Climate Change Impacts on Flow and Suspended Sediment Yield in Headwaters of High-Latitude Regions—A Case Study in China’s Far Northeast
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Overall Study Design
2.3. Data Sources
2.4. SWAT Model Calibration and Validation
2.5. Runoff-Sediment Yield Rating Curve
2.6. Discharge and Sediment Yield Prediction
3. Results
3.1. Changes in Surface Runoff
3.2. Changes in Sediment Yield
4. Discussion
4.1. Climate Change Impacts on Long-Term Runoff and Sediment Yield Trend
4.2. Climate Change Impacts on Seasonal Variation of Runoff and Sediment Yield
4.3. Uncertainties in Runoff and Sediment Yield Modeling
4.4. Environmental Implications
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Meng, D.; Mo, X. Assessing the effect of climate change on mean annual runoff in the songhua river basin, China. Hydrol. Process. 2012, 26, 1050–1061. [Google Scholar] [CrossRef]
- Li, F.; Zhang, G.; Xu, Y.J. Spatiotemporal variability of climate and streamflow in the Songhua river basin, northeast China. J. Hydrol. 2014, 514, 53–64. [Google Scholar] [CrossRef]
- Barnett, T.P.; Adam, J.C.; Lettenmaier, D.P. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 2005, 438, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Francis, J.A.; White, D.M.; Cassano, J.J.; Gutowski, W.J.; Hinzman, L.D.; Holland, M.M.; Steele, M.A.; Vörösmarty, C.J. An arctic hydrologic system in transition: Feedbacks and impacts on terrestrial, marine, and human life. J. Geophys. Res. 2009, 114. [Google Scholar] [CrossRef]
- Laudon, H.; Spence, C.; Buttle, J.; Carey, S.K.; McDonnell, J.J.; McNamara, J.P.; Soulsby, C.; Tetzlaff, D. Save northern high-latitude catchments. Nat. Geosci. 2017, 10, 324–325. [Google Scholar] [CrossRef]
- Moore, G.W. The december 2015 north pole warming event and the increasing occurrence of such events. Sci. Rep. 2016, 6, 39084. [Google Scholar] [CrossRef] [PubMed]
- Serreze, M.C.; Francis, J.A. The arctic amplification debate. Clim. Chang. 2006, 76, 241–264. [Google Scholar] [CrossRef]
- Nijssen, B.; O’Donnell, G.M.; Hamlet, A.F.; Lettenmaier, D.P. Hydrologic vulnerability of global rivers to climate change. Clim. Chang. 2001, 50, 143–175. [Google Scholar] [CrossRef]
- Tape, K.D.; Verbyla, D.; Welker, J.M. Twentieth century erosion in arctic alaska foothills: The influence of shrubs, runoff, and permafrost. J. Geophys. Res. 2011, 116. [Google Scholar] [CrossRef]
- Donnelly, C.; Greuell, W.; Andersson, J.; Gerten, D.; Pisacane, G.; Roudier, P.; Ludwig, F. Impacts of climate change on european hydrology at 1.5, 2 and 3 degrees mean global warming above preindustrial level. Clim. Chang. 2017, 143, 13–26. [Google Scholar] [CrossRef]
- Rood, S.B.; Kaluthota, S.; Philipsen, L.J.; Rood, N.J.; Zanewich, K.P. Increasing discharge from the mackenzie river system to the arctic ocean. Hydrol. Process. 2017, 31, 150–160. [Google Scholar] [CrossRef]
- Benda, L.; Hassan, M.A.; Church, M.; May, C.L. Geomorphology of steepland headwaters: The transition from hillslopes to channels. J. Am. Water Resour. Assoc. 2005, 41, 835–851. [Google Scholar] [CrossRef]
- Freeman, M.C.; Pringle, C.M.; Jackson, C.R. Hydrologic connectivity and the contribution of stream headwaters to ecological integrity at regional scales. J. Am. Water Resour. Assoc. 2007, 43, 5–14. [Google Scholar] [CrossRef]
- Wohl, E. The significance of small streams. Front. Earth Sci. 2017, 11, 447–456. [Google Scholar] [CrossRef]
- Gao, Y.; Vano, J.A.; Zhu, C.; Lettenmaier, D.P. Evaluating climate change over the colorado river basin using regional climate models. J. Geophys. Res. 2011, 116. [Google Scholar] [CrossRef]
- Bales, R.C.; Molotch, N.P.; Painter, T.H.; Dettinger, M.D.; Rice, R.; Dozier, J. Mountain hydrology of the western united states. Water Resour. Res. 2006, 42, W08432. [Google Scholar] [CrossRef]
- Zhang, A.; Liu, W.; Yin, Z.; Fu, G.; Zheng, C. How will climate change affect the water availability in the heihe river basin, northwest China? J. Hydrometeorol. 2016, 17, 1517–1542. [Google Scholar] [CrossRef]
- Jiang, C.; Li, D.; Gao, Y.; Liu, W.; Zhang, L. Impact of climate variability and anthropogenic activity on streamflow in the three rivers headwater region, Tibetan plateau, China. Theor. Appl. Climatol. 2016, 129, 667–681. [Google Scholar] [CrossRef]
- Fang, Y. Managing the three-rivers headwater region, china: From ecological engineering to social engineering. Ambio 2013, 42, 566–576. [Google Scholar] [CrossRef] [PubMed]
- Senent-Aparicio, J.; Pérez-Sánchez, J.; Carrillo-García, J.; Soto, J. Using SWAT and fuzzy topsis to assess the impact of climate change in the headwaters of the segura river basin (SE Spain). Water 2017, 9, 149. [Google Scholar] [CrossRef]
- Pruski, F.F.; Nearing, M.A. Runoff and soil-loss responses to changes in precipitation: A computer simulation study. J. Soil Water Conserv. 2002, 57, 7–16. [Google Scholar]
- Nearing, M.A.; Pruski, F.F.; O’Neal, M.R. Expected climate change impacts on soil erosion rates: A review. J. Soil Water Conserv. 2004, 59, 43–50. [Google Scholar]
- Asselman, N.E.M.; Middelkoop, H.; van Dijk, P.M. The impact of changes in climate and land use on soil erosion, transport and deposition of suspended sediment in the river Rhine. Hydrol. Process. 2003, 17, 3225–3244. [Google Scholar] [CrossRef]
- Costa, A.; Molnar, P.; Stutenbecker, L.; Bakker, M.; Silva, T.A.; Schlunegger, F.; Lane, S.N.; Loizeau, J.-L.; Girardclos, S. Temperature signal in suspended sediment export from an alpine catchment. Hydrol. Earth Syst. Sci. Discuss. 2017, 1–30. [Google Scholar] [CrossRef]
- Syvitski, J.P.M. Sediment discharge variability in arctic rivers: Implications for a warmer future. Pol. Res. 2002, 21, 323–330. [Google Scholar] [CrossRef]
- Zhang, Y.G.; Nearing, M.A.; Zhang, X.C.; Xie, Y.; Wei, H. Projected rainfall erosivity changes under climate change from multimodel and multiscenario projections in northeast China. J. Hydrol. 2010, 384, 97–106. [Google Scholar] [CrossRef]
- Wei, Z.; Jin, H.; Zhang, J.; Yu, S.; Han, X.; Ji, Y.; He, R.; Chang, X. Prediction of permafrost changes in northeastern china under a changing climate. Sci. China Earth Sci. 2011, 54, 924–935. [Google Scholar] [CrossRef]
- Li, Z.; Fang, H. Modeling the impact of climate change on watershed discharge and sediment yield in the black soil region, northeastern China. Geomorphology 2017, 293, 255–271. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The trmm multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Nu-Fang, F.; Zhi-Hua, S.; Lu, L.; Cheng, J. Rainfall, runoff, and suspended sediment delivery relationships in a small agricultural watershed of the Three Gorges area, China. Geomorphology 2011, 135, 158–166. [Google Scholar] [CrossRef]
- Thrasher, B.; Maurer, E.P.; McKellar, C.; Duffy, P.B. Technical note: Bias correcting climate model simulated daily temperature extremes with quantile mapping. Hydrol. Earth Syst. Sci. 2012, 16, 3309–3314. [Google Scholar] [CrossRef]
- Thomson, A.M.; Calvin, K.V.; Smith, S.J.; Kyle, G.P.; Volke, A.; Patel, P.; Delgado-Arias, S.; Bond-Lamberty, B.; Wise, M.A.; Clarke, L.E.; et al. Rcp4.5: A pathway for stabilization of radiative forcing by 2100. Clim. Chang. 2011, 109, 77–94. [Google Scholar] [CrossRef]
- Riahi, K.; Grübler, A.; Nakicenovic, N. Scenarios of long-term socio-economic and environmental development under climate stabilization. Technol. Forecast. Soc. Chang. 2007, 74, 887–935. [Google Scholar] [CrossRef]
- Riahi, K.; Rao, S.; Krey, V.; Cho, C.; Chirkov, V.; Fischer, G.; Kindermann, G.; Nakicenovic, N.; Rafaj, P. Rcp 8.5—A scenario of comparatively high greenhouse gas emissions. Clim. Chang. 2011, 109, 33–57. [Google Scholar] [CrossRef]
- Walling, D.E. The sediment delivery problem. J. Hydrol. 1983, 65, 209–237. [Google Scholar] [CrossRef]
- Nearing, M.A. Potential changes in rainfall erosivity in the U.S. With climate change during the 21st century. J. Soil Water Conserv. 2001, 56, 229–232. [Google Scholar]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall-Erosion Losses from Cropland East of the Rocky Mountains: Guide for Selection of Practices for Soil and Water Conservation. Agricultural Research Service, U.S. Dept of Agriculture in cooperation with Purdue Agricultural Experiment Station, 1965. Available online: https://naldc.nal.usda.gov/download/CAT87208342/PDF (accessed on 7 December 2017).
- Shrestha, N.K.; Du, X.; Wang, J. Assessing climate change impacts on fresh water resources of the athabasca river basin, Canada. Sci. Total Environ. 2017, 601–602, 425–440. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.R. Sediment routing for agricultural watersheds. Water Resour. Bull. 1975, 11, 965–974. [Google Scholar] [CrossRef]
- Bussi, G.; Francés, F.; Horel, E.; López-Tarazón, J.A.; Batalla, R.J. Modelling the impact of climate change on sediment yield in a highly erodible mediterranean catchment. J. Soils Sediments 2014, 14, 1921–1937. [Google Scholar] [CrossRef]
- Buendia, C.; Bussi, G.; Tuset, J.; Vericat, D.; Sabater, S.; Palau, A.; Batalla, R.J. Effects of afforestation on runoff and sediment load in an upland mediterranean catchment. Sci. Total Environ. 2016, 540, 144–157. [Google Scholar] [CrossRef] [PubMed]
- Walling, D.E. Suspended sediment production and building activity in a small british basin. IAHS Publ. 1974, 113, 137–144. Available online: http://hydrologie.org/redbooks/a113/iahs_113_0137.pdf (accessed on 7 December 2017).
- Asselman, N.E.M. Fitting and interpretation of sediment rating curves. J. Hydrol. 2000, 234, 228–248. [Google Scholar] [CrossRef]
- Crawford, C.G. Estimation of suspended-sediment rating curves and mean suspended-sediment loads. J. Hydrol. 1991, 129, 331–348. [Google Scholar] [CrossRef]
- Horowitz, A.J. An evaluation of sediment rating curves for estimating suspended sediment concentrations for subsequent flux calculations. Hydrol. Process. 2003, 17, 3387–3409. [Google Scholar] [CrossRef]
- Li, Z.; Fang, H. Impacts of climate change on water erosion: A review. Earth-Sci. Rev. 2016, 163, 94–117. [Google Scholar] [CrossRef]
- Jones, R.J.; Le Bissonnais, Y.; Bazzoffi, P.; Sanchez Diaz, J.; Düwel, O.; Loj, G.; Øygarden, L.; Prasuhn, V.; Rydell, B.; Strauss, P. Nature and Extent of Soil Erosion in Europe. 2004. Available online: http://eusoils.jrc.ec.europa.eu/ESDB_Archive/pesera/pesera_cd/sect_h1.htm (accessed on 7 December 2017).
- Verheijen, F.G.A.; Jones, R.J.A.; Rickson, R.J.; Smith, C.J. Tolerable versus actual soil erosion rates in Europe. Earth-Sci. Rev. 2009, 94, 23–38. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Zhang, J.; Mu, G.; Ju, H.; Wang, R.; Li, D.; Shabbir, A. Spatiotemporal characterization of chromophoric dissolved organic matter (CDOM) and CDOM-DOC relationships for highly polluted rivers. Water 2016, 8, 399. [Google Scholar] [CrossRef]
- Sun, C.; Zhang, J.; Ma, Q.; Chen, Y.; Ju, H. Polycyclic aromatic hydrocarbons (PAHs) in water and sediment from a river basin: Sediment-water partitioning, source identification and environmental health risk assessment. Environ. Geochem. Health 2017, 39, 63–74. [Google Scholar] [CrossRef] [PubMed]
- Tolosa, I.; de Mora, S.; Sheikholeslami, M.R.; Villeneuve, J.-P.; Bartocci, J.; Cattini, C. Aliphatic and aromatic hydrocarbons in coastal caspian sea sediments. Mar. Pollut. Bull. 2004, 48, 44–60. [Google Scholar] [CrossRef]
- Cardellicchio, N.; Buccolieri, A.; Giandomenico, S.; Lopez, L.; Pizzulli, F.; Spada, L. Organic pollutants (PAHs, PCBs) in sediments from the mar piccolo in taranto (Ionian Sea, Southern Italy). Mar. Pollut. Bull. 2007, 55, 451–458. [Google Scholar] [CrossRef] [PubMed]
- Matlock, M.D.; Kasprzak, K.R.; Osborn, G.S. Sediment oxygen demand in the arroyo Colorado River. J. Am. Water Resour. Assoc. 2003, 39, 267–275. [Google Scholar]
- Jason Todd, M.; Vellidis, G.; Richard Lowrance, R.; Pringle, C.M. High sediment oxygen demand within an instream swamp in southern georgia: Implications for low dissolved oxygen levels in coastal blackwater streams. J. Am. Water Resour. Ass. 2009, 45, 1493–1507. [Google Scholar] [CrossRef]
- DaSilva, A.; Xu, Y.J.; Beebe, J.; Ice, G.G. Effects of timber harvesting on dissolved oxygen in a Northern Louisiana headwater stream. For. Sci. 2013, 59, 127–138. [Google Scholar] [CrossRef]
- DaSilva, A.; Xu, Y.; Ice, G.; Beebe, J.; Stich, R. Effects of timber harvesting with best management practices on ecosystem metabolism of a low gradient stream on the united states gulf coastal plain. Water 2013, 5, 747–766. [Google Scholar] [CrossRef]
Data Type | Description | Data Sources |
---|---|---|
Meteorological data | Temperature, relative humidity, solar radiation, and wind speed | China Meteorological Data Service Center (CMDC, http://data.cma.cn/en) |
Precipitation data | Daily TRMM precipitation data (3B42V7) | Tropic Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) (https://disc.gsfc.nasa.gov/datacollection/TRMM_3B42_Daily_7.html) |
Hydrological and sedimentological data | Daily discharge and sediment transfer rate records | Hydrological data of Heilongjiang River Basin, Volume 2, Annual Hydrological Report of P.R. China, 2006–2014 |
Spatially-referenced data | Digital Elevation Model (DEM) (90 m × 90 m) Land use map in 2005 (1:100,000) Soil type (1:1,000,000) | Integration and Training of National Agriculture Research Systems database (http://srtm.csi.cgiar.org/). Data Center for Resources and Environmental Sciences Chinese Academy of Sciences (RESDC, http://www.resdc.cn). Institute of Soil Sciences Chinese Academy of Sciences (http://english.issas.cas.cn/). |
Parameter | Description | Fitting Value |
---|---|---|
R__CN2.mgt | SCS runoff curve number for moisture condition II | −0.12 |
V__ALPHA_BF.gw | Base flow alpha factor | 0.90 |
V__CH_K2.rte | Effective hydraulic conductivity in the main channel | 54.94 |
V__CH_N2.rte | Manning’s n value for main channel | 0.27 |
V__SURLAG.bsn | Surface runoff lag time | 3.79 |
R__SOL_AWC(..).sol | Soil available water storage capacity | 1.07 |
R__SOL_K(..).sol | Soil conductivity | 0.55 |
R__ESCO.hru | Soil evaporation compensation factor | 0.93 |
V__GW_REVAP.gw | Groundwater revap. Coefficient | 0.15 |
V__GWQMN.gw | Threshold depth of water in the shallow aquifer required for return flow to occur | 2254.13 |
V__GW_DELAY.gw | Groundwater delay time | 54.73 |
V__SFTMP.bsn | Snow fall temperature | −5.28 |
V__SMTMP.bsn | Snowfall melt base temperature | 4.05 |
V__USLE_P.mgt | USLE equation support practice factor | 0.36 |
V__USLE_K(..).sol | USLE equation parameter for soil erodibility | 0.23 |
V__SPCON.bsn | Coefficient in sediment transport equation, linear parameter for calculating the maximum amount of sediment that can be re-entrained during channel sediment routing | 0.0054 |
V__SPEXP.bsn | Exponent in sediment transport equation, exponent parameter for calculating sediment re-entrained in channel sediment routing | 1.24 |
V__CH_COV1.rte | Channel erodibility factor | 0.53 |
V__CH_COV2.rte | Channel cover factor | 0.53 |
Simulation | Metrics | Calibration Period (2006–2011) | Validation Period (2012–2014) |
---|---|---|---|
Discharge simulation | NSE | 0.7 | 0.73 |
R-squared | 0.85 | 0.88 | |
PBIAS (%) | −20.08 | 0.79 | |
Sediment yield simulation | NSE | 0.45 | 0.50 |
R-squared | 0.72 | 0.74 | |
PBIAS (%) | 15.2 | −39.46 |
State Variables | Baseline | RCP4.5 | RCP8.5 |
---|---|---|---|
Mean annual precipitation (mm) | 691 | 779 | 739 |
Mean annual rainfall (mm) | 655 | 746 | 707 |
Mean annual rainy days | 111 | 115 | 113 |
Mean annual rainfall intensity (mm/day) | 5.9 | 6.5 | 6.2 |
Days of warm period | 207 | 220 | 222 |
Mean annual mean temperature (°C) | 5.3 | 7.5 | 8.0 |
Mean Annual minimum temperature (°C) | −29.3 | −26.4 | −26.6 |
Mean annual maximum temperature (°C) | 33.5 | 34.8 | 35.2 |
Scenarios | Precipitation | Mean Temperature | Runoff | Sediment Yield | ||||
---|---|---|---|---|---|---|---|---|
Depth (mm) | Change (%) | (°C) | Change (%) | Depth (mm) | Change (%) | (×103 t) | Change (%) | |
Baseline | ||||||||
Annual | 691 | 0 | 5.3 | 0 | 205 | 0 | 281 | 0 |
Spring | 110 | 0 | 6.3 | 0 | 8 | 0 | 2 | 0 |
Summer | 452 | 0 | 21.6 | 0 | 109 | 0 | 182 | 0 |
Autumn | 129 | 0 | 6.7 | 0 | 75 | 0 | 96 | 0 |
Winter | 1 | 0 | −13.3 | 0 | 14 | 0 | - | - |
RCP4.5 | ||||||||
Annual | 779 | 13% ** | 7.5 | 41% ** | 386 | 88% ** | 946 | 237% ** |
Spring | 112 | 2% | 8.9 | 40% ** | 11 | 35% | 5 | 103% |
Summer | 538 | 19% ** | 23.5 | 9% ** | 249 | 130% ** | 727 | 299% ** |
Autumn | 127 | −1% | 8.8 | 33% ** | 118 | 57% ** | 213 | 122% ** |
Winter | 2 | 21% | −11.1 | 16% ** | 8 | −39% ** | - | - |
RCP8.5 | ||||||||
Annual | 739 | 7% | 8.0 | 50% ** | 304 | 48% ** | 655 | 133% ** |
Spring | 108 | −1% | 9.4 | 48% ** | 6 | −28% | 2 | −37% |
Summer | 498 | 10% ** | 23.4 | 8% ** | 183 | 69% ** | 459 | 152% ** |
Autumn | 132 | 3% | 9.3 | 40% ** | 109 | 45% ** | 194 | 102% ** |
Winter | 2 | 21% | −10.1 | 24% ** | 7 | −50% ** | - | - |
Scenarios | Variable | Precipitation (mm) | Rainfall (mm) | Rainfall Intensity (mm/Day) | Rainy Days |
---|---|---|---|---|---|
Baseline | Annual runoff | 0.81 ** | 0.82 ** | 0.80 ** | 0.29 |
RCP4.5 | 0.92 ** | 0.92 ** | 0.89 ** | 0.42 * | |
RCP8.5 | 0.90 ** | 0.90 ** | 0.84 ** | 0.46 * | |
Baseline | Annual sediment yield | 0.81 ** | 0.82 ** | 0.81 ** | 0.27 |
RCP4.5 | 0.89 ** | 0.90 ** | 0.87 ** | 0.39 * | |
RCP8.5 | 0.86 ** | 0.86 ** | 0.82 ** | 0.38 * |
Rainfall Characteristics | Season | Value | Change (%) | |||
---|---|---|---|---|---|---|
Baseline | RCP4.5 | RCP8.5 | RCP4.5 | RCP8.5 | ||
Rainfall Amount (mm) | Annual | 655 | 746 | 707 | 14% ** | 8% |
Spring | 98 | 101 | 97 | 4% | −1% | |
Summer | 442 | 529 | 489 | 20% ** | 11% * | |
Autumn | 116 | 115 | 121 | 0% | 5% | |
Rainfall Intensity (mm/day) | Annual | 5.9 | 6.5 | 6.2 | 9% * | 5% |
Spring | 4.1 | 4.3 | 4.4 | 5% | 7% | |
Summer | 7.1 | 8.0 | 7.6 | 12% ** | 7% | |
Autumn | 4.5 | 4.4 | 4.5 | −2% | −1% | |
Rainy Days | Annual | 111 | 115 | 113 | 4% | 2% |
Spring | 24 | 23 | 22 | −1% | −6% | |
Summer | 62 | 66 | 64 | 6% * | 3% | |
Autumn | 25 | 25 | 27 | 2% | 8% |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Xu, Y.J.; Xiao, W.; Wang, J.; Huang, Y.; Yang, H. Climate Change Impacts on Flow and Suspended Sediment Yield in Headwaters of High-Latitude Regions—A Case Study in China’s Far Northeast. Water 2017, 9, 966. https://doi.org/10.3390/w9120966
Zhou Y, Xu YJ, Xiao W, Wang J, Huang Y, Yang H. Climate Change Impacts on Flow and Suspended Sediment Yield in Headwaters of High-Latitude Regions—A Case Study in China’s Far Northeast. Water. 2017; 9(12):966. https://doi.org/10.3390/w9120966
Chicago/Turabian StyleZhou, Yuyan, Y. Jun Xu, Weihua Xiao, Jianhua Wang, Ya Huang, and Heng Yang. 2017. "Climate Change Impacts on Flow and Suspended Sediment Yield in Headwaters of High-Latitude Regions—A Case Study in China’s Far Northeast" Water 9, no. 12: 966. https://doi.org/10.3390/w9120966
APA StyleZhou, Y., Xu, Y. J., Xiao, W., Wang, J., Huang, Y., & Yang, H. (2017). Climate Change Impacts on Flow and Suspended Sediment Yield in Headwaters of High-Latitude Regions—A Case Study in China’s Far Northeast. Water, 9(12), 966. https://doi.org/10.3390/w9120966