Laboratory Tests of Substrate Physical Properties May Not Represent the Retention Capacity of Green Roof Substrates In Situ
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Rainfall Simulation
2.3. Runoff
2.4. Current Water Held in the System
2.5. Available Storage in the System
2.6. Rainfall Retention
2.7. Evapotranspiration betweeen Events and Cumulative Evapotranspiration
2.8. Data Analysis
3. Results
3.1. Influence of Substrate and Vegetation on Cumulative Evapotranspiration and Rainfall Retention
3.2. Relationship between Available Storage and Rainfall Retention
4. Discussion
4.1. Effect of Substrate Physical Properties and Vegetation Cover on Rainfall Retention
4.2. Relationship between Substrate Water Storage and Rainfall Retention
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Grimmond, G.S.B.; Oke, T.R. Evapotranspiration rates in urban areas. In Impacts of Urban Growth on Surface Water and Groundwater Quality; IAHS (International Association of Hydrological Sciences) Publication: Birmingham, UK, 1999. [Google Scholar]
- Walsh, C.J.; Roy, A.H.; Feminella, J.W.; Cottingham, P.D.; Groffman, P.M.; Morgan, R.P. The urban stream syndrome: Current knowledge and the search for a cure. J. N. Am. Benthol. Soc. 2005, 24, 706–723. [Google Scholar] [CrossRef]
- Wenger, S.J.; Roy, A.H.; Jackson, C.R.; Bernhardt, E.S.; Carter, T.L.; Filoso, S.; Gibson, C.A.; Hession, W.C.; Kaushal, S.S.; Martí, E.; et al. Twenty-six key research questions in urban stream ecology: An assessment of the state of the science. J. N. Am. Benthol. Soc. 2009, 28, 1080–1098. [Google Scholar] [CrossRef]
- King, R.S.; Baker, M.E.; Kazyak, P.F.; Weller, D.E. How novel is too novel? Stream community thresholds at exceptionally low levels of catchment urbanization. Ecol. Appl. 2011, 21, 1659–1678. [Google Scholar] [CrossRef] [PubMed]
- Burns, M.J.; Fletcher, T.D.; Walsh, C.J.; Ladson, A.R.; Hatt, B.E. Hydrologic shortcomings of conventional urban stormwater management and opportunities for reform. Landsc. Urban Plan. 2012, 105, 230–240. [Google Scholar] [CrossRef]
- Villarreal, E.L.; Bengtsson, L. Response of a sedum green-roof to individual rain events. Ecol. Eng. 2005, 25, 1–7. [Google Scholar] [CrossRef]
- Carter, T.L.; Jackson, C.R. Vegetated roofs for stormwater management at multiple spatial scales. Landsc. Urban Plan. 2007, 80, 84–94. [Google Scholar] [CrossRef]
- Czemiel Berndtsson, J. Green roof performance towards management of runoff water quantity and quality: A review. Ecol. Eng. 2010, 36, 351–360. [Google Scholar] [CrossRef]
- Carter, T.; Fowler, L. Establishing green roof infrastructure through environmental policy instruments. Environ. Manag. 2008, 42, 151–164. [Google Scholar] [CrossRef] [PubMed]
- Ampim, P.A.Y.; Sloan, J.J.; Cabrera, R.I.; Harp, D.A.; Jaber, F.H. Green roof growing substrates: Types, ingredients, composition and properties. J. Environ. Hortic. 2010, 28, 244–252. [Google Scholar]
- Getter, K.L.; Rowe, D.B. The role of extensive green roofs in sustainable development. Hortscience 2006, 41, 1276–1285. [Google Scholar]
- FLL (Forschungsgesellschaft Landschaftsentwicklung Landschaftsbau). Guidelines for the Planning, Construction and Maintenance of Green Roofing; Forschungsgesellschaft Landschaftsentwicklung Landschaftsbau: Bonn, Germany, 2008. [Google Scholar]
- Molineux, C.J.; Fentiman, C.H.; Gange, A.C. Characterising alternative recycled waste materials for use as green roof growing media in the UK. Ecol. Eng. 2009, 35, 1507–1513. [Google Scholar] [CrossRef]
- Fassman, E.; Simcock, R. Moisture measurements as performance criteria for extensive living roof substrates. J. Environ. Eng. 2012, 138, 841–851. [Google Scholar] [CrossRef]
- Young, T.; Cameron, D.D.; Sorrill, J.; Edwards, T.; Phoenix, G.K. Importance of different components of green roof substrate on plant growth and physiological performance. Urban Urban Green. 2014, 13, 507–516. [Google Scholar] [CrossRef]
- Li, Y.; Babcock, R.W., Jr. Green roof hydrologic performance and modeling: A review. Water Sci. Technol. 2014, 69, 727–738. [Google Scholar] [CrossRef] [PubMed]
- Oberndorfer, E.; Lundholm, J.; Bass, B.; Coffman, R.R.; Doshi, H.; Dunnett, N.; Gaffin, S.; Kohler, M.; Liu, K.K.Y.; Rowe, B. Green roofs as urban ecosystems: Ecological structures, functions, and services. Bioscience 2007, 57, 823–833. [Google Scholar] [CrossRef]
- Cao, C.T.N.; Farrell, C.; Kristiansen, P.E.; Rayner, J.P. Biochar makes green roof substrates lighter and improves water supply to plants. Ecol. Eng. 2014, 71, 368–374. [Google Scholar] [CrossRef]
- Stovin, V.; Vesuviano, G.; Kasmin, H. The hydrological performance of a green roof test bed under UK climatic conditions. J. Hydrol. 2012, 414, 148–161. [Google Scholar] [CrossRef]
- Williams, N.S.G.; Rayner, J.P.; Raynor, K.J. Green roofs for a wide brown land: Opportunities and barriers for rooftop greening in australia. Urban For. Urban Green. 2010, 9, 245–251. [Google Scholar] [CrossRef]
- Harper, G.E.; Limmer, M.A.; Showalter, W.E.; Burken, J.G. Nine-month evaluation of runoff quality and quantity from an experiential green roof in missouri, USA. Ecol. Eng. 2015, 78, 127–133. [Google Scholar] [CrossRef]
- Farrell, C.; Ang, X.Q.; Rayner, J.P. Water-retention additives increase plant available water in green roof substrates. Ecol. Eng. 2013, 52, 112–118. [Google Scholar] [CrossRef]
- Berretta, C.; Poë, S.; Stovin, V. Moisture content behaviour in extensive green roofs during dry periods: The influence of vegetation and substrate characteristics. J. Hydrol. 2014, 511, 374–386. [Google Scholar] [CrossRef]
- Carson, T.; Keeley, M.; Marasco, D.E.; McGillis, W.; Culligan, P. Assessing methods for predicting green roof rainfall capture: A comparison between full-scale observations and four hydrologic models. Urban Water J. 2017, 14, 589–603. [Google Scholar] [CrossRef]
- Poë, S.; Stovin, V.; Berretta, C. Parameters influencing the regeneration of a green roof’s retention capacity via evapotranspiration. J. Hydrol. 2015, 523, 356–367. [Google Scholar] [CrossRef]
- Stovin, V.; Poë, S.; Berretta, C. A modelling study of long term green roof retention performance. J. Environ. Manag. 2013, 131, 206–215. [Google Scholar] [CrossRef] [PubMed]
- Kasmin, H.; Stovin, V.R.; Hathway, E.A. Towards a generic rainfall-runoff model for green roofs. Water Sci. Technol. 2010, 62, 898–905. [Google Scholar] [CrossRef] [PubMed]
- She, N.; Pang, J. Physically based green roof model. J. Hydrol. Eng. 2010, 15, 458–464. [Google Scholar] [CrossRef]
- Hilten, R.N.; Lawrence, T.M.; Tollner, E.W. Modeling stormwater runoff from green roofs with hydrus-1d. J. Hydrol. 2008, 358, 288–293. [Google Scholar] [CrossRef]
- Szota, C.; Farrell, C.; Williams, N.S.G.; Arndt, S.K.; Fletcher, T.D. Drought-avoiding plants with low water use can achieve high rainfall retention without jeopardising survival on green roofs. Sci. Total Environ. 2017, 603–604, 340–351. [Google Scholar] [CrossRef] [PubMed]
- Versini, P.-A.; Ramier, D.; Berthier, E.; De Gouvello, B. Assessment of the hydrological impacts of green roof: From building scale to basin scale. J. Hydrol. 2015, 524, 562–575. [Google Scholar] [CrossRef] [Green Version]
- Carson, T.B.; Marasco, D.E.; Culligan, P.J.; McGillis, W.R. Hydrological performance of extensive green roofs in new york city: Observations and multi-year modeling of three full-scale systems. Environ. Res. Lett. 2013, 8, 024036. [Google Scholar] [CrossRef]
- Nawaz, R.; McDonald, A.; Postoyko, S. Hydrological performance of a full-scale extensive green roof located in a temperate climate. Ecol. Eng. 2015, 82, 66–80. [Google Scholar] [CrossRef]
- Locatelli, L.; Mark, O.; Mikkelsen, P.S.; Arnbjerg-Nielsen, K.; Jensen, M.B.; Binning, P.J. Modelling of green roof hydrological performance for urban drainage applications. J. Hydrol. 2014, 519, 3237–3248. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements; Food and Agriculture Organisation of the United Nations: Rome, Italy, 1998. [Google Scholar]
- Jeffrey, S.J.; Carter, J.O.; Moodie, K.B.; Beswick, A.R. Using spatial interpolation to construct a comprehensive archive of australian climate data. Environ. Model. Softw. 2001, 16, 309–330. [Google Scholar] [CrossRef]
- Farrell, C.; Mitchell, R.E.; Szota, C.; Rayner, J.P.; Williams, N.S.G. Green roofs for hot and dry climates: Interacting effects of plant water use, succulence and substrate. Ecol. Eng. 2012, 49, 270–276. [Google Scholar] [CrossRef]
- Standards Australia. Australian Standard as 3743: Potting Mixes; Standards Australia International Ltd.: Sydney, Australia, 2003. [Google Scholar]
- Greacen, E.L.; Walker, G.R.; Cook, P.G. Procedure for Filter Paper Method of Measuring Soil Water Suction; Commonwealth Scientific and Industrial Research Organisation: Melbourne, Australia, 1989. [Google Scholar]
- Jonasson, S. The point intercept method for non-destructive estimation of biomass. Phytocoenologia 1983, 11, 385–388. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2014; Available online: http://www.R-project.Org/ (accessed on 24 November 2017).
- Friedman, J.H. Multivariate adaptive regression splines. Ann. Stat. 1991, 19, 1–67. [Google Scholar] [CrossRef]
- Milborrow, S. Earth: Multivariate Adaptive Regression Splines (Derived from mda:Mars by Trevor Hastie and Rob Tibshirani. Uses Alan Miller’s Fortran Utilities with Thomas Lumley’s Leaps Wrapper). R Package Version 4.2.0. 2015. Available online: http://cran.r-project.org/web/packages/earth/ (accessed on 24 November 2017).
- Nguyen, T.-T.; Joyce, D.C.; Dinh, S.-Q. Effects of artificial amendments in potting media on Orthosiphon aristatus growth and development. Sci. Hortic. 2009, 123, 129–136. [Google Scholar] [CrossRef]
- VanWoert, N.D.; Rowe, D.B.; Andresen, J.A.; Rugh, C.L.; Fernandez, R.T.; Xiao, L. Green roof stormwater retention. J. Environ. Qual. 2005, 34, 1036–1044. [Google Scholar] [CrossRef] [PubMed]
- Voyde, E.; Fassman, E.; Simcock, R.; Wells, J. Quantifying evapotranspiration rates for new zealand green roofs. J. Hydrol. Eng. 2010, 15, 395–403. [Google Scholar] [CrossRef]
- Cipolla, S.S.; Maglionico, M.; Stojkov, I. A long-term hydrological modelling of an extensive green roof by means of swmm. Ecol. Eng. 2016, 95, 876–887. [Google Scholar] [CrossRef]
- Elliott, R.M.; Gibson, R.A.; Carson, T.B.; Marasco, D.E.; Culligan, P.J.; McGillis, W.R. Green roof seasonal variation: Comparison of the hydrologic behavior of a thick and a thin extensive system in new york city. Environ. Res. Lett. 2016, 11, 074020. [Google Scholar] [CrossRef]
- Yang, W.-Y.; Li, D.; Sun, T.; Ni, G.-H. Saturation-excess and infiltration-excess runoff on green roofs. Ecol. Eng. 2015, 74, 327–336. [Google Scholar] [CrossRef]
- Vanuytrecht, E.; Van Mechelen, C.; Van Meerbeek, K.; Willems, P.; Hermy, M.; Raes, D. Runoff and vegetation stress of green roofs under different climate change scenarios. Landsc. Urban Plan. 2014, 122, 68–77. [Google Scholar] [CrossRef]
- Virahsawmy, H.K.; Stewardson, M.J.; Vietz, G.; Fletcher, T.D. Factors that affect the hydraulic performance of raingardens: Implications for design and maintenance. Water Sci. Technol. 2014, 69, 982–988. [Google Scholar] [CrossRef] [PubMed]
Substrate | WHC | PWP | PAW | AFP |
---|---|---|---|---|
(%) | (%) | (%) | (%) | |
Bottom-ash | 51.7 c | 6.46 b | 45.2 c | 13.8 b |
60% <2 mm bayswater sand, 20% <10 mm eraring filter and 20% coir | (0.4) | (0.05) | (0.3) | (0.5) |
Roof-tile | 44.0 a | 2.86 a | 41.1 b | 7.14 a |
80% 8 mm minus crushed roof tile and 20% coir | (0.8) | (0.01) | (0.2) | (0.3) |
Scoria | 45.9 b | 8.72 c | 37.2 a | 7.65 a |
60% 8 mm minus scoria, 20% 7 mm scoria and 20% coir | (0.3) | (0.06) | (0.2) | (0.6) |
Event Type | Event Size (mm) | Number of Events | |||||
---|---|---|---|---|---|---|---|
1.32 | 3.70 | 14.39 | 20.82 | 39.71 | |||
(0.04) | (0.11) | (0.44) | (0.63) | (1.21) | |||
ADWP (days) | 1 | 2 | 1 | 1 | 5 | 1 | 10 |
3 | 1 | 3 | 1 | 2 | 0 | 7 | |
8 | 1 | 1 | 1 | 1 | 2 | 6 | |
Number of events | 4 | 5 | 3 | 8 | 3 | 23 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szota, C.; Fletcher, T.D.; Desbois, C.; Rayner, J.P.; Williams, N.S.G.; Farrell, C. Laboratory Tests of Substrate Physical Properties May Not Represent the Retention Capacity of Green Roof Substrates In Situ. Water 2017, 9, 920. https://doi.org/10.3390/w9120920
Szota C, Fletcher TD, Desbois C, Rayner JP, Williams NSG, Farrell C. Laboratory Tests of Substrate Physical Properties May Not Represent the Retention Capacity of Green Roof Substrates In Situ. Water. 2017; 9(12):920. https://doi.org/10.3390/w9120920
Chicago/Turabian StyleSzota, Christopher, Tim D. Fletcher, Carine Desbois, John P. Rayner, Nicholas S. G. Williams, and Claire Farrell. 2017. "Laboratory Tests of Substrate Physical Properties May Not Represent the Retention Capacity of Green Roof Substrates In Situ" Water 9, no. 12: 920. https://doi.org/10.3390/w9120920
APA StyleSzota, C., Fletcher, T. D., Desbois, C., Rayner, J. P., Williams, N. S. G., & Farrell, C. (2017). Laboratory Tests of Substrate Physical Properties May Not Represent the Retention Capacity of Green Roof Substrates In Situ. Water, 9(12), 920. https://doi.org/10.3390/w9120920