Peat as Substrate for Small-Scale Constructed Wetlands Polishing Secondary Effluents from Municipal Wastewater Treatment Plant
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wastewater
2.2. Wetland Reactors
2.3. Systems Operations
2.4. Sampling and Analysis
2.5. Statistical Analysis
3. Results
3.1. Overall Performance
3.2. Secondary Effluent Characteristics
3.3. Attenuation of pH
3.4. Nitrogen Removal
3.5. Phosphorus Removal
3.6. Organics Removal
3.7. Loading Rates and Removal Rates
3.8. Effects of Substrate and Vegetation
3.9. Effects of Seasons
3.10. Regulation Consideration
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Jácome, J.A.; Molina, J.; Suárez, J.; Mosqueira, G.; Torres, D. Performance of constructed wetland applied for domestic wastewater treatment: Case study at Boimorto (Galicia, Spain). Ecol. Eng. 2016, 95, 324–329. [Google Scholar] [CrossRef]
- Pandey, M.K.; Jenssen, P.D.; Krogstad, T.; Jonasson, S. Comparison of vertical and horizontal flow planted and unplanted subsurface flow wetlands treating municipal wastewater. Water Sci. Technol. 2013, 68, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Paing, J.; Serdobbel, V.; Welschbillig, M.; Calvez, M.; Gagnon, V.; Chazarenc, F. Treatment of high organic content wastewater from food-processing industry with the French vertical flow constructed wetland system. Water Sci. Technol. 2015, 72, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Saeed, T.; Sun, G. A lab-scale study of constructed wetlands with sugarcane bagasse and sand media for the treatment of textile wastewater. Bioresour. Technol. 2013, 128, 438–447. [Google Scholar] [CrossRef] [PubMed]
- Giácoman-Vallejos, G.; Ponce-Caballero, C.; Champagne, P. Pathogen removal from domestic and swine wastewater by experimental constructed wetlands. Water Sci. Technol. 2015, 71, 1263. [Google Scholar] [CrossRef] [PubMed]
- Speer, S.; Champagne, P.; Crolla, A.; Kinsley, C. Hydraulic performance of a mature wetland treating milkhouse wastewater and agricultural runoff. Water Sci. Technol. 2009, 59, 2455. [Google Scholar] [CrossRef] [PubMed]
- Gottschall, N.; Boutin, C.; Crolla, A.; Kinsley, C.; Champagne, P. The role of plants in the removal of nutrients at a constructed wetland treating agricultural (dairy) wastewater, Ontario, Canada. Ecol. Eng. 2007, 29, 154–163. [Google Scholar] [CrossRef]
- Clyde, E.J.; Champagne, P.; Jamieson, H.E.; Gorman, C.; Sourial, J. The use of a passive treatment system for the mitigation of acid mine drainage at the Williams Brothers Mine (California): Pilot-scale study. J. Clean. Prod. 2016, 130, 116–125. [Google Scholar] [CrossRef]
- Saeed, T.; Paul, B.; Afrin, R.; Al-Muyeed, A.; Sun, G. Floating constructed wetland for the treatment of polluted river water: A pilot scale study on seasonal variation and shock load. Chem. Eng. J. 2016, 287, 62–73. [Google Scholar] [CrossRef]
- Mawuli, D.; Xiaochang, W.; Yucong, Z.; Yuan, G.; Jiaqing, X.; Yaqian, Z. Characteristics of nitrogen and phosphorus removal by a surface-flow constructed wetland for polluted river water treatment. Water Sci. Technol. 2015, 71, 904–912. [Google Scholar]
- Martín, M.; Oliver, N.; Hernández-Crespo, C.; Gargallo, S.; Regidor, M.C. The use of free water surface constructed wetland to treat the eutrophicated waters of lake L’Albufera de Valencia (Spain). Ecol. Eng. 2013, 50, 52–61. [Google Scholar] [CrossRef]
- Stefanakis, A.I.; Seeger, E.; Dorer, C.; Sinke, A.; Thullner, M. Performance of pilot-scale horizontal subsurface flow constructed wetlands treating groundwater contaminated with phenols and petroleum derivatives. Ecol. Eng. 2016, 95, 514–526. [Google Scholar] [CrossRef]
- Sim, C.H.; Quek, B.S.; Shutes, R.B.; Goh, K.H. Management and treatment of landfill leachate by a system of constructed wetlands and ponds in Singapore. Water Sci. Technol. 2013, 68, 1114–1122. [Google Scholar] [CrossRef] [PubMed]
- Speer, S.; Champagne, P.; Anderson, B. Pilot-scale comparison of two hybrid-passive landfill leachate treatment systems operated in a cold climate. Bioresour. Technol. 2012, 104, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Wallace, J.; Champagne, P.; Monnier, A.-C. Performance evaluation of a hybrid-passive landfill leachate treatment system using multivariate statistical techniques. Waste Manag. 2015, 35, 159–169. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Zhao, Y.; Xu, Z.; Doherty, L.; Liu, R. Highway runoff treatment by hybrid adsorptive media-baffled subsurface flow constructed wetland. Ecol. Eng. 2016, 91, 231–239. [Google Scholar] [CrossRef]
- Murphy, C.; Wallace, S.; Knight, R.; Cooper, D.; Sellers, T. Treatment performance of an aerated constructed wetland treating glycol from de-icing operations at a UK airport. Ecol. Eng. 2015, 80, 117–124. [Google Scholar] [CrossRef]
- Kadlec, R.H.; Wallace, S. Treatment Wetlands, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Vymazal, J. Plants in constructed, restored and created wetlands. Ecol. Eng. 2013, 61, 501–504. [Google Scholar] [CrossRef]
- Herrera-Melián, J.A.; González-Bordón, A.; Martín-González, M.A.; García-Jiménez, P.; Carrasco, M.; Araña, J. Palm Tree Mulch as Substrate for Primary Treatment Wetlands Processing High Strength Urban Wastewater. J. Environ. Manag. 2014, 139, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Wu, S.; Chen, L.; Dong, R. How Substrate Influences Nitrogen Transformations in Tidal Flow Constructed Wetlands Treating High Ammonium Wastewater? Ecol. Eng. 2014, 73, 478–486. [Google Scholar] [CrossRef]
- Mateus, D.M.R.; Vaz, M.M.N.; Pinho, H.J.O. Fragmented Limestone Wastes as a Constructed Wetland Substrate for Phosphorus Removal. Ecol. Eng. 2012, 41, 65–69. [Google Scholar] [CrossRef]
- Saeed, T.; Sun, G. A comparative study on the removal of nutrients and organic matter in wetland reactors employing organic media. Chem. Eng. J. 2011, 171, 439–447. [Google Scholar] [CrossRef]
- Yin, H.; Yan, X.; Gu, X. Evaluation of thermally-modified calcium-rich attapulgite as a low-cost substrate for rapid phosphorus removal in constructed wetlands. Water Res. 2017, 115, 329–338. [Google Scholar] [PubMed]
- Gunes, K. Restaurant Wastewater Treatment by Constructed Wetlands. Clean-Soil Air Water 2007, 35, 571–575. [Google Scholar] [CrossRef]
- Saeed, T.; Afrin, R.; Muyeed, A.A.; Sun, G. Treatment of tannery wastewater in a pilot-scale hybrid constructed wetland system in Bangladesh. Chemosphere 2012, 88, 1065–1073. [Google Scholar] [CrossRef] [PubMed]
- Kasak, K.; Mander, Ü.; Truu, J.; Truu, M.; Järveoja, J.; Maddison, M.; Teemusk, A. Alternative filter material removes phosphorus and mitigates greenhouse gas emission in horizontal subsurface flow filters for wastewater treatment. Ecol. Eng. 2015, 77, 242–249. [Google Scholar] [CrossRef]
- Lizama Allende, K.; Fletcher, T.D.; Sun, G. The effect of substrate media on the removal of arsenic, boron and iron from an acidic wastewater in planted column reactors. Chem. Eng. J. 2012, 179, 119–130. [Google Scholar] [CrossRef]
- Jin, M.; Champagne, P.; Hall, G. Effects of different substrates in the mitigation of algae-induced high pH wastewaters in a pilot-scale free water surface wetland system. Water Sci. Technol. 2017, 75, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Vymazal, J. Emergent plants used in free water surface constructed wetlands: A review. Ecol. Eng. 2013, 61 Pt B, 582–592. [Google Scholar] [CrossRef]
- Calheiros, C.S.C.; Rangel, A.O.S.S.; Castro, P.M.L. Treatment of industrial wastewater with two-stage constructed wetlands planted with Typha latifolia and Phragmites australis. Bioresour. Technol. 2009, 100, 3205–3213. [Google Scholar] [CrossRef] [PubMed]
- Schierano, M.C.; Maine, M.A.; Panigatti, M.C. Dairy farm wastewater treatment using horizontal subsurface flow wetlands with Typha domingensis and different substrates. Environ. Technol. 2017, 38, 192–198. [Google Scholar] [CrossRef] [PubMed]
- Toscano, A.; Marzo, A.; Milani, M.; Cirelli, G.L.; Barbagallo, S. Comparison of removal efficiencies in Mediterranean pilot constructed wetlands vegetated with different plant species. Ecol. Eng. 2015, 75, 155–160. [Google Scholar] [CrossRef]
- Sehar, S.; Naeem, S.; Perveen, I.; Ali, N.; Ahmed, S. A comparative study of macrophytes influence on wastewater treatment through subsurface flow hybrid constructed wetland. Ecol. Eng. 2015, 81, 62–69. [Google Scholar] [CrossRef]
- American Public Health Association (APHA). Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2012. [Google Scholar]
- Champagne, P.; Liu, L.; Howell, M. Aerobic Treatment in Cold-Climate Countries A2. In Current Developments in Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2017; pp. 161–201. [Google Scholar]
- Wallace, J.; Champagne, P.; Hall, G. Multivariate statistical analysis of water chemistry conditions in three wastewater stabilization ponds with algae blooms and pH fluctuations. Water Res. 2016, 96, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Hall, G.; Champagne, P. Effects of environmental factors on the disinfection performance of a wastewater stabilization pond operated in a temperate climate. Water 2016, 8, 5. [Google Scholar] [CrossRef]
- Maine, M.A.; Hadad, H.R.; Sánchez, G.C.; Di Luca, G.A.; Mufarrege, M.M.; Caffaratti, S.E.; Pedro, M.C. Long-term performance of two free-water surface wetlands for metallurgical effluent treatment. Ecol. Eng. 2017, 98, 372–377. [Google Scholar] [CrossRef]
- Hernández-Crespo, C.; Gargallo, S.; Benedito-Durá, V.; Nácher-Rodríguez, B.; Rodrigo-Alacreu, M.A.; Martín, M. Performance of surface and subsurface flow constructed wetlands treating eutrophic waters. Sci. Total Environ. 2017, 595, 584–593. [Google Scholar] [CrossRef] [PubMed]
- Behrendt, A.; Tarre, S.; Beliavski, M.; Green, M.; Klatt, J.; de Beer, D.; Stief, P. Effect of high electron donor supply on dissimilatory nitrate reduction pathways in a bioreactor for nitrate removal. Bioresour. Technol. 2014, 171, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Saeed, T.; Sun, G. A review on nitrogen and organics removal mechanisms in subsurface flow constructed wetlands: Dependency on environmental parameters, operating conditions and supporting media. J. Environ. Manag. 2012, 112, 429–448. [Google Scholar] [CrossRef] [PubMed]
- Lai, D.Y.F. Phosphorus fractions and fluxes in the soils of a free surface flow constructed wetland in Hong Kong. Ecol. Eng. 2014, 73, 73–79. [Google Scholar] [CrossRef]
- Ciria, M.P.; Solano, M.L.; Soriano, P. Role of Macrophyte Typha latifolia in a Constructed Wetland for Wastewater Treatment and Assessment of Its Potential as a Biomass Fuel. Biosyst. Eng. 2005, 92, 535–544. [Google Scholar] [CrossRef]
- Ong, S.-A.; Uchiyama, K.; Inadama, D.; Yamagiwa, K. Simultaneous removal of color, organic compounds and nutrients in azo dye-containing wastewater using up-flow constructed wetland. J. Hazard. Mater. 2009, 165, 696–703. [Google Scholar] [CrossRef] [PubMed]
- Kõiv, M.; Vohla, C.; Mõtlep, R.; Liira, M.; Kirsimäe, K.; Mander, Ü. The performance of peat-filled subsurface flow filters treating landfill leachate and municipal wastewater. Ecol. Eng. 2009, 35, 204–212. [Google Scholar] [CrossRef]
- Fan, J.; Zhang, J.; Ngo, H.H.; Guo, W.; Yin, X. Improving low-temperature performance of surface flow constructed wetlands using Potamogeton crispus L. plant. Bioresour. Technol. 2016, 218, 1257–1260. [Google Scholar] [CrossRef] [PubMed]
Substrate | Density (kg/m3) | Porosity * |
---|---|---|
peat | 800 | 0.31 |
Parameter | Unit | Influent | Peat + Cattails T1 | Cattails T2 | Peat T3 | |||
---|---|---|---|---|---|---|---|---|
Effluent Conc. | R % | Effluent Conc. | R % | Effluent Conc. | R % | |||
pH | 7.43 (0.41) | 6.25 (1.09) | 7.12 (0.24) | 6.39 (1.27) | ||||
COD | mg/L | 14.2 (14.1) | 49.2 (39.6) | 15.9 (5.7) | 44.0 (42.2) | |||
NH4-N | mg/L | 0.10 (0.08) | 0.23 (0.22) | 0.09 (0.04) | 10% | 0.22 (0.22) | ||
NO3-N | mg/L | 0.83 (0.32) | 0.61 (0.26) | 26.5% | 0.52 (0.20) | 37.3% | 0.71 (0.31) | 19.4% |
TN | mg/L | 8.75 (2.80) | 8.21 (2.11) | 6.17% | 5.14 (2.58) | 41.2% | 8.58 (1.56) | 0.8% |
PO4-P | mg/L | 0.71 (0.13) | 0.70 (0.28) | 1.4% | 0.59 (0.13) | 16.9% | 0.82 (0.22) | |
TP | mg/L | 2.90 (1.83) | 3.42 (2.29) | 2.27 (2.47) | 18.2% | 3.74 (1.95) |
Parameter | Unit | Influent | Peat + Cattails T1 | Cattails T2 | Peat T3 | |||
---|---|---|---|---|---|---|---|---|
Effluent Conc. | R % | Effluent Conc. | R % | Effluent Conc. | R % | |||
pH | 8.25 (0.81) | 7.55 (0.96) | 7.52 (0.92) | 6.97 (0.37) | ||||
DO | mg/L | 6.10 (0.93) | 6.44 (1.56) | 5.92 (2.11) | 6.32 (1.10) | |||
TSS | mg/L | 4.1 (3.5) | 9.8 (6.3) | 6.4 (6.3) | 17.6 (13.2) | |||
Alkalinity | mg/L | 121.6 (15.9) | 80.8 (21.0) | 119.8 (37.9) | 68.4 (54.9) | |||
COD | mg/L | 12.2 (7.6) | 49.0 (13.6) | 24.4 (4.8) | 49.8 (13.1) | |||
NH4-N | mg/L | 0.20 (0.32) | 0.97 (0.33) | 0.47 (0.36) | 1.69 (0.53) | |||
NO3-N | mg/L | 7.93 (2.02) | 1.08 (0.88) | 86.9% | 0.64 (0.42) | 92.7% | 1.43 (0.87) | 81.7% |
TN | mg/L | 8.29 (1.62) | 2.19 (1.49) | 70.6% | 2.04 (0.78) | 75.0% | 2.68 (1.43) | 64.5% |
PO4-P | mg/L | 0.75 (0.14) | 0.31 (0.22) | 58.7% | 0.67 (0.23) | 10.7% | 0.38 (0.21) | 49.3% |
TP | mg/L | 1.29 (0.33) | 0.77 (0.32) | 40.3% | 1.13 (0.25) | 12.4% | 0.87 (0.27) | 32.6% |
Parameter | T1 (Peat + Cattails) and T2 (Cattails) | T1 (Peat + Cattails) and T3 (Peat) | T2 (Cattails) and T3 (Peat) | |||
---|---|---|---|---|---|---|
Removal Efficiency | Removal Rates | Removal Efficiency | Removal Rates | Removal Efficiency | Removal Rates | |
NO3-N | 0.0003 | 0.0001 | 0.2348 | 0.2359 | 0.0366 | 0.0291 |
TN | 0.6020 | 0.7752 | 0.2632 | 0.2529 | 0.1718 | 0.2238 |
PO4-P | 0.0431 | 0.0407 | 0.4117 | 0.2846 | 0.0451 | 0.0429 |
TP | 0.0459 | 0.0992 | 0.4289 | 0.3544 | 0.0578 | 0.0691 |
Experiment Period | Temperature | Precipitation | ||||
---|---|---|---|---|---|---|
Min. | Max. | Average | Min. | Max. | Average | |
Start-up | −4.4 °C | 21.7 °C | 9.0 °C | 0 mm | 32.5 mm | 2.9 mm |
Operational | 3.5 °C | 23.5 °C | 15.3 °C | 0 mm | 46.3 mm | 2.7 mm |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, M.; Carlos, J.; McConnell, R.; Hall, G.; Champagne, P. Peat as Substrate for Small-Scale Constructed Wetlands Polishing Secondary Effluents from Municipal Wastewater Treatment Plant. Water 2017, 9, 928. https://doi.org/10.3390/w9120928
Jin M, Carlos J, McConnell R, Hall G, Champagne P. Peat as Substrate for Small-Scale Constructed Wetlands Polishing Secondary Effluents from Municipal Wastewater Treatment Plant. Water. 2017; 9(12):928. https://doi.org/10.3390/w9120928
Chicago/Turabian StyleJin, Meng, Jacob Carlos, Rachel McConnell, Geof Hall, and Pascale Champagne. 2017. "Peat as Substrate for Small-Scale Constructed Wetlands Polishing Secondary Effluents from Municipal Wastewater Treatment Plant" Water 9, no. 12: 928. https://doi.org/10.3390/w9120928
APA StyleJin, M., Carlos, J., McConnell, R., Hall, G., & Champagne, P. (2017). Peat as Substrate for Small-Scale Constructed Wetlands Polishing Secondary Effluents from Municipal Wastewater Treatment Plant. Water, 9(12), 928. https://doi.org/10.3390/w9120928