Phosphorus Retention by Fly Ash Amended Filter Media in Aged Bioretention Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Filter Media Collection and Analysis
2.3. Media Associated Phosphorus Analysis
2.4. Water Sampling and Analysis
2.5. Statistical Analyses
3. Results and Discussion
3.1. Media pH
3.2. Phosphorus Accumulation in Bioretention Media
3.3. Discussion on T-P, WS-P, and M3-P
3.4. Phosphorus Depth Profiles in the Bioretention Media
3.5. Stormwater Monitoring
3.6. Phosphorous Retained within the Bioretention Media
3.6.1. Estimates from Core Samples
3.6.2. Estimates from Flow Monitoring
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Gorme, J.B.; Maniquiz-Redillas, M.C.; Kim, L.-H. Development of a stormwater treatment system using bottom ash as filter media. Desalin. Water Treat. 2015, 53, 3118–3125. [Google Scholar] [CrossRef]
- Reddy, K.R.; Xie, T.; Dastgheibi, S. Evaluation of biochar as a potential filter media for the removal of mixed contaminants from urban storm water runoff. J. Environ. Eng. 2014, 140. [Google Scholar] [CrossRef]
- Department of Environmental Resources. The Bioretention Manual; Dept. of Environmental Resources: Prince George’s County, MD, USA, 2001. [Google Scholar]
- Hsieh, C.; Davis, A.P. Evaluation and optimization of bioretention media for treatment of urban storm water runoff. J. Environ. Eng. 2005, 131, 1521–1531. [Google Scholar] [CrossRef]
- DiBlasi, C.J.; Li, H.; Davis, A.P.; Ghosh, U. Removal and fate of polycyclic aromatic hydrocarbon pollutants in an urban stormwater bioretention facility. Environ. Sci. Technol. 2008, 43, 494–502. [Google Scholar] [CrossRef]
- Li, H.; Davis, A.P. Heavy metal capture and accumulation in bioretention media. Environ. Sci. Technol. 2008, 42, 5247–5253. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Davis, A.P. Water quality improvement through reductions of pollutant loads using bioretention. J. Environ. Eng. 2009, 135, 567–576. [Google Scholar] [CrossRef]
- Hsieh, C.-H.; Davis, A.P.; Needelman, B.A. Bioretention column studies of phosphorus removal from urban stormwater runoff. Water Environ. Res. 2007, 79, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Davis, A.P. Field performance of bioretention: Water quality. Environ. Eng. Sci. 2007, 24, 1048–1064. [Google Scholar] [CrossRef]
- Dietz, M.; Clausen, J. A field evaluation of rain garden flow and pollutant treatment. Water Air Soil Pollut. 2005, 167, 123–138. [Google Scholar] [CrossRef]
- Hunt, W.; Jarrett, A.; Smith, J.; Sharkey, L. Evaluating bioretention hydrology and nutrient removal at three field sites in north carolina. J. Irrig. Drain. Eng. 2006, 132, 600–608. [Google Scholar] [CrossRef]
- Heathcote, I.W. Integrated Watershed Management: Principles and Practice; Wiley: Hoboken, NJ, USA, 1998. [Google Scholar]
- Erickson, A.J.; Gulliver, J.S.; Weiss, P.T. Enhanced sand filtration for storm water phosphorus removal. J. Environ. Eng. 2007, 133, 485–497. [Google Scholar] [CrossRef]
- Zhang, W.; Brown, G.O.; Storm, D.E.; Zhang, H. Fly-ash-amended sand as filter media in bioretention cells to improve phosphorus removal. Water Environ. Res. 2008, 80, 507–516. [Google Scholar] [CrossRef] [PubMed]
- Sims, J.T.; Pierzynski, G.M. Chemistry of phosphorus in soils. In Chemical Processes in Soils; Al-Amoodi, L., Dick, W., Eds.; Soil Science Society of America, Inc.: Madison, WI, USA, 2005. [Google Scholar]
- LeFevre, G.; Paus, K.; Natarajan, P.; Gulliver, J.; Novak, P.; Hozalski, R. Review of dissolved pollutants in urban storm water and their removal and fate in bioretention cells. J. Environ. Eng. 2015, 141. [Google Scholar] [CrossRef]
- Clark, S.E.; Pitt, R. Targeting treatment technologies to address specific stormwater pollutants and numeric discharge limits. Water Res. 2012, 46, 6715–6730. [Google Scholar] [CrossRef] [PubMed]
- Bratieres, K.; Fletcher, T.D.; Deletic, A.; Zinger, Y. Nutrient and sediment removal by stormwater biofilters: A large-scale design optimisation study. Water Res. 2008, 42, 3930–3940. [Google Scholar] [CrossRef] [PubMed]
- Paus, K.; Morgan, J.; Gulliver, J.; Hozalski, R. Effects of bioretention media compost volume fraction on toxic metals removal, hydraulic conductivity, and phosphorous release. J. Environ. Eng. 2014, 140. [Google Scholar] [CrossRef]
- Dubus, I.G.; Becquer, T. Phosphorus sorption and desorption in oxide-rich ferralsols of new caledonia. Soil Res. 2001, 39, 403–414. [Google Scholar] [CrossRef]
- Guppy, C.N.; Menzies, N.W.; Moody, P.W.; Blamey, F.P.C. Competitive sorption reactions between phosphorus and organic matter in soil: A review. Soil Res. 2005, 43, 189–202. [Google Scholar] [CrossRef]
- Singh, B.; Gilkes, R. Phosphorus sorption in relation to soil properties for the major soil types of south-western australia. Soil Res. 1991, 29, 603–618. [Google Scholar] [CrossRef]
- Villapando, R.R.; Graetz, D.A. Phosphorus sorption and desorption properties of the spodic horizon from selected florida spodosols journal series No. R-06891. Soil Sci. Soc. Am. J. 2001, 65, 331–339. [Google Scholar] [CrossRef]
- Davis, A.P.; Shokouhian, M.; Sharma, H.; Minami, C. Laboratory study of biological retention for urban stormwater management. Water Environ. Res. 2001, 73, 5–14. [Google Scholar] [CrossRef] [PubMed]
- Gironas, J.; Adriasola, J.M.; Fernandez, B. Experimental analysis and modeling of a stormwater perlite filter. Water Environ. Res. 2008, 80, 524–539. [Google Scholar] [CrossRef] [PubMed]
- Kus, B.; Kandasamy, J.; Vigneswaran, S.; Shon, H.; Moody, G. Two stage filtration for stormwater treatment: A pilot scale study. Desalin. Water Treat. 2012, 45, 361–369. [Google Scholar] [CrossRef]
- Samuel, M.P.; Senthilvel, S.; Tamilmani, D.; Mathew, A.C. Performance evaluation and modelling studies of gravel–coir fibre–sand multimedia stormwater filter. Environ. Technol. 2012, 33, 2057–2069. [Google Scholar] [CrossRef] [PubMed]
- Seelsaen, N.; McLaughlan, R.; Moore, S.; Ball, J.; Stuetz, R. Pollutant removal efficiency of alternative filtration media in stormwater treatment. Water Sci. Technol. 2006, 54, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Singhal, N.; Elefsiniotis, T.; Weeraratne, N.; Johnson, A. Sediment retention by alternative filtration media configurations in stormwater treatment. Water Air Soil Pollut. 2008, 187, 173–180. [Google Scholar] [CrossRef]
- Reddy, K.R. Reactive Stormwater Filter to Prevent Beach Water Pollution; Final Project Report for Great Lakes Restoration Initiative; United States Environmental Protection Agency: Washington, DC, USA, 2013.
- Agyei, N.M.; Strydom, C.A.; Potgieter, J.H. The removal of phosphate ions from aqueous solution by fly ash, slag, ordinary portland cement and related blends. Cem. Concr. Res. 2002, 32, 1889–1897. [Google Scholar] [CrossRef]
- Akay, G.; Keskinler, B.; Çakici, A.; Danis, U. Phosphate removal from water by red mud using crossflow microfiltration. Water Res. 1998, 32, 717–726. [Google Scholar] [CrossRef]
- Cheung, K.C.; Venkitachalam, T.H. Improving phosphate removal of sand infiltration system using alkaline fly ash. Chemosphere 2000, 41, 243–249. [Google Scholar] [CrossRef]
- Cheung, K.; Venkitachalam, T.; Scott, W. Selecting soil amendment materials for removal of phosphorus. Water Sci. Technol. 1994, 30, 247–256. [Google Scholar]
- Forbes, M.G.; Dickson, K.L.; Saleh, F.; Waller, W.T.; Doyle, R.D.; Hudak, P. Recovery and fractionation of phosphorus retained by lightweight expanded shale and masonry sand used as media in subsurface flow treatment wetlands. Environ. Sci. Technol. 2005, 39, 4621–4627. [Google Scholar] [CrossRef] [PubMed]
- Johansson, L.; Gustafsson, J.P. Phosphate removal using blast furnace slags and opoka-mechanisms. Water Res. 2000, 34, 259–265. [Google Scholar] [CrossRef]
- Erickson, A.J.; Gulliver, J.S.; Weiss, P.T. Capturing phosphates with iron enhanced sand filtration. Water Res. 2012, 46, 3032–3042. [Google Scholar] [CrossRef] [PubMed]
- Chavez, R.A.; Brown, G.O.; Coffman, R.R.; Storm, D.E. Design, construction and lessons learned from oklahoma bioretention cell demonstration project. Appl. Eng. Agric. 2015, 31, 63–71. [Google Scholar]
- Jones, P.S.; Davis, A.P. Spatial accumulation and strength of affiliation of heavy metals in bioretention media. J. Environ. Eng. 2012, 139, 479–487. [Google Scholar] [CrossRef]
- Chen, X.; Peltier, E.; Sturm, B.S.; Young, C.B. Nitrogen removal and nitrifying and denitrifying bacteria quantification in a stormwater bioretention system. Water Res. 2013, 47, 1691–1700. [Google Scholar] [CrossRef] [PubMed]
- Muerdter, C.; Özkök, E.; Li, L.; Davis, A.P. Vegetation and media characteristics of an effective bioretention cell. J. Sustain. Water Built Environ. 2015, 2. [Google Scholar] [CrossRef]
- Komlos, J.; Traver, R.G. Long-term orthophosphate removal in a field-scale storm-water bioinfiltration rain garden. J. Environ. Eng. 2012, 138, 991–998. [Google Scholar] [CrossRef]
- Brown, R.A.; Hunt, W.F. Impacts of construction activity on bioretention performance. J. Hydrol. Eng. 2009, 15, 386–394. [Google Scholar] [CrossRef]
- EPA. SW-846 Test Method 3050B: Acid Digestion of Sediments, Sludges, and Soils; EPA: Cincinnati, OH, USA, 1996.
- Mehlich, A. Mehlich 3 soil test extractant: A modification of mehlich 2 extractant. Commun. Soil Sci. Plant Anal. 1984, 15, 1409–1416. [Google Scholar] [CrossRef]
- ASTM. ASTM D3977-97—Standard Test Methods for Determining Sediment Concentration in Water Samples, Method B; ASTM: West Conshohocken, PA, USA, 2013. [Google Scholar]
- Base SAS 9.4 User’s Guide, version 9.4; SAS: Cary, NC, USA, 2014.
- Chavez, R.A.; Brown, G.O.; Storm, D.E. Impact of variable hydraulic conductivity on bioretention cell performance and implications for construction standards. J. Hydraul. Eng. 2012, 139, 707–715. [Google Scholar] [CrossRef]
- Houdeshel, C.D.; Hultine, K.R.; Johnson, N.C.; Pomeroy, C.A. Evaluation of three vegetation treatments in bioretention gardens in a semi-arid climate. Landsc. Urban Plan. 2015, 135, 62–72. [Google Scholar] [CrossRef]
- Carpenter, D.D.; Hallam, L. Influence of planting soil mix characteristics on bioretention cell design and performance. J. Hydrol. Eng. 2009, 15, 404–416. [Google Scholar] [CrossRef]
- Brown, R.A.; Hunt, W.F. Improving bioretention/biofiltration performance with restorative maintenance. Water Sci. Technol. 2012, 65, 361–367. [Google Scholar] [CrossRef] [PubMed]
- Runkel, R.L.; Crawford, C.G.; Cohn, T.A. Load Estimator (Loadest): A Fortran Program for Estimating Constituent Loads in Streams and Rivers; USGS: Reston, VA, USA, 2004; pp. 2328–7055.
Site | GLA | GHS | ECP | SR |
---|---|---|---|---|
Location | 36°36′39′′ N, 94°48′14′′ W | 36°37′19′′ N, 94°44′50′′ W | 36°34′47′′ N, 94°46′08′′ W | 36°38′59′′ N, 94°46′08′′ W |
Property Type | Public | Public | Commercial | Residential |
Impervious Land Cover (%) | 36 | 90 | 100 | 13 |
Drainage area (ha) | 0.76 | 0.26 | 0.25 | 0.15 |
Cell area (m2) | 172 | 149 | 63 | 101 |
Surface/drainage area ratio (%) | 2.2 | 5.7 | 2.5 | 6.7 |
Sampled media depth (m) | 0.6 | 0.6 | 0.6 | 0.6 |
Mean annual loading depth a (m) | 15.7 | 24.1 | 23.4 | 4.20 |
Site | Media Depth | Variable | Initial (2007) mg·kg−1 n = 8 | Final (2014) mg·kg−1 n = 24 | Significance Level |
---|---|---|---|---|---|
ECP | Topsoil (0–0.15 m) | T-P | 225 ± 14 | 308 ± 87 | ns † |
WS-P | 0.11 ± 0.10 | 1.4 ± 0.2 | *** | ||
M3-P | 1.7 ± 0.1 | 27.6 ± 4.6 | *** | ||
Filter Media (0.15–0.60 m) | T-P | 361 ± 110 | 400 ± 140 | ns † | |
WS-P | 0.10 ± 0.06 | 1.0 ± 0.3 | *** | ||
M3-P | 3.2 ± 0.2 | 7.6 ± 3.7 | * | ||
GHS | Topsoil (0–0.15 m) | T-P | 265 ± 3.5 | 331 ± 114 | ns † |
WS-P | 0.20 ± 0.01 | 1.5 ± 0.3 | ** | ||
M3-P | 8.0 ± 0.1 | 34 ± 8 | ** | ||
Filter Media (0.15–0.60 m) | T-P | 243 ± 3 | 281 ± 33.0 | ns † | |
WS-P | 0.40 ± 0.05 | 0.80 ± 0.30 | * | ||
M3-P | 5.1 ± 1.4 | 19 ± 8 | ** | ||
GLA | Topsoil (0–0.15 m) | T-P | 276 ± 19 | 290 ± 60 | ns † |
WS-P | 0.20 ± 0.01 | 2.7 ± 1.2 | * | ||
M3-P | 10 ± 0.1 | 30 ± 5 | ** | ||
Filter Media (0.15–0.60 m) | T-P | 195 ± 28 | 223 ± 53 | ns † | |
WS-P | 0.30 ± 0.18 | 1.1 ± 0.8 | * | ||
M3-P | 13 ± 3 | 23 ± 9 | * | ||
SR | Topsoil (0–0.15 m) | T-P | 170 ± 18 | 312 ± 70 | ns † |
WS-P | 0.10 ± 0.01 | 5.7 ± 1.2 | *** | ||
M3-P | 5 0± 0.1 | 40 ± 18 | * | ||
Filter Media (0.15–0.60 m) | T-P | 355 ± 129 | 372 ± 35 | ns † | |
WS-P | 0.20 ± 0.04 | 1.0 ± 0.7 | * | ||
M3-P | 4.0 ± 0.3 | 13 ± 8 | * |
Media Depth (m) | ||||||
---|---|---|---|---|---|---|
Site | N | Variable (mg·kg−1) | 0–0.15 | 0.15–0.30 | 0.30–0.45 | 0.45–0.60 |
ECP | 24 | T-P | 308 ± 88a | 467 ± 99a,b | 489 ± 153b | 426 ± 196a,b |
WS-P | 1.4 ± 0.2c | 0.97 ± 0.2d | 1.0 ± 0.3d | 1.2 ± 0.3c,d | ||
M3-P | 27.5 ± 5e | 6.5 ± 0.8f | 6.0 ± 0.6f | 10 ± 7f | ||
GHS | 24 | T-P | 331 ± 114g | 279 ± 50g | 282 ± 23g | 285 ± 9g |
WS-P | 1.5 ± 0.3h | 0.67 ± 0.1i | 0.93 ± 0.35i | 0.82 ± 0.42i | ||
M3-P | 35 ± 7j | 15 ± 3k | 16 ± 5k | 31 ± 6j | ||
GLA | 24 | T-P | 290 ± 60l | 207 ± 33m | 255 ± 75l,m | 205 ± 30m |
WS-P | 2.6 ± 1n | 0.70 ± 0.12o | 1.4 ± 1o | 1.4 ± 0.62o | ||
M3-P | 29 ± 5p | 15 ± 2q | 26 ± 8p | 25 ± 9p | ||
SR | 24 | T-P | 312 ± 170r | 414 ± 267r | 387 ± 238r | 315 ± 230r |
WS-P | 5.7 ± 1s | 1.0 ± 0.5t | 1.0 ± 0.63t | 1.2 ± 0.9t | ||
M3-P | 40 ± 18u | 9.6 ± 3.5v,w | 7.5 ± 1w | 20 ± 10v |
BRC | Storm Events (n) | Inflow (mg·L−1) | Underdrain (mg·L−1) | % Reduction | Significance | Inflow (g) | Underdrain (g) | % Reduction | Significance |
---|---|---|---|---|---|---|---|---|---|
ECP | 20 | 0.12 ± 0.11 | 0.03 ± 0.02 | 75% | p < 0.05 | 3.25 ± 5.12 | 0.22 ± 0.2 | 93% | p < 0.05 |
GHS | 10 | 0.15 ± 0.13 | 0.05 ± 0.07 | 67% | p < 0.05 | 5.13 ± 5.44 | 0.83 ± 0.95 | 84% | p < 0.05 |
GLA | 11 | 0.21 ± 0.13 | 0.08 ± 0.10 | 64% | p < 0.05 | 13.8 ± 14.92 | 3.22 ± 2.83 | 76% | p < 0.05 |
BRC | Pollutant | Storm Events (n) | Inflow | Underdrain | % Reduction (+) or Increase (−) | Significance |
---|---|---|---|---|---|---|
ECP | TSS (mg·L−1) | 20 | 106 ± 70 | 41 ± 32 | 61 | p < 0.05 |
Turbidity (NTU) | 20 | 66 ± 48 | 7.0 ± 4.0 | 89 | p < 0.05 | |
pH | 20 | 6.71 ± 0.77 | 7.72 ± 0.23 | −15 | p > 0.05 | |
EC(µmhos/cm) | 20 | 75 ± 25 | 208 ± 38 | −179 | p < 0.05 | |
GHS | TSS (mg·L−1) | 7 | 110 ± 64 | 45 ± 28 | 59 | p < 0.05 |
Turbidity (NTU) | 7 | 19 ± 44 | 2.8 ± 1.5 | 86 | p < 0.05 | |
pH | 8 | 6.36 ± 0.71 | 7.51 ± 0.17 | −18 | p > 0.05 | |
EC(µmhos/cm) | 8 | 147 ± 238 | 174 ± 28 | −19 | p > 0.05 | |
GLA | TSS (mg·L−1) | 11 | 95 ± 11 | 29 ± 30 | 70 | p < 0.05 |
Turbidity (NTU) | 11 | 9 ± 4 | 3.8 ± 2.6 | 60 | p < 0.05 | |
pH | 11 | 7.11 ± 0.35 | 7.96 ± 0.25 | −12 | p > 0.05 | |
EC(µmhos/cm) | 11 | 86 ± 21 | 348 ± 90 | −301 | p < 0.05 | |
ECP | TSS (g) | 12 | 2460 ± 2423 | 275 ± 480 | 89 | p < 0.05 |
GHS | TSS (g) | 7 | 5702 ± 4038 | 950 ± 570 | 83 | p < 0.05 |
GLA | TSS (g) | 11 | 1840 ± 1763 | 1681 ± 1260 | 9 | p > 0.05 |
Site | Media | Media Depth (m) | T-P Retained (kg·Year−1) | M3-P Retained (kg·Year−1) | WS-P Retained (kg·Year−1) | LOADEST from Inlet T-P (kg·Year−1) |
---|---|---|---|---|---|---|
ECP | Topsoil | 0–0.15 | 0.16 | 0.05 | 0.002 | 0.27 † |
Filter media | 0.15–0.45 | 0.24 | 0.03 | 0.006 | ||
Total | 0–0.60 | 0.40 | 0.08 | 0.008 | ||
GHS | Top | 0–0.15 | 0.29 | 0.08 | 0.004 | 0.18 † |
Filter media | 0.15–0.45 | 0.04 | 0.13 | 0.004 | ||
Total | 0–0.60 | 0.33 | 0.21 | 0.008 | ||
GLA | Top | 0–0.15 | 0.07 | 0.09 | 0.012 | 0.37 † |
Filter media | 0.15–0.45 | 0.44 | 0.14 | 0.01 | ||
Total | 0–0.60 | 0.51 | 0.23 | 0.022 | ||
SR | Top | 0–0.15 | 0.43 | 0.18 | 0.029 | |
Filter media | 0.15–0.45 | 0.17 | 0.15 | 0.013 | N/A | |
Total | 0–0.60 | 0.60 | 0.33 | 0.042 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kandel, S.; Vogel, J.; Penn, C.; Brown, G. Phosphorus Retention by Fly Ash Amended Filter Media in Aged Bioretention Cells. Water 2017, 9, 746. https://doi.org/10.3390/w9100746
Kandel S, Vogel J, Penn C, Brown G. Phosphorus Retention by Fly Ash Amended Filter Media in Aged Bioretention Cells. Water. 2017; 9(10):746. https://doi.org/10.3390/w9100746
Chicago/Turabian StyleKandel, Saroj, Jason Vogel, Chad Penn, and Glenn Brown. 2017. "Phosphorus Retention by Fly Ash Amended Filter Media in Aged Bioretention Cells" Water 9, no. 10: 746. https://doi.org/10.3390/w9100746
APA StyleKandel, S., Vogel, J., Penn, C., & Brown, G. (2017). Phosphorus Retention by Fly Ash Amended Filter Media in Aged Bioretention Cells. Water, 9(10), 746. https://doi.org/10.3390/w9100746