Study of the Spatiotemporal Characteristics of Meltwater Contribution to the Total Runoff in the Upper Changjiang River Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Model Input
2.2.1. Atmospheric Forcings
2.2.2. Land Data
2.3. Observed and Remote Sensing-Based Data
2.3.1. Runoff
2.3.2. Snow Cover Fraction
2.3.3. Evapotranspiration
2.4. Modeling and Analysis Scheme
2.4.1. Noah-MP LSM
2.4.2. Model Setup
2.4.3. Model Calibration and Validation
2.4.4. Melt Runoff and Its Contribution to Total Runoff
2.5. Statistical and Trend Analyses
3. Results
3.1. Model Calibration and Validation
3.2. Overall Statistics of Melt Runoff
3.3. Temporal Characteristics of Melt Runoff
3.4. Spatial Characteristics of Melt Runoff
4. Discussion
4.1. Importance of Melt Runoff in the Upper Changjiang River Basin
4.2. Effects of Climate and Land Cover Changes
4.3. Uncertainties in this Study
4.3.1. Atmospheric Forcings
4.3.2. Snow-Related Parameterizations
4.3.3. Quantification of Melt Water Contribution to Total Runoff
5. Conclusions
- On average, MR accounted for about 2.0% of natural runoff at the Yichang gauging station, which controls the entire UCRB. More specifically, JSJSY, YLJ, DDH and MJ, the four sub-regions of UCRB, had the most significant MCR values of 6.0%, 3.9%, 5.3% and 4.0%, respectively during the study period. By comparison, the MCR of values in CSH and WJ were negligible.
- The MCR values in different sub-regions showed significant seasonal variability. From a monthly climatology perspective, MCR generally begins to increase in January or February in all sub-regions. In JSJSY, YLJ, and DDH, double MCR peaks were observed in summer and winter while only a single peak was observed in the remaining sub-regions. The PT varied by sub-regions, mainly due to air temperature gradients.
- M-K tests indicated that the annual MCR values of JSJSY, YLJ, DDH, and MJ showed increasing trends during the study period; however, only that of MJ was statistically significant, with a value of 0.11%/year (). The annual MR values of both JSJSY and MJ displayed statistically significant increasing trends of 0.02 mm/year () and 0.04 mm/year (), respectively. No trends were found for PT values of MR and MCR, in contrast, advancing trend were observed for th CT values of MR in JSJSY, YLJ, DDH, and MJ, and the corresponding values were 0.01 months/year, 0.02 months/year, 0.01 months/year and 0.01 months/year, respectively.
- The spatial distribution of MCR values in the study area generally consistent with the distribution of glaciers and elevation. In JSJSY, YLJ, DDH, and MJ, MCR generally begins to increase near glacierized areas of Tanggula Range and Hengduan Mountain Range. MCR was then influenced by the melting of the seasonal snow pack in the upper stream area.
- The uncertainties in this study may result from the atmospheric forcings, the snow related parameterizations in the Noah-MP model, and the approach we adopted to quantify the MCR.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Barnett, T.P.; Adam, J.C.; Lettenmaier, D.P. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 2005, 438, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Jost, G.; Moore, R.D.; Menounos, B.; Wheate, R. Quantifying the contribution of glacier runoff to streamflow in the upper Columbia River Basin, Canada. Hydrol. Earth Syst. Sci. 2012, 16, 849–860. [Google Scholar] [CrossRef] [Green Version]
- Immerzeel, W.W.; van Beek, L.P.H.; Bierkens, M.F.P. Climate Change Will Affect the Asian Water Towers. Science 2010, 328, 1382–1385. [Google Scholar] [CrossRef] [PubMed]
- Sorg, A.; Bolch, T.; Stoffel, M.; Solomina, O.; Beniston, M. Climate change impacts on glaciers and runoff in Tien Shan (Central Asia). Nat. Clim. Chang. 2012, 2, 725–731. [Google Scholar] [CrossRef]
- Mikhailov, V.N.; Morozov, V.N.; Cheroy, N.I.; Mikhailova, M.V.; Zav’yalova, Y.F. Extreme flood on the Danube River in 2006. Russ. Meteorol. Hydrol. 2008, 33, 48–54. [Google Scholar] [CrossRef]
- Parajka, J.; Kohnová, S.; Bálint, G.; Barbuc, M.; Borga, M.; Claps, P.; Cheval, S.; Dumitrescu, A.; Gaume, E.; Hlavčová, K.; et al. Seasonal characteristics of flood regimes across the Alpine–Carpathian range. J. Hydrol. 2010, 394, 78–89. [Google Scholar] [CrossRef] [PubMed]
- Brown, R.D.; Mote, P.W. The response of Northern Hemisphere snow cover to a changing climate. J. Clim. 2009, 22, 2124–2145. [Google Scholar] [CrossRef]
- Stewart, I.T. Changes in snowpack and snowmelt runoff for key mountain regions. Hydrol. Process. 2009, 23, 78–94. [Google Scholar] [CrossRef]
- Frenierre, J.L.; Mark, B.G. A review of methods for estimating the contribution of glacial meltwater to total watershed discharge. Prog. Phys. Geogr. 2014, 38, 173–200. [Google Scholar] [CrossRef]
- Lambrecht, A.; Mayer, C. Temporal variability of the non-steady contribution from glaciers to water discharge in western Austria. J. Hydrol. 2009, 376, 353–361. [Google Scholar] [CrossRef]
- Huss, M. Present and future contribution of glacier storage change to runoff from macroscale drainage basins in Europe. Water Resour. Res. 2011, 47, W07511. [Google Scholar] [CrossRef]
- Cable, J.; Ogle, K.; Williams, D. Contribution of glacier meltwater to streamflow in the Wind River Range, Wyoming, inferred via a Bayesian mixing model applied to isotopic measurements. Hydrol. Process. 2011, 25, 2228–2236. [Google Scholar] [CrossRef]
- Mark, B.G.; McKenzie, J.M.; Gómez, J. Hydrochemical evaluation of changing glacier meltwater contribution to stream discharge: Callejon de Huaylas, Peru/Evaluation hydrochimique de la contribution évolutive de la fonte glaciaire à l’écoulement fluvial: Callejon de Huaylas, Pérou. Hydrol. Sci. J. 2005, 50, 975–988. [Google Scholar] [CrossRef]
- Gurtz, J.; Zappa, M.; Jasper, K.; Lang, H.; Verbunt, M.; Badoux, A.; Vitvar, T. A comparative study in modelling runoff and its components in two mountainous catchments. Hydrol. Process. 2003, 17, 297–311. [Google Scholar] [CrossRef]
- Siderius, C.; Biemans, H.; Wiltshire, A.; Rao, S.; Franssen, W.H.P.; Kumar, P.; Gosain, A.K.; van Vliet, M.T.H.; Collins, D.N. Snowmelt contributions to discharge of the Ganges. Sci. Total Environ. 2013, 468–469, S93–S101. [Google Scholar] [CrossRef] [PubMed]
- Woo, M.K.; Thorne, R. Snowmelt contribution to discharge from a large mountainous catchment in subarctic Canada. Hydrol. Process. 2006, 20, 2129–2139. [Google Scholar] [CrossRef]
- Stewart, I.T.; Cayan, D.R.; Dettinger, M.D. Changes in Snowmelt Runoff Timing in Western North America under a ‘Business as Usual’ Climate Change Scenario. Clim. Chang. 2004, 62, 217–232. [Google Scholar] [CrossRef]
- Pitman, A.J. The evolution of, and revolution in, land surface schemes designed for climate models. Int. J. Climatol. 2003, 23, 479–510. [Google Scholar] [CrossRef]
- Chen, F.; Barlage, M.; Tewari, M.; Rasmussen, R.; Jin, J.; Lettenmaier, D.; Livneh, B.; Lin, C.; Miguez-Macho, G.; Niu, G.; et al. Modeling seasonal snowpack evolution in the complex terrain and forested Colorado Headwaters region: A model intercomparison study. J. Geophys. Res. Atmos. 2014, 119, 13795–13819. [Google Scholar] [CrossRef]
- Zhang, L.; Su, F.; Yang, D.; Hao, Z.; Tong, K. Discharge regime and simulation for the upstream of major rivers over Tibetan Plateau. J. Geophys. Res. Atmos. 2013, 118, 8500–8518. [Google Scholar] [CrossRef]
- Gao, H.; He, X.; Ye, B.; Pu, J. Modeling the runoff and glacier mass balance in a small watershed on the Central Tibetan Plateau, China, from 1955 to 2008. Hydrol. Process. 2012, 26, 1593–1603. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, Y.; Zhang, Y.; Ding, Y. Estimation of glacier runoff and future trends in the Yangtze River source region, China. J. Glaciol. 2009, 55, 353–362. [Google Scholar]
- Shen, Y.; Wang, G.; Wang, G.; Pu, J.; Wang, X. Impacts of climate change on glacial water resources and hydrological cycles in the Yangtze River source region, the Qinghai-Tibetan Plateau, China: A Progress Report. Sci. Cold Arid Reg. 2009, 6, 475–495. [Google Scholar]
- Zhang, Y.; Liu, S.; Xu, J.; Shangguan, D. Glacier change and glacier runoff variation in the Tuotuo River basin, the source region of Yangtze River in western China. Environ. Geol. 2008, 56, 59–68. [Google Scholar] [CrossRef]
- Piao, S.; Ciais, P.; Huang, Y.; Shen, Z.; Peng, S.; Li, J.; Zhou, L.; Liu, H.; Ma, Y.; Ding, Y.; et al. The impacts of climate change on water resources and agriculture in China. Nature 2010, 467, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Xu, B.; Yao, T.; Guo, Z.; Cui, P.; Chen, F.; Zhang, R.; Zhang, X.; Zhang, Y.; Fan, J.; et al. Assessment of past, present and future environmental changes on the Tibetan Plateau. Chin. Sci. Bull. 2015, 60, 3025–3035. (In Chinese) [Google Scholar]
- Guo, W.; Liu, S.; Xu, J.; Wu, L.; Shangguan, D.; Yao, X.; Wei, J.; Bao, W.; Yu, P.; Liu, Q.; et al. The second Chinese glacier inventory: Data, methods and results. J. Glaciol. 2015, 61, 357–372. [Google Scholar] [CrossRef]
- Broxton, P.D.; Zeng, X.; Sulla-Menashe, D.; Troch, P.A. A Global Land Cover Climatology Using MODIS Data. J. Appl. Meteorol. Climatol. 2014, 53, 1593–1605. [Google Scholar] [CrossRef]
- He, J.; Yang, K. China Meteorological Forcing Dataset. Cold Arid Reg. Sci. Data Cent. Lanzhou 2011. [Google Scholar]
- Shangguan, W.; Dai, Y.; Liu, B.; Zhu, A.; Duan, Q.; Wu, L.; Ji, D.; Ye, A.; Yuan, H.; Zhang, Q.; et al. A China data set of soil properties for land surface modeling. J. Adv. Model. Earth Syst. 2013, 5, 212–224. [Google Scholar] [CrossRef]
- Brown, R.; Derksen, C.; Wang, L. A multi-data set analysis of variability and change in Arctic spring snow cover extent, 1967–2008. Eur. Conf. Opt. Commun. 2010, 115, 751–763. [Google Scholar] [CrossRef]
- Zhang, K.; Kimball, J.S.; Nemani, R.R.; Running, S.W. A continuous satellite-derived global record of land surface evapotranspiration from 1983 to 2006. Water Resour. Res. 2010, 46, 1–21. [Google Scholar] [CrossRef]
- Xue, B.L.; Wang, L.; Li, X.; Yang, K.; Chen, D.; Sun, L. Evaluation of evapotranspiration estimates for two river basins on the Tibetan Plateau by a water balance method. J. Hydrol. 2013, 492, 290–297. [Google Scholar] [CrossRef]
- Ek, M.B.; Mitchell, K.E.; Lin, Y.; Rogers, E.; Grunmann, P.; Koren, V.; Gayno, G.; Tarpley, J.D. Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res. Atmos. 2003, 108, 1–16. [Google Scholar] [CrossRef]
- Niu, G.Y.; Yang, Z.L.; Mitchell, K.E.; Chen, F.; Ek, M.B.; Barlage, M.; Kumar, A.; Manning, K.; Niyogi, D.; Rosero, E.; et al. The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res. 2011, 116, D12109. [Google Scholar] [CrossRef]
- Yang, Z.; Niu, G.; Mitchell, K.E.; Chen, F.; Ek, M.B.; Barlage, M.; Longuevergne, L.; Manning, K.; Niyogi, D.; Tewari, M.; et al. The community Noah land surface model with multiparameterization options (Noah-MP): 2. Evaluation over global river basins. J. Geophys. Res. 2011, 116, D12110. [Google Scholar] [CrossRef]
- Niu, G.Y.; Yang, Z.L. An observation-based formulation of snow cover fraction and its evaluation over large North American river basins. J. Geophys. Res. Atmos. 2007, 112, 1–14. [Google Scholar] [CrossRef]
- Niu, G.Y.; Yang, Z.L. Effects of frozen soil on snowmelt runoff and soil water storage at a continental scale. J. Hydrometeorol. 2006, 7, 937–952. [Google Scholar] [CrossRef]
- Niu, G.; Yang, Z.L.; Dickinson, R.E.; Gulden, L.E. A simple TOPMODEL-based runoff parameterization (SIMTOP) for use in global climate models. J. Geophys. Res. Atmos. 2005, 110, 1–15. [Google Scholar] [CrossRef]
- Niu, G.Y.; Yang, Z.L.; Dickinson, R.E.; Gulden, L.E.; Su, H. Development of a simple groundwater model for use in climate models and evaluation with Gravity Recovery and Climate Experiment data. J. Geophys. Res. 2007, 112, D07103. [Google Scholar] [CrossRef]
- Cai, X.; Yang, Z.L.; David, C.H.; Niu, G.Y.; Rodell, M. Hydrological evaluation of the Noah-MP land surface model for the Mississippi River Basin. J. Geophys. Res. Atmos. 2014, 119, 23–38. [Google Scholar] [CrossRef]
- Modini, R.L.; Frossard, A.A.; Ahlm, L.; Russell, L.M.; Corrigan, C.E.; Roberts, G.C.; Hawkins, L.N.; Schroder, J.C.; Bertram, A.K.; Zhao, R.; et al. Primary marine aerosol-cloud interactions off the coast of California. J. Geophys. Res. Atmos. 2015, 120, 4282–4303. [Google Scholar] [CrossRef]
- Pilotto, I.L.; Rodríguez, D.A.; Tomasella, J.; Sampaio, G.; Chou, S.C. Comparisons of the Noah-MP land surface model simulations with measurements of forest and crop sites in Amazonia. Meteorol. Atmos. Phys. 2015, 127, 711–723. [Google Scholar] [CrossRef]
- Schaner, N.; Voisin, N.; Nijssen, B.; Lettenmaier, D.P. The contribution of glacier melt to streamflow. Environ. Res. Lett. 2012, 7, 034029. [Google Scholar] [CrossRef]
- Prasch, M.; Mauser, W.; Weber, M. Quantifying present and future glacier melt-water contribution to runoff in a central Himalayan river basin. Cryosphere 2013, 7, 889–904. [Google Scholar] [CrossRef]
- Mauser, W.; Prasch, M. (Eds.) Regional Assessment of Global Change Impacts; Springer: Cham, Switzerland, 2016.
- Pu, Z.; Xu, L.; Salomonson, V.V. MODIS/Terra observed seasonal variations of snow cover over the Tibetan Plateau. Geophys. Res. Lett. 2007, 34, 1–6. [Google Scholar] [CrossRef]
- Yang, J.; Jiang, L.; Ménard, C.B.; Luojus, K.; Lemmetyinen, J.; Pulliainen, J. Evaluation of snow products over the Tibetan Plateau. Hydrol. Process. 2015, 29, 3247–3260. [Google Scholar] [CrossRef]
- Kustas, W.P.; Rango, A.; Uijlenhoet, R. A simple energy budget algorithm for the snowmelt runoff model. Water Resour. Res. 1994, 30, 1515–1527. [Google Scholar] [CrossRef]
- Clow, D.W. Changes in the timing of snowmelt and streamflow in Colorado: A response to recent warming. J. Clim. 2010, 23, 2293–2306. [Google Scholar] [CrossRef]
- Wang, R.; Yao, Z.; Liu, Z.; Wu, S.; Jiang, L.; Wang, L. Snow cover variability and snowmelt in a high-altitude ungauged catchment. Hydrol. Process. 2015, 29, 3665–3676. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods, 4th ed.; Griffin Charles: London, UK, 1975. [Google Scholar]
- Mann, H.B. Nonparametric tests against trend. Econom. J. Econom. Soc. 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Qin, D.H.; Liu, S.Y.; Li, P.J. Snow Cover Distribution, Variability, and Response to Climate Change in Western China. J. Clim. 2006, 19, 1820–1833. [Google Scholar]
- Changjiang Water Resources Commission. Changjiang & Southwest Rivers Water Resources Bulletin; Technical Report; Changjiang Water Resources Commission: Wuhan, China, 2001. (In Chinese) [Google Scholar]
- Wu, S.; Yao, Z.; Huang, H.; Liu, Z.; Chen, Y. Glacier retreat and its effect on stream flow in the source region of the Yangtze River. J. Geogr. Sci. 2013, 23, 849–859. [Google Scholar] [CrossRef]
- Xu, X.; Lu, C.; Shi, X.; Gao, S. World water tower: An atmospheric perspective. Geophys. Res. Lett. 2008, 35, 525–530. [Google Scholar] [CrossRef]
- Chen, J. Water Cycle Mechanism in the Source Region of Yangtze River. J. Yangtze River Sci. Res. Inst. 2013, 30, 1–5. (In Chinese) [Google Scholar]
- Jiang, T.; Su, B.; Hartmann, H. Temporal and spatial trends of precipitation and river flow in the Yangtze River Basin, 1961–2000. Geomorphology 2007, 85, 143–154. [Google Scholar] [CrossRef]
- Zhang, Q.; Jiang, T.; Gemmer, M.; Becker, S. Precipitation, temperature and runoff analysis from 1950 to 2002 in the Yangtze basin, China/Analyse des précipitations, températures et débits de 1950 à 2002 dans le bassin du Yangtze, en Chine. Hydrol. Sci. J. 2005, 50, 37–41. [Google Scholar] [CrossRef]
- Cui, X.; Liu, S.; Wei, X. Impacts of forest changes on hydrology: A case study of large watersheds in the upper reaches of Minjiang River watershed in China. Hydrol. Earth Syst. Sci. 2012, 16, 4279–4290. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.J. Long-term trend of runoff in Minjiang basin and its respones to climate change over Tibetan Plateau. Resour. Environ. Yangtze Basin 2010, 19, 933–939. (In Chinese) [Google Scholar]
- Zhao, Q.Y. Climate change characteristics and its effect on ecological environment from 1971 to 2009 in the Jinsha river valley of Yunnan province. J. Meteorol. Environ. 2010, 9, 1–7. (In Chinese) [Google Scholar]
- VanShaar, J.R.; Haddeland, I.; Lettenmaier, D.P. Effects of land-cover changes on the hydrological response of interior Columbia River basin forested catchments. Hydrol. Process. 2002, 16, 2499–2520. [Google Scholar] [CrossRef]
- Strasser, U.; Warscher, M.; Liston, G.E. Modeling Snow–Canopy Processes on an Idealized Mountain. J. Hydrometeorol. 2011, 12, 663–677. [Google Scholar] [CrossRef]
- Cristea, N.C.; Lundquist, J.D.; Loheide, S.P.; Lowry, C.S.; Moore, C.E. Modelling how vegetation cover affects climate change impacts on streamflow timing and magnitude in the snowmelt-dominated upper Tuolumne Basin, Sierra Nevada. Hydrol. Process. 2014, 28, 3896–3918. [Google Scholar] [CrossRef]
- Varhola, A.; Coops, N.C.; Weiler, M.; Moore, R.D. Forest canopy effects on snow accumulation and ablation: An integrative review of empirical results. J. Hydrol. 2010, 392, 219–233. [Google Scholar] [CrossRef]
- Roth, T.R.; Nolin, A.W. Forest impacts on snow accumulation and ablation across an elevation gradient in a temperate montane environment. Hydrol. Earth Syst. Sci. Discuss. 2016, 1–24. [Google Scholar] [CrossRef]
- Sterling, S.M.; Ducharne, A.; Polcher, J. The impact of global land-cover change on the terrestrial water cycle. Nat. Clim. Chang. 2012, 2, 1–6. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, X.; Xia, D.; Liu, Y. An Analysis of Land Use Change Dynamics and Its Impacts on Hydrological Processes in the Jialing River Basin. Water 2014, 6, 3758–3782. [Google Scholar] [CrossRef]
- Yang, Z.; Hu, M. Streamflow Characteristics of the Eastern Qinghai Plateau (in Chinese). J. Glaciol. Geocryol. 1993, 1, 51–60. [Google Scholar]
- Sheffield, J.; Goteti, G.; Wood, E.F. Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Clim. 2006, 19, 3088–3111. [Google Scholar] [CrossRef]
- Fekete, M.; Charles, J.V. Uncertainties in Precipitation and their Impacts on Runoff Estimates. J. Clim. 2003, 17, 294–304. [Google Scholar] [CrossRef]
- Sheffield, J.; Ziegler, A.D.; Wood, E.F.; Chen, Y. Correction of the high-latitude rain day anomaly in the NCEP-NCAR reanalysis for land surface hydrological modeling. J. Clim. 2004, 17, 3814–3828. [Google Scholar] [CrossRef]
- Wang, W.; Cui, W.; Wang, X.; Chen, X. Evaluation of GLDAS-1 and GLDAS-2 forcing data and Noah model simulations over China at monthly scale. J. Hydrometeorol. 2016, 17, 2815–2833. [Google Scholar] [CrossRef]
- Etchevers, P.; Martin, E.; Brown, R.; Fierz, C.; Lejeune, Y.; Bazile, E.; Boone, A.; Dai, Y.J.; Essery, R.; Fernandez, A.; et al. Validation of the energy budget of an alpine snowpack simulated by several snow models (SnowMIP project). Ann. Glaciol. 2004, 38, 150–158. [Google Scholar] [CrossRef]
- Essery, R.; Rutter, N.; Pomeroy, J.; Baxter, R.; Stähli, M.; Gustafsson, D.; Barr, A.; Bartlett, P.; Elder, K. SNOWMIP2: An Evaluation of Forest Snow Process Simulations. Bull. Am. Meteorol. Soc. 2009, 90, 1120–1135. [Google Scholar] [CrossRef]
- Sivakumar, B.; Singh, V.P. Hydrologic system complexity and nonlinear dynamic concepts for a catchment classification framework. Hydrol. Earth Syst. Sci. 2012, 16, 4119–4131. [Google Scholar] [CrossRef] [Green Version]
Index | Name | Area (km2) | Glacier Area (km2) | Dominant Land Cover | Runoff Gauging Station | Temporal Coverage of Runoff Data |
---|---|---|---|---|---|---|
1 | JSJSY | 248,516.0 | 1278.3 | Grasslands | Shigu | 1998-2010 |
2 | YLJ | 146,311.0 | 102.2 | Grasslands | Tongzilin | 2006–2010 |
3 | DDH | 75,992.5 | 289.3 | Grasslands | / | / |
4 | MJ | 59,682.5 | 16.5 | Mixed Forests | Gaochang | 1992–2010 |
5 | TJ | 26,383.7 | / | Croplands | Fushun | 2002–2010 |
6 | JLJ | 159,018.0 | 0.9 | Evergreen Broadleaf Forest | Beibei | 1981–1987; 1992–2010 |
7 | JSJXY | 85,193.2 | / | Evergreen Broadleaf Forest | / | / |
8 | CJSYGL | 80,755.2 | / | Evergreen Broadleaf Forest | Yichang | 1981–2010 |
9 | CSH | 19,382.9 | / | Evergreen Broadleaf Forest | / | / |
10 | WJ | 87,061.4 | / | Woody Savannas | / | / |
Parametrization | Option Used in This Study |
---|---|
Canopy stomatal resistance | Ball-Berry |
Soil moisture factor for stomatal resistance | Noah |
Runoff and groundwater | TOPMODEL with groundwater |
Surface layer drag coefficient | M-O |
Super cooled liquid water | Non-iterative |
Frozen soil permeability | Linear effects (weaker) |
Radiation transfer | Modified two-stream |
Ground snow surface albedo | CLASS |
Precipitation partition | BATS |
Snow/soil temperature time scheme | Semi-implicit |
Parameters | Definition | Controlling Process | Optimized Value |
---|---|---|---|
f | Decay factor | Surface and subsurface runoff partition | 8.0 |
(-) | |||
Maximum subsurface runoff coefficient | Subsurface runoff | 5.0 | |
(10−4 mm·s−1) | |||
Saturated hydraulic conductivity | Subsurface runoff | Default values × 10.0 | |
(mm·s−1) | |||
M | Melting factor (-) | Snow melting | 1.5 |
(-) | |||
Rain/snowfall threshold | Snow accumulation | 2.5 | |
(°C) |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, Y.-H.; Zhang, X.; Niu, G.-Y.; Zeng, W.; Zhu, J.; Zhang, T. Study of the Spatiotemporal Characteristics of Meltwater Contribution to the Total Runoff in the Upper Changjiang River Basin. Water 2017, 9, 165. https://doi.org/10.3390/w9030165
Fang Y-H, Zhang X, Niu G-Y, Zeng W, Zhu J, Zhang T. Study of the Spatiotemporal Characteristics of Meltwater Contribution to the Total Runoff in the Upper Changjiang River Basin. Water. 2017; 9(3):165. https://doi.org/10.3390/w9030165
Chicago/Turabian StyleFang, Yuan-Hao, Xingnan Zhang, Guo-Yue Niu, Wenzhi Zeng, Jinfeng Zhu, and Tao Zhang. 2017. "Study of the Spatiotemporal Characteristics of Meltwater Contribution to the Total Runoff in the Upper Changjiang River Basin" Water 9, no. 3: 165. https://doi.org/10.3390/w9030165
APA StyleFang, Y.-H., Zhang, X., Niu, G.-Y., Zeng, W., Zhu, J., & Zhang, T. (2017). Study of the Spatiotemporal Characteristics of Meltwater Contribution to the Total Runoff in the Upper Changjiang River Basin. Water, 9(3), 165. https://doi.org/10.3390/w9030165