Compound-Specific Isotope Analysis (CSIA) Application for Source Apportionment and Natural Attenuation Assessment of Chlorinated Benzenes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Sampling and Geochemical Parameters
2.3. Concentration and CSIA Analyses
3. Results
3.1. Contaminants’ Spatial Distribution
3.1.1. The Western Sector
3.1.2. The Eastern Sector
3.2. CSIA Results
3.2.1. The Western Sector
3.2.2. The Eastern Sector
4. Discussion
4.1. Source Apportionment
4.2. Biodegradation
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Panagos, P.M.; Liedekerke, V.; Yigini, Y.; Montanarella, L. Contaminated sites in Europe: Review of the current situation based on data collected through a European network. J. Environ. Public Health 2013, 2013. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, S.J. Description, Properties, and Degradation of Selected Volatile Organic Compounds Detected in Ground Water—A Review of Selected Literature; Open-File Report 2006-1338; U.S. Geological Survey: Atlanta, GA, USA, 2006.
- Field, J.A.; Sierra-Alvarez, R. Microbial degradation of chlorinated benzenes. Biodegradation 2008, 19, 463–480. [Google Scholar] [CrossRef] [PubMed]
- Alberti, L.; Lombi, S.; Zanini, A. Identifying sources of chlorinated aliphatic hydrocarbons in a residential area in Italy using the integral pumping test method. Hydrogeol. J. 2011, 19, 1253–1267. [Google Scholar] [CrossRef]
- Filippini, M.; Amorosi, A.; Campo, B.; Herrero-Martìn, S.; Nijenhuis, I.; Parker, B.; Gargini, A. Origin of VC-only plumes from naturally enhanced dechlorination in a peat-rich hydrogeologic setting. J. Contam. Hydrol. 2016, 192, 129–139. [Google Scholar] [CrossRef] [PubMed]
- Nijenhuis, I.; Schmidt, M.; Pellegatti, E.; Paramatti, E.; Richnow, H.H.; Gargini, A. A stable isotope approach for source apportionment of chlorinated ethene plumes at a complex multi-contamination events urban site. J. Contam. Hydrol. 2013, 153, 92–105. [Google Scholar] [CrossRef] [PubMed]
- Petitta, M.; Pacioni, E.; Sbarbati, C.; Corvatta, G.; Fanelli, M.; Aravena, R. Hydrodynamic and isotopic characterization of a site contaminated by chlorinated solvents: Chienti River Valley, Central Italy. Appl. Geochem. 2013, 32, 164–174. [Google Scholar] [CrossRef]
- Schmidt, T.C.; Jochmann, M.A. Origin and fate of organic compounds in water: Characterization by compound-specific stable isotope analysis. Annu. Rev. Anal. Chem. 2012, 5, 133–155. [Google Scholar] [CrossRef] [PubMed]
- Shaouakar-Stash, O.; Frape, S.K.; Aravena, R.; Gargini, A.; Pasini, M.; Drimmie, R.J. Analysis of compound-specific chlorine stable isotopes of vinyl chloride by continuous flow–isotope ratio mass spectrometry (FC–IRMS). Environ. Forensics 2009, 10, 299–306. [Google Scholar] [CrossRef]
- Stroo, H.F.; Ward, C.F. In Situ Remediation of Chlorinated Solvent Plumes; Springer: New York, NY, USA, 2010. [Google Scholar]
- Alberti, L.; Alimi, H.; Ertel, T.; Trefiletti, P.; Pietrini, I. Fingerprinting and groundwater model application to evaluate hydraulic barrier efficiency (Italy). Environ. Forensics 2015, 16, 217–230. [Google Scholar] [CrossRef]
- Colombo, L.; Cantone, M.; Alberti, L.; Francani, V. Analytical solutions for multiwell hydraulic barrier capture zone defining. Ital. J. Eng. Geol. Environ. 2012, 12, 17–33. [Google Scholar]
- Hunkeler, D.; Meckenstock, R.U.; Sherwood-Lollar, B.; Schmidt, T.C.; Wilson, J.T. A Guide for Assessing Biodegradation and Source Identification of Organic Groundwater Contaminants Using Compound Specific Isotope Analysis (CSIA); U.S. Environmental Protection Agency: Washington, DC, USA, 2009.
- Lojkasek-Lima, P.; Aravena, R.; Shouakar-Stash, O.; Frape, S.K.; Marchesi, M.; Fiorenza, S.; Vogan, J. Evaluating TCE Abiotic and Biotic Degradation Pathways in a Permeable Reactive Barrier Using Compound Specific Isotope Analysis. Ground Water Monit. R. 2012, 32, 53–62. [Google Scholar] [CrossRef]
- Van Breukelen, B.M. Extending the Rayleigh equation to allow competing isotope fractionating pathways to improve quantification of biodegradation. Environ. Sci. Technol. 2007, 41, 4004–4010. [Google Scholar] [CrossRef] [PubMed]
- Sherwood Lollar, B.; Slater, G.F.; Sleep, B.; Witt, M.; Klecka, G.M.; Harkness, M.; Spivack, J. Stable carbon isotope evidence for intrinsic bioremediation of tetrachloroethene and trichloroethene at area 6, Dover Air Force Base. Environ. Sci. Technol. 2001, 35, 261–269. [Google Scholar] [CrossRef] [PubMed]
- Rügner, H.; Finkel, M.; Kaschl, A.; Bittens, M. Application of monitored natural attenuation in contaminated land management—A review and recommended approach for Europe. Environ. Sci. Policy 2006, 9, 568–576. [Google Scholar] [CrossRef]
- Illman, W.A.; Alvarez, P.J. Performance assessment of bioremediation and natural attenuation. Crit. Rev. Environ. Sci. Technol. 2009, 39, 209–270. [Google Scholar] [CrossRef]
- Malcolm, H.; Howe, P.; Dobson, S. Chlorobenzenes Other than Hexachlorobenzene: Environmental Aspects; World Health Organization: Geneva, Switzerland, 2004; Available online: http://www.who.int/iris/handle/10665/42905 (accessed on 15 August 2017).
- Barber, J.L.; Sweetman, A.J.; Van Wijk, D.; Jones, K.C. Hexachlorobenzene in the global environment: Emissions, levels, distribution, trends and processes. Sci. Total Environ. 2005, 349, 1–44. [Google Scholar] [CrossRef] [PubMed]
- Sims, J.L.; Suflita, J.M.; Russell, H.H. Reductive Dehalogenation of Organic Contaminants in Soils and Ground Water; U.S. Environmental Protection Agency: Washington, DC, USA, 1991.
- Liang, X.; Devine, C.E.; Nelson, J.; Sherwood Lollar, B.; Zinder, S.; Edwards, E.A. Anaerobic conversion of chlorobenzene and benzene to CH4 and CO2 in bioaugmented microcosms. Environ. Sci. Technol. 2013, 47, 2378–2385. [Google Scholar] [CrossRef] [PubMed]
- Griebler, C.; Adrian, L.; Meckenstock, R.U.; Richnow, H.H. Stable carbon isotope fractionation during aerobic and anaerobic transformation of trichlorobenzene. FEMS Microbiol. Ecol. 2004, 48, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Kaschl, A.; Vogt, C.; Uhlig, S.; Nijenhuis, I.; Weiss, H.; Kästner, M.; Richnow, H.H. Isotopic fractionation indicates anaerobic monochlorobenzene biodegradation. Environ. Toxicol. Chem. 2005, 24, 1315–1324. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Howlett, M.R.; Nelson, J.L.; Grant, G.; Dworatzek, S.; Lacrampe-Couloume, G.; Zinder, S.H.; Edwards, E.A.; Sherwood Lollar, B. Pathway-dependent isotope fractionation during aerobic and anaerobic degradation of monochlorobenzene and 1,2,4-trichlorobenzene. Environ. Sci. Technol. 2011, 45, 8321–8327. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Mundle, S.O.; Nelson, J.L.; Passeport, E.; Chan, C.C.; Lacrampe-Couloume, G.; Zinder, S.H.; Sherwood Lollar, B. Distinct carbon isotope fractionation during anaerobic degradation of dichlorobenzene isomers. Environ. Sci. Technol. 2014, 48, 4844–4851. [Google Scholar] [CrossRef] [PubMed]
- Braeckevelt, M.; Rokadia, H.; Imfeld, G.; Stelzer, N.; Paschke, H.; Kuschk, P.; Weber, S. Assessment of in situ biodegradation of monochlorobenzene in contaminated groundwater treated in a constructed wetland. Environ. Pollut. 2007, 148, 428–437. [Google Scholar] [CrossRef] [PubMed]
- Stelzer, N.; Imfeld, G.; Thullner, M.; Lehmann, J.; Poser, A.; Richnow, H.; Nijenhuis, I. Integrative approach to delineate natural attenuation of chlorinated benzenes in anoxic aquifers. Environ. Pollut. 2009, 157, 1800–1806. [Google Scholar] [CrossRef] [PubMed]
- Thullner, M.; Schäfer, W. Modeling of a field experiment on bioremediation of chlorobenzenes in groundwater. Bioremediat. J. 1999, 3, 247–267. [Google Scholar] [CrossRef]
- Palau, J.; Marchesi, M.; Chambon, J.C.; Aravena, R.; Canals, A.; Binning, P.J.; Soler, A. Multi-isotope (carbon and chlorine) analysis for fingerprinting and site characterization at a fractured bedrock aquifer contaminated by chlorinated ethenes. Sci. Total Environ. 2014, 475, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Van Breukelen, B.M.; Hunkeler, D.; Volkering, F. Quantification of sequential chlorinated ethene degradation by use of a reactive transport model incorporating isotope fractionation. Environ. Sci. Technol. 2005, 39, 4189–4197. [Google Scholar] [CrossRef] [PubMed]
- Bloom, Y.; Aravena, R.; Hunkeler, D.; Edwards, E.; Frape, S.K. Carbon isotope fractionation during microbial dechlorination of trichloroethene, cis-1, 2-dichloroethene, and vinyl chloride: Implications for assessment of natural attenuation. Environ. Sci. Technol. 2000, 34, 2768–2772. [Google Scholar] [CrossRef]
- Hunkeler, D.; Chollet, N.; Pittet, X.; Aravena, R.; Cherry, J.A.; Parker, B.L. Effect of source variability and transport processes on carbon isotope ratios of TCE and PCE in two sandy aquifers. J. Contam. Hydrol. 2004, 74, 265–282. [Google Scholar] [CrossRef] [PubMed]
- Dermietzel, J.; Vieth, A. Chloroaromatics in groundwater: Chances of bioremediation. Environ. Geol. 2002, 41, 683–689. [Google Scholar]
DO | NO2− | SO42− | Fetot | Fe2+ | Mn2+ | MCB | 1,2-DCB | 1,3-DCB | 1,4-DCB | 1,2,4-TCB | Benzene | CBs | CTs | MCB | 1,2-DCB | 1,3-DCB | 1,4-DCB | 1,2,4-TCB | Benzene | δ13Csum | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ID | mg/L | μg/L for S- M- W- and μg/Kg for B- | δ13C VPDB (‰) | ||||||||||||||||||||
WESTERN SECTOR | UPGRADIENT | WP | < 0.1 | 1.2 | 13 | 8.3 | 3.2 | b.d.l. | 1588 | 150465 | 260 | 255 | b.d.l. | 466 | 153034 | 21940 | −28.8 | −30.9 | −31.9 | −29.9 | n.m. | −28.0 | −30.9 |
S76 | < 0.1 | 0.0 | 26 | 23.0 | 22.0 | b.d.l. | 8800 | 700 | 1700 | 1800 | 120 | 6000 | 19120 | 11145 | −29.3 | −29.1 | −32.4 | −29.6 | −32.1 | −29.8 | −29.7 | ||
S80 | < 0.1 | 0.0 | 21 | 0.3 | 0.1 | b.d.l. | 420 | 3300 | 2800 | 2100 | 66 | 11 | 8697 | 7805 | −31.2 | −30.4 | −32.1 | −30.1 | −33.3 | −24.6 | −30.9 | ||
962 | 0.3 | 0.1 | 34 | 5.0 | 1.9 | 0.3 | 130 | 2400 | 66 | 1300 | b.d.l. | b.d.l. | 3896 | 189 | −26.6 | −29.6 | −29.3 | −29.5 | n.m. | n.m. | −29.4 | ||
S70T | 0.8 | 0.3 | 29 | 10.0 | 4.9 | 0.4 | 940 | 140 | 580 | 570 | b.d.l. | 79 | 2309 | 4969 | −28.3 | −29.3 | −31.0 | −29.7 | n.m. | 25.6 | −29.1 | ||
S67T | 2.2 | 0.3 | 720 | 7.6 | b.d.l. | 0.8 | 1000 | 100 | 280 | 140 | b.d.l. | 110 | 1630 | 261 | −29.9 | −27.6 | −30.8 | −29.4 | n.m. | −16.8 | −28.6 | ||
968T | 0.3 | 0.1 | 1960 | 200.0 | 190.0 | 0.8 | 570 | 90 | 120 | 110 | 19 | 60 | 969 | 310 | −28.8 | −28.6 | −31.1 | −29.3 | −30.4 | −26.6 | −28.9 | ||
M23 | n.m. | n.m. | n.m. | n.m. | n.m. | n.m. | 83 | 73 | b.d.l. | 39 | b.d.l. | b.d.l. | 195 | b.d.l. | −25.9 | −29.5 | n.m. | −28.9 | n.m. | n.m. | −27.6 | ||
DOWNGRADIENT | S72T | < 0.1 | 0.0 | 450 | 0.1 | 0.1 | 0.7 | 930 | 190 | b.d.l. | 220 | b.d.l. | 33 | 1373 | b.d.l. | −25.3 | −28.6 | n.m. | −28.2 | n.m. | −21.5 | −25.9 | |
S73 | 0.3 | 4.0 | 103 | 0.1 | 0.1 | 0.7 | 530 | 101 | 22 | 101 | 18 | b.d.l. | 771 | b.d.l. | −25.3 | −27.9 | −31.3 | −28.3 | n.m. | n.m. | −25.1 | ||
M18 | < 0.1 | 0.0 | 42 | 0.0 | 0.0 | b.d.l. | 12 | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | 12 | b.d.l. | −24.5 | n.m. | n.m. | n.m. | n.m. | n.m. | −24.5 | ||
M26 | n.m. | n.m. | n.m. | n.m. | n.m. | n.m. | 9410 | 22 | b.d.l. | 25 | b.d.l. | 82 | 9539 | b.d.l. | −25.5 | −28.9 | n.m. | −28.2 | n.m. | −25.5 | −25.5 | ||
B22 | _ | _ | _ | _ | _ | _ | 18009000 | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | 18009000 | b.d.l. | −24.5 | n.m. | n.m. | n.m. | n.m. | n.m. | −24.5 | ||
EASTERN SECTOR | UPGRADIENT | B41 | _ | _ | _ | _ | _ | _ | 1878000 | 15089000 | 4993000 | 30843000 | b.d.l. | b.d.l. | 52803000 | b.d.l. | −24.5 | −27.3 | −28.2 | −26.9 | n.m. | n.m. | −27.0 |
B72 | _ | _ | _ | _ | _ | _ | 132000 | 9500 | b.d.l. | 12900 | b.d.l. | b.d.l. | 154400 | b.d.l. | −26.6 | −29.0 | n.m. | −29.2 | n.m. | n.m. | −26.9 | ||
B71 | _ | _ | _ | _ | _ | _ | 25500 | 22300 | 1440 | 11900 | 20200 | b.d.l. | 81340 | b.d.l. | −22.4 | −27.5 | −26.7 | −28.7 | −29.6 | n.m. | −26.1 | ||
S61 | 0.6 | 0.3 | 560 | 9.0 | 7.8 | 0.5 | 1500 | 150 | b.d.l. | 160 | b.d.l. | b.d.l. | 1810 | b.d.l. | −25.4 | −28.8 | n.m. | −27.6 | n.m. | n.m. | −25.8 | ||
S62T | 0.4 | 0.3 | 560 | 13.5 | 12.0 | 0.6 | 19 | 29 | 8 | 10 | b.d.l. | 8 | 74 | b.d.l. | −23.2 | −28.0 | −31.1 | −27.5 | n.m. | −19.4 | −25.4 | ||
DOWNGRADIENT | M16 | n.m. | n.m. | n.m. | n.m. | n.m. | n.m. | 70 | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | 70 | b.d.l. | −27.0 | n.m. | n.m. | n.m. | n.m. | n.m. | −27.0 | |
S25 | 0.1 | b.d.l. | 29 | 0.1 | 0.1 | 0.1 | 37 | 7 | b.d.l. | 5 | b.d.l. | b.d.l. | 49 | b.d.l. | −23.4 | −27.8 | n.m. | −29.7 | n.m. | n.m. | −24.4 | ||
M17 | n.m. | n.m. | n.m. | n.m. | n.m. | n.m. | 230 | 9 | b.d.l. | 7 | b.d.l. | 1 | 247 | b.d.l. | −26.9 | n.m. | n.m. | n.m. | n.m. | n.m. | −26.9 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alberti, L.; Marchesi, M.; Trefiletti, P.; Aravena, R. Compound-Specific Isotope Analysis (CSIA) Application for Source Apportionment and Natural Attenuation Assessment of Chlorinated Benzenes. Water 2017, 9, 872. https://doi.org/10.3390/w9110872
Alberti L, Marchesi M, Trefiletti P, Aravena R. Compound-Specific Isotope Analysis (CSIA) Application for Source Apportionment and Natural Attenuation Assessment of Chlorinated Benzenes. Water. 2017; 9(11):872. https://doi.org/10.3390/w9110872
Chicago/Turabian StyleAlberti, Luca, Massimo Marchesi, Patrizia Trefiletti, and Ramon Aravena. 2017. "Compound-Specific Isotope Analysis (CSIA) Application for Source Apportionment and Natural Attenuation Assessment of Chlorinated Benzenes" Water 9, no. 11: 872. https://doi.org/10.3390/w9110872