benefit assessment of flood control measures in urban areas. Int. J. Environ. Res. Public Health 2016, 13, 787. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; He, X.; Ren, M.; Zhang, Z.; Jiang, X.; Kan, G.; Wang, F. Study of Daqiao reservoir operation scheme during flood period based on short-term rainfall forecasting. In Proceedings of the 6th Symposium on Flood and Draught Defense Information Technology and Flash Flood Disaster Warning New Technology Application; (In Chinese). Available online: https://www.researchgate.net/publication/306357292_Study_of_Daqiao_reservior_operation_scheme_during_flood_period_based_on_short-term_rainfall_forecasting (accessed on 18 September 2017).
Watershed Type | Watershed Name | Area (km2) | Number of Sub-Basins (Rainfall Stations) | Annual Mean Rainfall (mm) | Annual Mean Runoff (mm) | Annual Mean Runoff Coefficient |
---|---|---|---|---|---|---|
Humid | Chengcun | 290 | 10 | 1600 | 591 | 0.37 |
Chuxian | 579 | 4 | 1047 | 352 | 0.34 | |
Tunxi | 2696.7 | 11 | 1800 | 900 | 0.5 | |
Semi-humid semi-arid | Yingge | 539 | 2 | 714 | 248 | 0.35 |
Maduwang | 1601 | 10 | 631 | 191 | 0.3 | |
Dongwan | 2856 | 8 | 700 | 212 | 0.3 | |
Arid | Xinghe | 474 | 3 | 500 | 96 | 0.19 |
Zaoyuan | 716 | 4 | 635 | 71 | 0.11 | |
Zhidan | 773 | 5 | 510 | 42 | 0.08 |
Watershed Type | Watershed | Selected Input Variables | MI |
---|---|---|---|
Humid | Chengcun | P(t-4), P(t-7), P(t-9), P(t-10), P(t-12), P(t-15), P(t-18), P(t-21), P(t-23) | 0.7378 |
Tunxi | P(t-6), P(t-9), P(t-10), P(t-13), P(t-17), P(t-18), P(t-20), P(t-21), P(t-22), P(t-23) | 0.4794 | |
Chuxian | P(t-8), P(t-12), P(t-15), P(t-17), P(t-18), P(t-20), P(t-21), P(t-22), P(t-23) | 0.3186 | |
Semi-humid semi-arid | Dongwan | P(t-9), P(t-10), P(t-13), P(t-14), P(t-15), P(t-18), P(t-23) | 0.4536 |
Maduwang | P(t-9), P(t-15), P(t-19), P(t-22), P(t-15) | 0.5287 | |
Yingge | P(t), P(t-3), P(t-6), P(t-9), P(t-12), P(t-15), P(t-23) | 0.8971 | |
Arid | Zhidan | P(t), P(t-1), P(t-2), P(t-3), P(t-8) | 0.5573 |
Zaoyuan | P(t-12) | 4.9642 | |
Xinghe | P(t), P(t-1), P(t-2), P(t-3), P(t-4), P(t-6) | 0.8057 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kan, G.; He, X.; Ding, L.; Li, J.; Liang, K.; Hong, Y. Study on Applicability of Conceptual Hydrological Models for Flood Forecasting in Humid, Semi-Humid Semi-Arid and Arid Basins in China. Water 2017, 9, 719. https://doi.org/10.3390/w9100719
Kan G, He X, Ding L, Li J, Liang K, Hong Y. Study on Applicability of Conceptual Hydrological Models for Flood Forecasting in Humid, Semi-Humid Semi-Arid and Arid Basins in China. Water. 2017; 9(10):719. https://doi.org/10.3390/w9100719
Chicago/Turabian StyleKan, Guangyuan, Xiaoyan He, Liuqian Ding, Jiren Li, Ke Liang, and Yang Hong. 2017. "Study on Applicability of Conceptual Hydrological Models for Flood Forecasting in Humid, Semi-Humid Semi-Arid and Arid Basins in China" Water 9, no. 10: 719. https://doi.org/10.3390/w9100719
APA StyleKan, G., He, X., Ding, L., Li, J., Liang, K., & Hong, Y. (2017). Study on Applicability of Conceptual Hydrological Models for Flood Forecasting in Humid, Semi-Humid Semi-Arid and Arid Basins in China. Water, 9(10), 719. https://doi.org/10.3390/w9100719