Quantity- and Quality-Based Farm Water Productivity in Wine Production: Case Studies in Germany
Abstract
:1. Introduction
2. Materials and Methods
2.1. System Boundaries and Data
2.2. Calculation of Farm Water Productivity
2.2.1. Definition of Farm Water Productivity
2.2.2. Calculation of Crop Transpiration (from Precipitation)
2.2.3. Technical Water Use
2.2.4. Indirect Water
2.2.5. Volume of a Bottle of Wine
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
Afarm | farm size |
DWU | degree of water utilization |
FWPmass | farm water productivity on a mass basis |
FWPquality | farm water productivity on a quality basis |
Kcb | basal crop coefficient |
LAI | leaf area index |
Massoutput | farm output on a mass basis |
p | average fraction of available soil water |
Qualityoutput | farm output on a quality basis |
STW | specific technical water inflow |
Windirect | indirect water |
Winflow | water inflow, sum of water that enters the system |
Winput | water input, water flows that contribute to the generation of farm output |
Wirri | irrigation water |
Wprec | precipitation |
Wprec-trans | transpiration stemming from precipitation |
Wprod | productive water |
Wtech | technical water |
Wtransp | water taken up and transpired by plants |
Zr | rooting depth |
References
- Aldaya, M.M.; Chapagain, A.K.; Hoekstra, A.Y.; Mekonnen, M.M. The Water Footprint Assessment Manual: Setting the Global Standard; Routledge: New York, NY, USA, 2012. [Google Scholar]
- Chapagain, A.; Hoekstra, A.Y. Water Footprints of Nations, Value of Water Research Report Series No. 16; UNESCO-IHE: Delft, The Netherlands, 2004. [Google Scholar]
- De Pina, L.A.B.; Dias, A.C.; Neto, B.; Arroja, L.; Quinteiro, P. The Water Footprint of Wine Production in Portugal: A Case Study on Vinho Verde. In Proceedings of the 6th International Conference on Industrial Ecology (ISIE 2011 Conference), Berkeley, CA, USA, 7–10 June 2011; University of California: Berkeley, CA, USA.
- Ene, S.A.; Teodosiu, C.; Robu, B.; Volf, I. Water footprint assessment in the winemaking industry: A case study for a Romanian medium size production plant. J. Clean. Prod. 2013, 43, 122–135. [Google Scholar] [CrossRef]
- Herath, I.; Green, S.; Horne, D.; Singh, R.; McLaren, S.; Clothier, B. Water footprinting of agricultural products: Evaluation of different protocols using a case study of New Zealand wine. J. Clean. Prod. 2013, 44, 159–167. [Google Scholar] [CrossRef]
- Lamastra, L.; Suciu, N.A.; Novelli, E.; Trevisan, M. A new approach to assessing the water footprint of wine: An Italian case study. Sci. Total Environ. 2014, 490, 748–756. [Google Scholar] [CrossRef] [PubMed]
- Mekonnen, M.M.; Hoekstra, A.Y. The green, blue and grey water footprint of crops and derived crop products. Hydrol. Earth Syst. Sci. 2011, 15, 1577–1600. [Google Scholar] [CrossRef] [Green Version]
- Ardente, F.; Beccali, G.; Cellura, M.; Marvuglia, A. Poems: A case study of an Italian wine-producing firm. Environ. Manag. 2006, 38, 350–364. [Google Scholar] [CrossRef] [PubMed]
- Benedetto, G. The environmental impact of a Sardinian wine by partial life cycle assessment. Wine Econ. Policy 2013, 2, 33–41. [Google Scholar] [CrossRef]
- Notarnicola, B.; Tassielli, G.; Nicoletti, G. Life cycle assessment (LCA) of wine production. In Environmentally-Friendly Food Processing; Mattsson, B., Sonesson, U., Eds.; Woodhead Publishing Limited: Cambridge, UK, 2003; pp. 306–326. [Google Scholar]
- Pizzigallo, A.C.I.; Granai, C.; Borsa, S. The joint use of lca and energy evaluation for the analysis of two Italian wine farms. J. Environ. Manag. 2008, 86, 396–406. [Google Scholar] [CrossRef] [PubMed]
- Aranda, A.; Zabalza, I.; Scarpellini, S. Economic and environmental analysis of the wine bottle production in Spain by means of life cycle assessment. Int. J. Agric. Resour. Gov. Ecol. 2005, 4, 178–191. [Google Scholar] [CrossRef]
- Gazulla, C.; Raugei, M.; Fullana-i-Palmer, P. Taking a life cycle look at Crianza wine production in Spain: Where are the bottlenecks? Int. J. Life Cycle Assess. 2010, 15, 330–337. [Google Scholar] [CrossRef]
- Jimenez, E.; Martinez, E.; Blanco, J.; Perez, M.; Graciano, C. Methodological approach towards sustainability by integration of environmental impact in production system models through life cycle analysis: Application to the rioja wine sector. Simul. Trans. Soc. Model. Simul. Int. 2014, 90, 143–161. [Google Scholar] [CrossRef]
- Vázquez-Rowe, I.; Villanueva-Rey, P.; Iribarren, D.; Moreira, M.T.; Feijoo, G. Joint life cycle assessment and data envelopment analysis of grape production for vinification in the rías Baixas appellation (NW Spain). J. Clean. Prod. 2012, 27, 92–102. [Google Scholar] [CrossRef]
- Villanueva-Rey, P.; Vázquez-Rowe, I.; Moreira, M.T.; Feijoo, G. Comparative life cycle assessment in the wine sector: Biodynamic vs. Conventional viticulture activities in NW Spain. J. Clean. Prod. 2014, 65, 330–341. [Google Scholar] [CrossRef]
- Neto, B.; Dias, A.C.; Machado, M. Life cycle assessment of the supply chain of a portuguese wine: From viticulture to distribution. Int. J. Life Cycle Assess. 2013, 18, 590–602. [Google Scholar] [CrossRef]
- Comandaru, I.M.; Bârjoveanu, G.; Peiu, N.; Ene, S.-A.; Teodosiu, C. Life cycle assessment of wine: Focus on water use impact assessment. Environ. Eng. Manag. J. 2012, 11, 533–543. [Google Scholar]
- ISO 14044:2006 Environmental Management—Life Cycle Assessment—Requirements and Guidelines; International Organization for Standard: Geneva, Switzerland, 2006.
- Prochnow, A.; Drastig, K.; Klauss, H.; Berg, W. Water use indicators at farm scale: Methodology and case study. Food Energy Secur. 2012, 1, 29–46. [Google Scholar] [CrossRef]
- Yin, R.K. Case Study Research, 5th ed.; SAGE Publications Ltd.: Los Angeles, CA, USA, 2014. [Google Scholar]
- Voss, C.; Tsikriktsis, N.; Frohlich, M. Case research in operations management. Int. J. Oper. Prod. Manag. 2002, 22, 195–219. [Google Scholar] [CrossRef]
- Yin, R.K. The case study method as a tool for doing evaluation. Curr. Sociol. 1992, 40, 121–137. [Google Scholar] [CrossRef]
- Statistisches Landesamt Rheinland-Pfalz. Die Landwirtschaft 2011. Available online: http://www.statistik.rlp.de/fileadmin/dokumente/baende/band400_die_landwirtschaft_2011.pdf (accessed on 30 January 2017). (In German)
- Statistisches Landesamt Rheinland-Pfalz. Weinbau. 2014. Available online: https://www.destatis.de/GPStatistik/servlets/MCRFileNodeServlet/RPHeft_derivate_00004076/Faltblatt_Weinbau_2014.pdf;jsessionid=8CCCB911051B89AD1F7FD9143DA36862 (accessed on 30 January 2017). (In German) [Google Scholar]
- FAO; IIASA; ISRIC; ISSCAS; JRC. Harmonized World Soil Database; FAO: Rome, Italy; IIASA: Luxemburg, 2012. [Google Scholar]
- Rheinland-Pfalz, Agrarmeterologie. Dienstleistungszentren Ländlicher Raum in Rheinland-Pfalz. Available online: www.am.rlp.de (accessed on 30 January 2017). (In German)
- Ball, D.W. Concentration scales for sugar solutions. J. Chem. Educ. 2006, 83, 1489. [Google Scholar] [CrossRef]
- Hopfer, H.; Nelson, J.; Ebeler, S.E.; Heymann, H. Correlating wine quality indicators to chemical and sensory measurements. Molecules 2015, 20, 8453–8483. [Google Scholar] [CrossRef] [PubMed]
- Drastig, K.; Kraatz, S.; Libra, J.; Prochnow, A.; Hunstock, U. Implementation of hydrological processes and agricultural management options into the ATB-Modeling Database to improve the water productivity at farm scale. Agron. Res. 2013, 11, 31–38. [Google Scholar]
- Drastig, K.; Palhares, J.C.P.; Karbach, K.; Prochnow, A. Farm water productivity in broiler production: Case studies in Brazil. J. Clean. Prod. 2016, 135, 9–19. [Google Scholar] [CrossRef]
- Krauß, M.; Kraatz, S.; Drastig, K.; Prochnow, A. The influence of dairy management strategies on water productivity of milk production. Agric. Water Manag. 2015, 147, 175–186. [Google Scholar] [CrossRef]
- Drastig, K.; Prochnow, A.; Libra, J.; Koch, H.; Rolinski, S. Irrigation water demand of selected agricultural crops in Germany between 1902 and 2010. Sci. Total Environ. 2016, 569, 1299–1314. [Google Scholar] [CrossRef] [PubMed]
- Drastig, K.; Libra, J.; Kraatz, S.; Koch, H. Relationship between irrigation water demand and yield of selected crops in Germany between 1902 and 2010: A modeling study. Environ. Earth Sci. 2016, 75. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements; FAO: Rome, Italy, 1998; Volume 56. [Google Scholar]
- Roth, D. Wasserhaushaltsgrößen von Kulturpflanzen unter Feldbedingungen—Ergebnisse der tll-Lysimeterstation; Thüringer Landesanstalt für Landwirtschaft: Jena, Germany, 2005; p. 159. (In German)
- Ernstberger, H. Einfluss der Landnutzung auf Verdunstung und Wasserbilanz: Bestimmung der Aktuellen Eapotranspiration von Unterschiedlich Genutzten Standorten zur Ermittlung d. Wasserbilanz von Einzugsgebieten in Unteren Mittelgebirgslagen Hessens; Justus-Liebig-Universität-Gießen, FB Geowissenschaften: Kirchzarten, Germany, 1987. (In German) [Google Scholar]
- Rupp, D. Optimierte Bewässerung auf der Basis der Bodenwasserbilanz unter Berücksichtigung örtlicher sowie regionaler Wetterdaten. In Qualitätsmanagement im Obst- und Weinbau; Achilles, A., Ed.; Kuratorium für Technik und Bauwesen in der Landwirtschaft e.V. (KTBL): Darmstadt, Germany, 2004; Volume 421. (In German) [Google Scholar]
- Lopes, C.; Monteiro, A.; Ruckert, F.E.; Gruber, B.; Steinberg, B.; Schultz, H.R. Transpiration of grapevines and co-habitating cover crop and weed species in a vineyard. A “snapshot” at diurnal trends. Vitis 2004, 43, 111–117. [Google Scholar]
- Siegfried, W.; Sacchelli, M.; Viret, O.; Wohlhauser, R.; Raisigl, U.; Huber, B. Blattflächenbezogene Dosierung von Pflanzenschutzmitteln im Rebbau. Teil i: Methoden zur Bestimmung der Blattfläche-und Laubwandentwicklung. Schweiz. Z. Obst Weinbau 2005, 4, 13–16. (In German) [Google Scholar]
- Campos, I.; Neale, C.M.U.; Calera, A.; Balbontin, C.; Gonzalez-Piqueras, J. Assessing satellite-based basal crop coefficients for irrigated grapes (Vitis vinifera L). Agric. Water Manag. 2010, 98, 45–54. [Google Scholar] [CrossRef]
- Doorenbos, J.; Pruitt, W.O. Crop Water Requirements—Guidelines for Predicting Crop Water Requirements; FAO: Rome, Italy, 1977. [Google Scholar]
- Bauer, K. Weinbau; Österreichischer Agrarverlag: Wien, Austria, 2008. (In German) [Google Scholar]
- Krauß, M.; Keßler, J.; Prochnow, A.; Kraatz, S.; Drastig, K. Water productivity of poultry production: The influence of different broiler fattening systems. Food Energy Secur. 2015, 4, 76–85. [Google Scholar] [CrossRef]
- De Boer, I.J.M.; Hoving, I.E.; Vellinga, T.V.; Van de Ven, G.W.J.; Leffelaar, P.A.; Gerber, P.J. Assessing environmental impacts associated with freshwater consumption along the life cycle of animal products: The case of dutch milk production in noord-brabant. Int. J. Life Cycle Assess. 2013, 18, 193–203. [Google Scholar] [CrossRef]
- Döring, K.; Kraatz, S.; Prochnow, A.; Drastig, K. Indirect water demand of dairy farm buildings. Agric. Eng. Int. 2013, 15, 16–22. [Google Scholar]
- Statistisches Landesamt Rheinland-Pfalz. Vorläufige Weinmosternte 2012. Available online: https://www.statistik.rlp.de/fileadmin/dokumente/berichte/C2043_201200_1j_AnbGeb.pdf (accessed on 30 January 2017). (In German)
- Statistisches Landesamt Rheinland-Pfalz. Vorläufige Weinmosternte 2013. Available online: https://www.statistik.rlp.de/fileadmin/dokumente/berichte/C2043_201200_1j_AnbGeb.pdf (accessed on 30 January 2017). (In German)
- Bravdo, B.; Hepner, Y.; Loinger, C.; Cohen, S.; Tabacman, H. Effect of crop level on growth, yield and wine quality of a high yielding carignane vineyard. Am. J. Enol. Vitic. 1984, 35, 247–252. [Google Scholar]
- Gil, M.; Esteruelas, M.; Gonzalez, E.; Kontoudakis, N.; Jimenez, J.; Fort, F.; Canals, J.M.; Hermosin-Gutierrez, I.; Zamora, F. Effect of two different treatments for reducing grape yield in vitis vinifera cv syrah on wine composition and quality: Berry thinning versus cluster thinning. J. Agric. Food Chem. 2013, 61, 4968–4978. [Google Scholar] [CrossRef]
- Petti, L.; Arzoumanidis, I.; Benedetto, G.; Bosco, S.; Cellura, M.; De Camillis, C.; Fantin, V.; Masotti, P.; Pattara, C.; Raggi, A.; et al. Life cycle assessment in the wine sector. In Life Cycle Assessment in the Agri-Food Sector; Notarnicola, B., Salomone, R., Petti, L., Renzulli, P.A., Roma, R., Cerutti, A.K., Eds.; Springer International Publishing: Bologna, Italy, 2015; p. 390. [Google Scholar]
- Fusi, A.; Guidetti, R.; Benedetto, G. Delving into the environmental aspect of a Sardinian white wine: From partial to total life cycle assessment. Sci. Total Environ. 2014, 472, 989–1000. [Google Scholar] [CrossRef] [PubMed]
- Staatliche Forschungsanstalt für Landwirtschaft. Weinbau und Gartenbau Forschungsprojekt PIUS; Produktionsintegrierter Umweltschutz im Weinbau; Abschlußbericht: Neustadt/Wstr, Germany. (In German)
- Williams, L.E.; Ayars, J.E. Grapevine water use and the crop coefficient are linear functions of the shaded area measured beneath the Canopy. Agric. For. Meteorol. 2005, 132, 201–211. [Google Scholar] [CrossRef]
- Hofmann, B. Grapevine water stress risk in perennial cover-cropping systems. Geol. Abh. Hess. 2004, 114, 93–104. [Google Scholar]
Winery/Data Source | Farm Size | Form of Marketing (Bulk Wine/Bottled Wine) | Grape Variety (White Wine/Red Wine) |
---|---|---|---|
Winery I | 9.6 ha | 40%/60% | 66%/34% |
Winery II | 14.3 ha | 45%/55% | 73%/27% |
Winery III | 9.4 ha | 50%/50% | 81%/19% |
Rheinhessen Statistisches [24,25] | 11.2 ha (in 2010) | n/a | 69%/31% (in 2013) |
Winery | Mean Annual Temperature (°C) | Precipitation (mm) | ||||
---|---|---|---|---|---|---|
2011 | 2012 | 2013 | 2011 | 2012 | 2013 | |
Winery I | 10.6 | 10.8 | 9.9 | 504 | 483 | 559 |
Winery II | 10.6 | 10.8 | 9.9 | 504 | 483 | 559 |
Winery III | 11.2 | 11.3 | 10.4 | 524 | 531 | 598 |
Winery | 2011 | 2012 | 2013 | |
---|---|---|---|---|
Winery I | Start | 21 September–6 October 2010 | 4 September–5 October 2011 | 25 September–18 October 2012 |
End | 3 September–4 October 2011 | 24 September–17 October 2012 | 1 September–21 October 2013 | |
Number of modeling units | 43 | 43 | 38 | |
Winery II | Start | 12 September–5 October 2010 | 5 September–5 October 2011 | 19 September–17 October 2012 |
End | 4 September–4 October 2011 | 18 September–16 October 2012 | 26 September–23 October 2013 | |
Number of modeling units | 72 | 72 | 71 | |
Winery III | Start | 8 September–17 October 2010 | 9 September–12 October 2011 | 21 September–1 November 2012 |
End | 8 September–11 October 2011 | 2 September–31 October 2012 | 1 October–25 October 2013 | |
Number of modeling units | 72 | 71 | 68 |
Plant | Basal Crop Coefficient (-) [35,38] | Leaf Area Index (-) [39,40] | Rooting Depth (m) [41] | Average Fraction of Available Soil Water (-) [35,42] | Plant Height (m) [43] |
---|---|---|---|---|---|
Vine | 0.8 | 2.3 | 2.0 | 0.4 | 2.2 |
Winery | Winery I | Winery II | Winery III | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Year | 2011 | 2012 | 2013 | Mean | 2011 | 2012 | 2013 | Mean | 2011 | 2012 | 2013 | Mean |
Water Flows (m3) | ||||||||||||
Water inflow a Winflow | 47,529 | 47,145 | 53,900 | 49,525 | 71,254 | 67,994 | 84,164 | 74,471 | 49,463 | 50,682 | 56,532 | 52,226 |
Precipitation Wprec | 47,322 | 46,952 | 53,651 | 49,308 | 71,008 | 67,750 | 83,927 | 74,228 | 49,148 | 50,367 | 56,217 | 51,911 |
Technical water Wtech | 207 | 193 | 249 | 216 | 246 | 244 | 237 | 242 | 315 | 315 | 315 | 315 |
Irrigation water Wirri | - | - | - | - | - | - | - | - | - | - | - | - |
Tap water Wtap | 207 | 193 | 249 | 216 | 246 | 244 | 237 | 242 | 315 | 315 | 315 | 315 |
Water input b Winput | 24,977 | 23,260 | 24,571 | 24,269 | 37,537 | 34,761 | 39,250 | 37,183 | 28,656 | 24,431 | 28,887 | 27,325 |
Transpiration stemming from precipitation Wprec-trans | 24,770 | 23,067 | 24,322 | 24,053 | 37,291 | 34,517 | 39,013 | 36,940 | 28,341 | 24,116 | 28,572 | 27,010 |
Indirect water Windirect | - | - | - | - | - | - | - | - | - | - | - | - |
Productive water Wprod | 24,770 | 23,067 | 24,322 | 24,053 | 37,291 | 34,517 | 39,013 | 36,940 | 28,341 | 24,116 | 28,572 | 27,010 |
Wtransp | 24,770 | 23,067 | 24,322 | 24,053 | 37,291 | 34,517 | 39,013 | 36,940 | 28,341 | 24,116 | 28,572 | 27,010 |
Winery/Region | Mean Yield Per Hectare (hL/ha) | Mean Must Weight (°Oe) | ||||||
---|---|---|---|---|---|---|---|---|
2011 | 2012 | 2013 | Mean | 2011 | 2012 | 2013 | Mean | |
Winery I | 106.2 | 103.6 | 89.9 | 99.9 | 78 | 87 | 79 | 81.3 |
Winery II | 111.4 | 100.2 | 104.1 | 105.2 | 80 | 89 | 82 | 83.7 |
Winery III | 140.2 | 98.3 | 112.8 | 117.1 | 89 | 88 | 83 | 86.7 |
Rhenish Hesse [25,47,48] | 101.4 | 101.3 | 98.5 | 100.4 | 80 | 83 | 78 | 80.3 |
Winery | Liter Water Input per Liter Wine | Liter Technical Water per Liter Wine | ||||||
---|---|---|---|---|---|---|---|---|
Year | 2011 | 2012 | 2013 | Mean | 2011 | 2012 | 2013 | Mean |
Winery I | 249 | 238 | 304 | 263 | 2.1 | 2.0 | 3.1 | 2.4 |
Winery II | 241 | 248 | 269 | 252 | 1.6 | 1.7 | 1.6 | 1.6 |
Winery III | 220 | 271 | 286 | 259 | 2.4 | 3.5 | 3.1 | 3.0 |
Mean | 237 | 252 | 286 | 258 | 2.0 | 2.4 | 2.6 | 2,3 |
Indicator a | Unit | Year | Winery I | Winery II | Winery III | Mean |
---|---|---|---|---|---|---|
FWPmass | L/m3 | 2011 | 4.02 | 4.16 | 4.55 | 4.24 |
2012 | 4.21 | 4.04 | 3.69 | 3.98 | ||
2013 | 3.29 | 3.71 | 3.50 | 3.50 | ||
Mean | 3.84 | 3.97 | 3.91 | 3.91 | ||
FWPquality | °Oe/m3 | 2011 | 311.62 | 333.38 | 402.99 | 349.33 |
2012 | 365.70 | 361.35 | 332.62 | 353.22 | ||
2013 | 259.36 | 304.66 | 291.47 | 285.16 | ||
Mean | 312.23 | 333.13 | 342.36 | 329,24 | ||
WUE | m3/L | 2011 | 0.25 | 0.24 | 0.22 | 0.24 |
2012 | 0.24 | 0.25 | 0.27 | 0.25 | ||
2013 | 0.30 | 0.27 | 0.29 | 0.29 | ||
Mean | 0.26 | 0.25 | 0.26 | 0.26 | ||
DWU | - | 2011 | 0.52 | 0.52 | 0.57 | 0.54 |
2012 | 0.49 | 0.51 | 0.48 | 0.49 | ||
2013 | 0.45 | 0.46 | 0.51 | 0.47 | ||
Mean | 0.49 | 0.50 | 0.52 | 0.50 | ||
STW | m3/ha/a | 2011 | 21.32 | 17.16 | 33.06 | 23.84 |
2012 | 19.88 | 17.02 | 33.49 | 23.46 | ||
2013 | 26.92 | 16.53 | 34.28 | 25.91 | ||
Mean | 22.71 | 16.90 | 33.61 | 24.40 |
Winery | Water Productivity on Mass Basis (L/m3) | Water Productivity on Quality Basis (°Oe/m3) | |||||||
---|---|---|---|---|---|---|---|---|---|
Year | Mean | Min | Max | SD | Mean | Min | Max | SD | |
Winery I | 2011 | 4.06 | 1.46 | 8.00 | 1.50 | 341.15 | 117.06 | 600.28 | 103.48 |
2012 | 4.25 | 1.09 | 6.92 | 1.31 | 394.74 | 121.58 | 614.30 | 103.14 | |
2013 | 3.33 | 0.96 | 5.27 | 1.00 | 280.33 | 88.26 | 421.34 | 73.69 | |
Winery II | 2011 | 4.20 | 0.83 | 8.01 | 1.82 | 382.43 | 60.05 | 678.66 | 122.00 |
2012 | 4.08 | 1.30 | 7.28 | 1.39 | 394.22 | 120.68 | 655.20 | 103.16 | |
2013 | 3.74 | 1.14 | 6.12 | 1.30 | 345.34 | 102.16 | 493.50 | 111.33 | |
Winery III | 2011 | 4.60 | 1.37 | 7.20 | 1.46 | 456.16 | 109.22 | 661.48 | 130.54 |
2012 | 3.71 | 1.57 | 7.29 | 0.76 | 343.04 | 149.42 | 663.21 | 68.50 | |
2013 | 3.54 | 1.17 | 5.94 | 1.21 | 325.61 | 101.88 | 463.60 | 84.90 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peth, D.; Drastig, K.; Prochnow, A. Quantity- and Quality-Based Farm Water Productivity in Wine Production: Case Studies in Germany. Water 2017, 9, 88. https://doi.org/10.3390/w9020088
Peth D, Drastig K, Prochnow A. Quantity- and Quality-Based Farm Water Productivity in Wine Production: Case Studies in Germany. Water. 2017; 9(2):88. https://doi.org/10.3390/w9020088
Chicago/Turabian StylePeth, Denise, Katrin Drastig, and Annette Prochnow. 2017. "Quantity- and Quality-Based Farm Water Productivity in Wine Production: Case Studies in Germany" Water 9, no. 2: 88. https://doi.org/10.3390/w9020088
APA StylePeth, D., Drastig, K., & Prochnow, A. (2017). Quantity- and Quality-Based Farm Water Productivity in Wine Production: Case Studies in Germany. Water, 9(2), 88. https://doi.org/10.3390/w9020088