Decomposition Analysis of Water Treatment Technology Patents
Abstract
:1. Introduction
2. Methods
3. Data and Results
3.1. Data
3.2. Trends in Water Treatment Technology Patent Inventions
3.3. Results of the Patent Decomposition Analysis
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Howe, K.J.; Hand, D.W.; Crittenden, J.C.; Trussell, R.R.; Tchobanoglous, G. Principles of Water Treatment; John Wiley & Sons: Hoboken, NJ, USA, 2012; p. 672. [Google Scholar]
- United Nations World Water Assessment Programme (WWAP). The United Nations World Water Development Report 2017, Wastewater: The Untapped Resource; United Nations World Water Assessment Programme: Paris, France, 2017; p. 198. [Google Scholar]
- Shannon, M.A.; Bohn, P.W.; Elimelech, M.; Georgiadis, J.G.; Mariñas, B.J.; Mayes, A.M. Science and technology for water purification in the coming decades. Nature 2008, 452, 301–310. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO); United Nations Children’s Fund (UNICEF). Progress on Drinking Water, Sanitation and Hygiene: 2017 Update and SDG Baselines; WHO and UNICEF: Geneva, Switzerland, 2017; p. 110. [Google Scholar]
- United Nations Water (UN-Water). Towards a Worldwide Assessment of Freshwater Quality; A UN-Water Analytical Brief; UN-Water: Geneva, Switzerland, 2016. [Google Scholar]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development. Outcome Document for the United Nations Summit to Adopt the Post-2015 Development Agenda. Available online: https://sustainabledevelopment.un.org/post2015/transformingourworld (accessed on 25 September 2015).
- Stanway, D. In China’s Murky Waters, Global Sewage Firms Seek Rewards; Reuters: London, UK, 2017; Available online: https://www.reuters.com/article/us-China-sewage/in-Chinas-murky-waters-global-sewage-firms-seek-rewards-idUSKBN19U00Z (accessed on 17 October 2017).
- United Nations Water (UN-Water). Regional Coordination Mechanisms for Water: A Report of the UN-Water Task Force on Regional-Level Coordination; UN-Water: Geneva, Switzerland, 2014. [Google Scholar]
- World Intellectual Property Organization (WIPO). IPC Green Inventory. Available online: http://www.wipo.int/classifications/ipc/en/est/ (accessed on 18 August 2017).
- Rodriguez-Narvaez, O.M.; Peralta-Hernandez, J.M.; Goonetilleke, A.; Bandala, E.R. Treatment technologies for emerging contaminants in water: A review. Chem. Eng. J. 2017, 323, 361–380. [Google Scholar] [CrossRef]
- Subramani, A.; Jacangelo, J.G. Emerging desalination technologies for water treatment: A critical review. Water Res. 2015, 75, 164–187. [Google Scholar] [CrossRef] [PubMed]
- Palma, P.; Fialho, S.; Alvarenga, P.; Santos, C.; Brás, T.; Palma, G.; Cavaco, C.; Gomes, R.; Neves, L.A. Membranes technology used in water treatment: Chemical, microbiological and ecotoxicological analysis. Sci. Total Environ. 2016, 568, 998–1009. [Google Scholar] [CrossRef] [PubMed]
- Alzahrani, S.; Mohammad, A.W. Challenges and trends in membrane technology implementation for produced water treatment: A review. J. Water Process Eng. 2014, 4, 107–133. [Google Scholar] [CrossRef]
- Temesgen, T.; Bui, T.T.; Han, M.; Kim, T.I.; Park, H. Micro and nanobubble technologies as a new horizon for water-treatment techniques: A review. Adv. Colloid Interface Sci. 2017, 246, 40–51. [Google Scholar] [CrossRef] [PubMed]
- Fujii, H.; Managi, S. Wastewater management efficiency and determinant factors in the Chinese industrial sector from 2004 to 2014. Water 2017, 9, 586. [Google Scholar] [CrossRef]
- Hara, K.; Kuroda, M.; Yabar, H.; Kimura, M.; Uwasu, M. Historical development of wastewater and sewage sludge treatment technologies in Japan—An analysis of patent data from the past 50 years. Environ. Dev. 2016, 19, 59–69. [Google Scholar] [CrossRef]
- Fujii, H.; Managi, S. Research and development strategy for environmental technology in Japan: A comparative study of the private and public sectors. Technol. Forecast. Soc. Chang. 2016, 112, 293–302. [Google Scholar] [CrossRef]
- Candelin-Palmqvist, H.; Sandberg, B.; Mylly, U.M. Intellectual property rights in innovation management research: A review. Technovation 2012, 32, 502–512. [Google Scholar] [CrossRef]
- Popp, D. Inducing innovation and energy prices. Am. Econ. Rev. 2002, 92, 160–180. [Google Scholar] [CrossRef]
- Fujii, H. Decomposition analysis of green chemical technology inventions from 1971 to 2010 in Japan. J. Clean. Prod. 2016, 112, 4835–4843. [Google Scholar] [CrossRef]
- Haščič, I.; Migotto, M. Measuring Environmental Innovation Using Patent Data; OECD Environment Working Papers, No. 89; OECD Publishing: Paris, France, 2015. [Google Scholar]
- Smith, C.E. Design with the Other 90%: Cities; Cooper-Hewitt, National Design Museum, Smithsonian Institute: Washington, DC, USA, 2011. [Google Scholar]
- Japan Patent Office. Comparative Study on Examination Practices among JPO, KIPO and SIPO. 2017. Available online: https://www.jpo.go.jp/torikumi_e/kokusai_e/comparative_study.htm (accessed on 17 October 2017).
- Ang, B.W.; Liu, N. Handling zero values in the logarithmic mean Divisia index decomposition approach. Energy Policy 2007, 35, 238–246. [Google Scholar] [CrossRef]
- Han, D.; Currell, M.J.; Cao, G. Deep challenges for China’s war on water pollution. Environ. Pollut. 2016, 218, 1222–1233. [Google Scholar] [CrossRef] [PubMed]
- China Water Risk. New ‘Water Ten Plan’ to Safeguard China’s Waters. Available online: http://Chinawaterrisk.org/notices/new-water-ten-plan-to-safeguard-Chinas-waters/ (accessed on 18 August 2017).
- Dang, J.; Motohashi, K. Patent statistics: A good indicator for innovation in China? Patent subsidy program impacts on patent quality. China Econ. Rev. 2015, 35, 137–155. [Google Scholar] [CrossRef]
- Hu, A.G.Z.; Zhang, P.; Zhao, L. China as number one? Evidence from China’s most recent patenting surge. J. Dev. Econ. 2017, 124, 107–119. [Google Scholar] [CrossRef]
Technology Code | Technology Group (IPC Code) | Description of Technology Group |
---|---|---|
Conventional | Conventional treatment (IPC=C02F1) | Conventional water treatment technology includes heating (C02F1/02), degassing (C02F1/20), freezing (C02F1/22), flotation (C02F1/24), ion-exchange (C02F1/42), and oxidation (C02F1/72). |
Biological | Biological treatment (IPC=C02F3) | Biological water treatment technology includes aerobic processes (C02F3/02), activated sludge processes (C02F3/12), and anaerobic digestion processes (C02F3/28). |
Multistage | Multistage treatment (IPC=C02F9) | Multistage water treatment technology covers combined treating operations. This technology group includes electrochemical treatment (C02F9/06), thermal treatment (C02F9/10), and irradiation or treatment with electric or magnetic fields (C02F9/12). |
Sludge | Sludge treatment (IPC=C02F11) | This technology group includes sludge treatment by pyrolysis (C02F11/10), de-watering (C02F11/12), and thermal conditioning (C02F11/18). |
Other | Other water treatment technology (IPC=C02F5, C02F7, C02F101, C02F103) | Other water treatment technology includes softening water (C02F5), aeration of stretches (C02F7), nature of the contaminant (C02F101), and nature of the wastewater (C02F103). |
Patent Office | Technology Type | 1993–2016 | Share | 1993–1998 | 1999–2004 | 2005–2010 | 2011–2016 |
---|---|---|---|---|---|---|---|
SIPO | Conventional | 39,116 | 36.6% | 952 | 3699 | 8730 | 25,735 |
Biological | 15,744 | 14.7% | 157 | 865 | 3349 | 11,373 | |
Multistage | 41,055 | 38.4% | 34 | 641 | 4743 | 35,637 | |
Sludge | 6950 | 6.5% | 25 | 202 | 969 | 5754 | |
Other | 4084 | 3.8% | 70 | 284 | 757 | 2973 | |
JPO | Conventional | 23,461 | 67.3% | 6607 | 6955 | 5494 | 4405 |
Biological | 7809 | 22.4% | 2634 | 2514 | 1619 | 1042 | |
Multistage | 144 | 0.4% | 44 | 17 | 27 | 56 | |
Sludge | 2725 | 7.8% | 396 | 649 | 1138 | 542 | |
Other | 706 | 2.0% | 158 | 236 | 178 | 134 | |
KIPO | Conventional | 13,263 | 60.0% | 1280 | 4153 | 3713 | 4117 |
Biological | 4683 | 21.2% | 402 | 1793 | 1451 | 1037 | |
Multistage | 974 | 4.4% | 81 | 410 | 236 | 247 | |
Sludge | 2689 | 12.2% | 245 | 822 | 779 | 843 | |
Other | 485 | 2.2% | 43 | 149 | 101 | 192 | |
USPTO | Conventional | 9870 | 68.2% | 1630 | 2308 | 2509 | 3423 |
Biological | 3013 | 20.8% | 506 | 752 | 973 | 782 | |
Multistage | 727 | 5.0% | 73 | 119 | 147 | 388 | |
Sludge | 311 | 2.1% | 73 | 70 | 55 | 113 | |
Other | 557 | 3.8% | 195 | 128 | 113 | 121 | |
PCT | Conventional | 7265 | 69.3% | 593 | 1254 | 2180 | 3238 |
Biological | 1833 | 17.5% | 240 | 304 | 558 | 731 | |
Multistage | 500 | 4.8% | 10 | 6 | 140 | 344 | |
Sludge | 508 | 4.8% | 29 | 51 | 168 | 260 | |
Other | 376 | 3.6% | 59 | 71 | 100 | 146 | |
EPO | Conventional | 4620 | 65.0% | 803 | 971 | 1244 | 1602 |
Biological | 1431 | 20.1% | 314 | 361 | 390 | 366 | |
Multistage | 307 | 4.3% | 44 | 53 | 75 | 135 | |
Sludge | 385 | 5.4% | 84 | 80 | 112 | 109 | |
Other | 365 | 5.1% | 106 | 123 | 73 | 63 | |
Other patent office | Conventional | 20,379 | 64.9% | 4862 | 5804 | 4561 | 5152 |
Biological | 5787 | 18.4% | 1726 | 1652 | 1162 | 1247 | |
Multistage | 2025 | 6.4% | 303 | 445 | 566 | 711 | |
Sludge | 1669 | 5.3% | 518 | 442 | 355 | 354 | |
Other | 1549 | 4.9% | 420 | 405 | 320 | 404 |
Specific Technology | DECOMPOSED Factor | SIPO | JPO | KIPO | USPTO | PCT | EPO |
---|---|---|---|---|---|---|---|
Conventional | ⊿Patent | 6816 | −386 | 460 | 414 | 505 | 99 |
⊿PRIORITY | −1800 | 9 | 48 | 28 | 13 | 19 | |
⊿WTT | 2236 | 15 | −25 | −69 | 29 | −99 | |
⊿SCALE | 6380 | −410 | 437 | 456 | 463 | 179 | |
Biological | ⊿Patent | 3260 | −224 | 132 | 63 | 86 | 7 |
⊿PRIORITY | −182 | −159 | −44 | −52 | −40 | −18 | |
⊿WTT | 975 | 23 | 43 | −42 | 15 | −22 | |
⊿SCALE | 2467 | −88 | 133 | 157 | 111 | 47 | |
Multistage | ⊿Patent | 10,905 | −3 | 37 | 84 | 58 | 21 |
⊿PRIORITY | 1978 | 1 | −4 | 55 | 34 | 17 | |
⊿WTT | 2908 | 1 | 17 | 15 | 3 | −6 | |
⊿SCALE | 6019 | −5 | 23 | 14 | 21 | 10 | |
Sludge | ⊿Patent | 1779 | 34 | 93 | 13 | 49 | 2 |
⊿PRIORITY | 289 | 133 | −11 | 0 | 14 | 8 | |
⊿WTT | 456 | −27 | 28 | −0 | 4 | −11 | |
⊿SCALE | 1034 | −73 | 75 | 13 | 30 | 5 | |
Other | ⊿Patent | 649 | −2 | 23 | −7 | 10 | −13 |
⊿PRIORITY | −262 | 15 | 6 | −19 | −18 | −14 | |
⊿WTT | 250 | −8 | 7 | −13 | −0 | −10 | |
⊿SCALE | 661 | −10 | 11 | 25 | 28 | 12 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fujii, H.; Managi, S. Decomposition Analysis of Water Treatment Technology Patents. Water 2017, 9, 860. https://doi.org/10.3390/w9110860
Fujii H, Managi S. Decomposition Analysis of Water Treatment Technology Patents. Water. 2017; 9(11):860. https://doi.org/10.3390/w9110860
Chicago/Turabian StyleFujii, Hidemichi, and Shunsuke Managi. 2017. "Decomposition Analysis of Water Treatment Technology Patents" Water 9, no. 11: 860. https://doi.org/10.3390/w9110860