Assessment of Water Quality Improvements Using the Hydrodynamic Simulation Approach in Regulated Cascade Reservoirs: A Case Study of Drinking Water Sources of Shenzhen, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Description
2.3. Model Description
2.3.1. Hydrodynamic Module
2.3.2. Water Quality Module
3. Model Configuration and Calibration
3.1. Computational Domain and Grid Generation
3.2. Initial Conditions
3.3. Boundary Conditions
3.4. Model Calibration
3.5. Simulation Scenarios
4. Results and Discussion
4.1. Hydrodynamic Calibration
4.2. Water Quality Calibration
4.3. Scenario Simulation and Assessment for Water Quality Improvement
4.3.1. Increase of Transferred Water Volume
4.3.2. Pollution Load Reduction of River Runoff
4.3.3. Pollution Load Reduction of Transferred Water
4.4. Identification of the Main Pollution Source for Individual Reservoirs
5. Conclusions
- (1)
- The hydrodynamic and water quality processes in the regulated cascade reservoirs were well simulated by EFDC. The correlation coefficients of water level simulation in the Shiyan, Tiegang and Xili Reservoirs reached 0.97, 0.997, and 0.98, respectively. The mean absolute errors were only 0.09 m, 0.08 m, and 0.08 m, respectively. Models could well reproduce spatiotemporal heterogeneity of water quality concentrations (CODMn and TN). Due to the dramatic decrease in water level in the last three months, the simulated water quality concentrations of the Xili Reservoir were overestimated, and the performance was not as good as that of the Shiyan and Tiegang Reservoirs.
- (2)
- An increase of transferred water volume, or pollution load reductions of local runoff and transferred water, would improve the water quality conditions in the cascade reservoirs. The most effective method for water quality improvement was to reduce local runoff load for TN and transferred water load for CODMn in the Shiyan Reservoir, reduce transferred water load in the Tiegang Reservoir, and increase transferred water volume, especially in the flood season, in the Xili Reservoir.
- (3)
- To improve the water quality of cascade reservoirs in Shenzhen, the control of diffuse rainfall-runoff pollution should be a priority and can be achieved by establishing a sewage discharge permission system, constructing ecological river wetlands, and other physical and biological measures. In addition, sedimentation should be cleaned up regularly to reduce internal pollution, particularly for the Shiyan and Xili Reservoirs. For the cost–benefit analysis, the combination of water transfer and local river treatment is a probable economic strategy for water quality improvement.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Li, S.T. Urban Water Pollution Issues. China Youth. Available online: http://news.xinhuanet.com/environment/2006-09/13/content_5084123.htm (accessed on 13 September 2006).
- MWR (Ministry of Water Resources, P.R. China). The 11th Five-Year Plan of National Water Resources Development. In Gazette of the Ministry of Water Resources of the P.R. China; MWR: Beijing, China, 2007; pp. 34–48. [Google Scholar]
- Zhou, Y.; Khu, S.T.; Xi, B.; Su, J.; Hao, F.; Wu, J.; Huo, S. Status and challenges of water pollution problems in China: Learning from the European experience. Environ. Earth Sci. 2014, 72, 1243–1254. [Google Scholar] [CrossRef]
- MEP (Ministry of Environmental Protection). Report on the State of Environment in China 2014. Available online: http://jcs.mep.gov.cn/hjzl/zkgb/2014zkgb/ (accessed on 3 May 2016).
- Liu, J.; Diamond, J. China’s environment in a globalizing world. Nature 2005, 435, 1179–1186. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y. China’s water scarcity. J. Environ. Manag. 2009, 90, 3185–3196. [Google Scholar] [CrossRef] [PubMed]
- Whitehead, P.G.; Barbour, E.; Futter, M.N.; Sarkar, S.; Rodda, H.; Caesar, J.; Butterfield, D.; Jin, L.; Sinha, R.; Nicholls, R.; et al. Impacts of climate change and socio-economic scenarios on flow and water quality of the Ganges, Brahmaputra and Meghna (GBM) river systems: Low flow and flood statistics. Environ. Sci. Process. Impacts 2015, 17, 1057–1069. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Yang, Z. Industrial water pollution, water environment treatment, and health risks in China. Environ. Pollut. 2016, 218, 358–365. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.H.; Jiang, Y.Z.; Liao, W.H.; Gao, P.; Huang, X.M.; Wang, H. 3-D hydro-environmental simulation of Miyun Reservoir, Beijing. J. Hydro-Environ. Res. 2014, 8, 383–395. [Google Scholar] [CrossRef]
- Scavia, D.; Kelly, E.L.A.; Hagy, J.D. A simple model for forecasting the effects of nitrogen loads on Chesapeake Bay hypoxia. Estuaries Coasts 2006, 29, 674–684. [Google Scholar] [CrossRef]
- Zou, R.; Lung, W.S.; Wu, J. Multiple-pattern parameter identification and uncertainty analysis approach for water quality modeling. Ecol. Model. 2009, 220, 621–629. [Google Scholar] [CrossRef]
- Wang, S.; Qian, X.; Han, B.P.; Luo, L.C.; Hamilton, D.P. Effects of local climate and hydrological conditions on the thermal regime of a reservoir at Tropic of Cancer, in southern China. Water Res. 2012, 46, 2591–2604. [Google Scholar] [CrossRef] [PubMed]
- Lindim, C.; Becker, A.; Grüneberg, B.; Fischer, H. Modelling the effects of nutrient loads reduction and testing the N and P control paradigm in a German shallow lake. Ecol. Eng. 2015, 82, 415–427. [Google Scholar] [CrossRef]
- Norton, D.J.; Wickham, J.D.; Wade, T.G.; Kunert, K.; Thomas, J.V.; Zeph, P. A method for comparative analysis of recovery potential in impaired waters restoration planning. Environ. Manag. 2009, 44, 356–368. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Hu, W.; Zhai, S.; Wu, H. Effects on water quality following water transfer in Lake Taihu, China. Ecol. Eng. 2010, 36, 471–481. [Google Scholar] [CrossRef]
- He, G.J.; Fang, H.W.; Bai, S.; Liu, X.B.; Chen, M.H.; Bai, J. Application of a three-dimensional eutrophication model for the Beijing Guanting Reservoir, China. Ecol. Model. 2011, 222, 1491–1501. [Google Scholar] [CrossRef]
- Zhao, L.; Li, Y.; Zou, R.; He, B.; Zhu, X.; Liu, Y.; Wang, J.; Zhu, Y. A three-dimensional water quality modeling approach for exploring the eutrophication responses to load reduction scenarios in Lake Yilong (China). Environ. Pollut. 2013, 177, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Jia, H.; Yang, C.; Melching, C.; Yuan, Y. A pollutant load hierarchical allocation method integrated in an environmental capacity management system for Zhushan Bay, Taihu Lake. Sci. Total Environ. 2015, 533, 223–237. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Q.H.; Qin, L.; Li, X. The potential impact of an inter-basin water transfer project on nutrients (nitrogen and phosphorous) and chlorophyll a of the receiving water system. Sci. Total Environ. 2015, 2536, 675–686. [Google Scholar] [CrossRef] [PubMed]
- Javaheri, A.; Babbar-Sebens, M.; Miller, R.N. From skin to bulk: An adjustment technique for assimilation of satellite-derived temperature observations in numerical models of small inland water bodies. Adv. Water Resour. 2016, 92, 284–298. [Google Scholar] [CrossRef]
- Ji, Z.G.; Hu, G.; Shen, J.; Wan, Y. Three-dimensional modeling of hydrodynamic processes in the St. Lucie Estuary. Estuar. Coast. Shelf Sci. 2007, 73, 188–200. [Google Scholar] [CrossRef]
- Çalışkan, A.; Şebnem, E. Effects of Selective Withdrawal on Hydrodynamics of a Stratified Reservoir. Water Resour. Manag. 2009, 23, 1257–1273. [Google Scholar] [CrossRef]
- Liu, X.; Huang, W. Modeling sediment resuspension and transport induced by storm wind in Apalachicola Bay, USA. Environ. Model. Softw. 2009, 24, 1302–1313. [Google Scholar] [CrossRef]
- Jeong, S.; Yeon, K.; Hur, Y.; Oh, K. Salinity intrusion characteristics analysis using EFDC model in the downstream of Geum River. J. Environ. Sci. 2010, 22, 934–939. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, H.; Bi, N.; Yang, Z. Numerical modeling of hyperpycnal flows in an idealized river mouth. Estuar. Coast. Shelf Sci. 2011, 93, 228–238. [Google Scholar] [CrossRef]
- Wu, G.; Xu, Z. Prediction of algal blooming using EFDC model: Case study in the Daoxiang Lake. Ecol. Model. 2011, 222, 1245–1252. [Google Scholar] [CrossRef]
- Zhou, J.; Falconer, R.A.; Lin, B. Refinements to the EFDC model for predicting the hydro-environmental impacts of a barrage across the Severn Estuary. Renew. Energy 2014, 62, 490–505. [Google Scholar] [CrossRef]
- Arifin, R.R.; James, S.C.; Pitts, D.A.; Hamlet, A.F.; Sharma, A.; Fernando, H.J. Simulating the thermal behavior in Lake Ontario using EFDC. J. Great Lakes Res. 2016, 42, 511–523. [Google Scholar] [CrossRef]
- State Council of the People’s Republic of China. Water Pollution Prevention Action Plan. Available online: http://www.gov.cn/zhengce/content/2015-04/16/content_9613.htm (accessed on 7 June 2017). (In Chinese)
- National Environmental Protection Bureau (NEPB). Standard Methods for the Examination of Water and Wastewater (Version 4); China Environmental Science Publish Press: Beijing, China, 2002. (In Chinese)
- Hamrick, J.M.; Mills, W.B. Analysis of water temperatures in Conowingo Pond as influenced by the Peach Bottom atomic power plant thermal discharge. J. Environ. Sci. Policy 2000, 3, 197–209. [Google Scholar] [CrossRef]
- Bai, S.; Lung, W.S. Modeling sediment impact on the transport of fecal bacteria. Water Res. 2005, 39, 5232–5240. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Hashim, N.B.; Kingery, W.L. Fecal coliform modeling under two flow scenarios in St. Louis Bay of Mississippi. J. Environ. Sci. Health 2010, 45, 282–291. [Google Scholar] [CrossRef] [PubMed]
- Gong, W.; Wang, Y.; Jia, J. The effect of interacting downstream branches on saltwater intrusion in the Modaomen Estuary, China. J. Asian Earth Sci. 2012, 45, 223–238. [Google Scholar] [CrossRef]
- Kim, K.; Park, M.; Min, J.H.; Ryu, I.; Kang, M.R.; Lan, J.P. Simulation of algal bloom dynamics in a river with the ensemble Kalman filter. J. Hydrol. 2014, 519, 2810–2821. [Google Scholar] [CrossRef]
- Blumberg, A.F.; Mellor, G.L. A description of a three dimensional coastal ocean circulation model. In Three-Dimensional Coastal Ocean Models, Coastal and Estuarine Science; Heaps, N.S., Ed.; American Geophysical Union: Washington, DC, USA, 1987; pp. 1–19. [Google Scholar]
- Hamrick, J.M. A three-dimensional Environmental Fluid Dynamics Computer Code: Theoretical and computational aspects. In Special Report in Applied Marine Science and Ocean Engineering; No. 317; Virginia Institute of Marine Science (VIMS): Gloucester Point, VA, USA, 1992. [Google Scholar]
- Lin, J.; Li, J. Nutrient response modeling in falls of the Neuse Reservoir. Environ. Manag. 2011, 47, 398–409. [Google Scholar] [CrossRef] [PubMed]
- Cerco, C.F.; Cole, T.M. Three-dimensional eutrophication model of Chesapeake Bay. J. Environ. Eng. 1993, 119, 1006–1025. [Google Scholar] [CrossRef]
- Tetra Tech, Inc. The Environmental Fluid Dynamics Code Theory and Computation Volume 3: Water Quality Module; Tetra Tech, Inc.: Fairfax, VA, USA, 2007. [Google Scholar]
- Naoum, S.; Tsanis, I.K.; Fullarton, M. A GIS pre-processor for pollutant transport modelling. Environ. Model. Softw. 2005, 20, 55–68. [Google Scholar] [CrossRef]
- Tang, T.; Yang, S.; Yin, K.; Zhou, R. Simulation of eutrophication in Shenzhen Reservoir based on EFDC model. J. Lake Sci. 2014, 26, 393–400. (In Chinese) [Google Scholar]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Binger, R.L.; Harmel, R.D.; Veith, T. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Wei, J.; Zeng, H.; Qing, H.; Ma, Z.B. Effects of spatial variability of land use on water quality within Shiyan Reservoir watershed in Shenzhen City. China Environ. Sci. 2008, 28, 938–943. (In Chinese) [Google Scholar]
- Wang, Y.; Hao, X.; Fu, J.; Sheng, G. Water quality change in reservoirs of Shenzhen, China: Detection using LANDSAT/TM data. Sci. Total Environ. 2004, 328, 195–206. [Google Scholar] [CrossRef] [PubMed]
- House, W.A.; Denison, F.H.; Smith, J.T.; Armitage, P.D. An investigation of the effects of water velocity on inorganic phosphorus influx to a sediment. Environ. Pollut. 1995, 89, 263–271. [Google Scholar] [CrossRef]
- Qin, B.; Zhu, G.; Zhang, L.; Luo, L.; Gao, G.; Binhe, G.U. Estimation of internal nutrient release in large shallow Lake Taihu, China. Sci. China Ser. D Earth Sci. 2006, 49, 38–50. [Google Scholar] [CrossRef]
- Hu, K.M.; Wang, S.; Pang, Y. Suspension-sedimentation of sediment and release amount of internal load in Lake Taihu. J. Lake Sci. 2014, 26, 191–199. (In Chinese) [Google Scholar]
- Heyuan Environmental Protection Bureau. Available online: http://www.hydp-reform.gov.cn/a/zhengwugongkai/tongzhigonggao/2016/0802/843.html (accessed on 29 August 2017). (In Chinese)
- Water Resources Bureau of Shenzhen Municipality. Available online: http://www.szwrb.gov.cn/bsfw_77954/bmxx/pshjs_80980/wsclf/ (accessed on 29 August 2017). (In Chinese)
- Chen, L.B.; Yang, Z.F.; Liu, H.F. Assessing the eutrophication risk of the Danjiangkou Reservoir based on the EFDC model. Ecol. Eng. 2016, 96, 117–127. [Google Scholar] [CrossRef]
- Liu, M.B.; Chen, X.W.; Yao, H.X.; Chen, Y. A coupled modeling approach to evaluate nitrogen retention within the Shanmei Reservoir watershed, China. Estuar. Coast. Shelf Sci. 2015, 166, 189–198. [Google Scholar] [CrossRef]
Reservoirs | Water Level (m) | Velocity (m/s) | Temperature (°C) | CODMn (mg/L) | TN (mg/L) |
---|---|---|---|---|---|
Shiyan | 35.40 | 0 | 14.2 | 2.8 | 2.46 |
Tiegang | 23.05 | 0 | 14.2 | 2.3 | 1.18 |
Xili | 27.20 | 0 | 14.2 | 1.35 | 1.42 |
Parameter | Value | Unit |
---|---|---|
dimensionless horizontal momentum diffusivity | 0.25 | None |
background, constant or eddy (kinematic) viscosity | 1.0 × 10−7 | m2·s−1 |
background, constant or molecular diffusivity | 1.0 × 10−9 | m2·s−1 |
reaeration rate constant | 3.93 | None |
COD decay rate | 0.10 | day−1 |
reference temperature for COD decay | 20.0 | °C |
minimum hydrolysis rate of RPON | 0.001 | day−1 |
minimum hydrolysis rate of LPON | 0.01 | day−1 |
minimum hydrolysis rate of DON | 0.03 | day−1 |
maximum nitrification rate | 0.06 | g N·m−3·day−1 |
benthic flux rate of ammonia nitrogen | 0.01 (Shiyan) | g·m−2·day−1 |
0.00 (Tiegang) | ||
0.08 (Xili) | ||
benthic flux rate of chemical oxygen demand | 3.00 (Shiyan) | g·m−2·day−1 |
2.00 (Tiegang) | ||
3.00 (Xili) | ||
benthic flux rate of nitrogen | 0.50 (Shiyan) | g·m−2·day−1 |
0.20 (Tiegang) | ||
2.00 (Xili) |
Factor | Shiyan | Tiegang | Xili | |||
---|---|---|---|---|---|---|
R | RMSE | R | RMSE | R | RMSE | |
water level | 0.97 | 0.10 | 0.997 | 0.11 | 0.98 | 0.10 |
CODMn | 0.70 | 1.17 | 0.59 | 1.88 | 0.58 | 0.58 |
TN | 0.60 | 0.76 | 0.51 | 0.28 | 0.27 | 0.61 |
Period | Factor | Shiyan | Tiegang | Xili | ||||||
---|---|---|---|---|---|---|---|---|---|---|
5% | 10% | 20% | 5% | 10% | 20% | 5% | 10% | 20% | ||
non-flood season | CODMn | −1.9 | −3.6 | −8.2 | −1.5 | −2.6 | −5.2 | −2.7 | −5.7 | −11.6 |
TN | −3.0 | −5.8 | −11.0 | −1.0 | −1.8 | −2.9 | −2.9 | −5.7 | −12.0 | |
flood season | CODMn | −3.8 | −8.0 | −14.7 | −0.6 | −1.4 | −2.6 | −16.7 | −18.4 | −21.8 |
TN | −3.2 | −7.0 | −13.6 | −2.3 | −3.7 | −6.8 | −7.4 | −9.3 | −14.4 |
Factor | Shiyan | Tiegang | Xili | ||||||
---|---|---|---|---|---|---|---|---|---|
30% | 50% | 70% | 30% | 50% | 70% | 30% | 50% | 70% | |
CODMn | −2.5 | −2.5 | −1.1 | −0.8 | −1.1 | −1.1 | −6.3 | −6.3 | −6.3 |
TN | −18.4 | −18.4 | −7.9 | −9.3 | −10.2 | −10.2 | 0.0 | 0.0 | 0.0 |
Factor | Shiyan | Tiegang | Xili | ||||||
---|---|---|---|---|---|---|---|---|---|
30% | 50% | 70% | 30% | 50% | 70% | 30% | 50% | 70% | |
CODMn | −5.1 | −8.5 | −11.9 | −9.0 | −14.6 | −20.3 | −6.4 | −6.4 | −6.4 |
TN | −7.6 | −13.0 | −18.4 | −21.4 | −35.3 | −49.2 | 0.0 | 0.0 | 0.0 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hua, R.; Zhang, Y. Assessment of Water Quality Improvements Using the Hydrodynamic Simulation Approach in Regulated Cascade Reservoirs: A Case Study of Drinking Water Sources of Shenzhen, China. Water 2017, 9, 825. https://doi.org/10.3390/w9110825
Hua R, Zhang Y. Assessment of Water Quality Improvements Using the Hydrodynamic Simulation Approach in Regulated Cascade Reservoirs: A Case Study of Drinking Water Sources of Shenzhen, China. Water. 2017; 9(11):825. https://doi.org/10.3390/w9110825
Chicago/Turabian StyleHua, Ruixiang, and Yongyong Zhang. 2017. "Assessment of Water Quality Improvements Using the Hydrodynamic Simulation Approach in Regulated Cascade Reservoirs: A Case Study of Drinking Water Sources of Shenzhen, China" Water 9, no. 11: 825. https://doi.org/10.3390/w9110825
APA StyleHua, R., & Zhang, Y. (2017). Assessment of Water Quality Improvements Using the Hydrodynamic Simulation Approach in Regulated Cascade Reservoirs: A Case Study of Drinking Water Sources of Shenzhen, China. Water, 9(11), 825. https://doi.org/10.3390/w9110825