Urban Water Cycle Simulation/Management Models: A Review
Abstract
:1. Introduction
2. Urban Water Cycle
3. Description of Models of UWC Processes
4. Application of UWC Models
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Elvidge, C.D.; Tuttle, B.T.; Sutton, P.C.; Baugh, K.E.; Howard, A.T.; Milesi, C.; Bhaduri, B.; Nemani, R. Global Distribution and Density of Constructed Impervious Surfaces. Sensors 2007, 7, 1962–1979. [Google Scholar] [CrossRef]
- Van Leeuwen, C.J.; Frijns, J.; van Wezel, A.; van de Ven, F.H.M. City Blueprints: 24 Indicators to Assess the Sustainability of the Urban Water Cycle. Water Resour. Manag. 2012, 26, 2177–2197. [Google Scholar] [CrossRef]
- Fletcher, T.D.; Andrieu, H.; Hamel, P. Understanding, management and modelling of urban hydrology and its consequences for receiving waters: A state of the art. Adv. Water Resour. 2013, 51, 261–279. [Google Scholar] [CrossRef]
- Lee, T.R. Urban water management for better urban life in Latin America. Urban Water 2000, 2, 71–78. [Google Scholar] [CrossRef]
- McIntyre, N.E.; Knowles-Yánez, K.; Hope, D. Urban Ecology as an Interdisciplinary Field: Differences in the use of “Urban” Between the Social and Natural Sciences. In Urban Ecology; Marzluff, J.M., Shulenberger, E., Endlicher, W., Alberti, M., Bradley, G., Ryan, C., Simon, U., ZumBrunnen, C., Eds.; Springer: New York, NY, USA, 2008; pp. 49–65. [Google Scholar]
- Price, R.K.; Vojinović, Z. Urban Hydroinformatics: Data, Models, and Decision Support for Integrated Urban Water Management; IWA Publishing: London, UK, 2011. [Google Scholar]
- Blind, M.; Gregersen, J.B. Towards an open modelling interface (OpenMI) the HarmonIT project. Adv. Geosci. 2005, 4, 69–74. [Google Scholar] [CrossRef]
- Bach, P.M.; Deletic, A.; Urich, C.; Sitzenfrei, R.; Kleidorfer, M.; Rauch, W.; McCarthy, D.T. Modelling Interactions Between Lot-Scale Decentralised Water Infrastructure and Urban Form—A Case Study on Infiltration Systems. Water Resour. Manag. 2013, 27, 4845–4863. [Google Scholar] [CrossRef]
- Makropoulos, C.K.; Natsis, K.; Liu, S.; Mittas, K.; Butler, D. Decision support for sustainable option selection in integrated urban water management. Environ. Model. Softw. 2008, 23, 1448–1460. [Google Scholar] [CrossRef]
- Mackay, R.; Last, E. SWITCH city water balance: A scoping model for integrated urban water management. Rev. Environ. Sci. Biotechnol. 2010, 9, 291–296. [Google Scholar] [CrossRef]
- Mirchi, A.; Madani, K.; Watkins, D., Jr.; Ahmad, S. Synthesis of System Dynamics Tools for Holistic Conceptualization of Water Resources Problems. Water Resour. Manag. 2012, 26, 2421–2442. [Google Scholar] [CrossRef]
- Mitchell, V.G. Applying Integrated Urban Water Management Concepts: A Review of Australian Experience. Environ. Manag. 2006, 37, 589–605. [Google Scholar] [CrossRef] [PubMed]
- Lijklema, L.; Tyson, J.M.; Lesouef, A. Interactions between Sewers, Treatment Plants and Receiving Waters in Urban Areas: A Summary of the Interurba ‘92 Workshop Conclusions. Water Sci. Technol. 1993, 27, 1–29. [Google Scholar]
- Sitzenfrei, R.; Rauch, W.; Rogers, B.; Dawson, R.; Kleidorfer, M. Modeling the urban water cycle as part of the city. Water Sci. Technol. 2014, 70, 1717–1720. [Google Scholar] [CrossRef] [PubMed]
- Bach, P.M.; Rauch, W.; Mikkelsen, P.S.; McCarthy, D.T.; Deletic, A. A critical review of integrated urban water modelling—Urban drainage and beyond. Environ. Model. Softw. 2014, 54, 88–107. [Google Scholar] [CrossRef]
- Harremös, P. Integrated urban drainage, status and perspectives. Water Sci. Technol. 2002, 45, 1–10. [Google Scholar]
- Schütze, M.; Butler, D.; Beck, B.M. Modelling, Simulation and Control of Urban Wastewater Systems; Springer Science & Business Media: New York, NY, USA, 2011. [Google Scholar]
- Fletcher, T.; Deletic, A. Data Requirements for Integrated Urban Water Management: Urban Water Series—UNESCO-IHP; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Fratini, C.F.; Geldof, G.D.; Kluck, J.; Mikkelsen, P.S. Three Points Approach (3PA) for urban flood risk management: A tool to support climate change adaptation through transdisciplinarity and multifunctionality. Urban Water J. 2012, 9, 317–331. [Google Scholar] [CrossRef]
- Hardy, M.; Kuczera, G.; Coombes, P. Integrated urban water cycle management: The UrbanCycle model. Water Sci. Technol. 2005, 52, 1–9. [Google Scholar] [PubMed]
- Maksimović, Č.; Tejada-Guibert, J.A. Frontiers in Urban Water Management: Deadlock or Hope; IWA Publishing: London, UK, 2001. [Google Scholar]
- Rauch, W.; Seggelke, K.; Brown, R.; Krebs, P. Integrated Approaches in Urban Storm Drainage: Where Do We Stand? Environ. Manag. 2005, 35, 396–409. [Google Scholar] [CrossRef] [PubMed]
- Renouf, M.A.; Kenway, S.J. Evaluation Approaches for Advancing Urban Water Goals. J. Ind. Ecol. 2016. [Google Scholar] [CrossRef]
- Behzadian, K.; Kapelan, Z.; Venkatesh, G.; Brattebø, H.; Sægrov, S.; Rozos, E.; Makropoulos, C.; Ugarelli, R.; Milina, J.; Hem, L. Urban Water System Metabolism Assessment Using WaterMet2 Model. Proc. Eng. 2014, 70, 113–122. [Google Scholar] [CrossRef]
- Clark, R.; Pezzaniti, D.; Cresswell, D. Watercress—Community Resource Evaluation and Simulation System—A Tool for Innovative Urban Water Systems Planning and Design. In Water Challenge: Balancing the Risks: Hydrology and Water Resources Symposium 2002; Institution of Engineers: Barton, Australia, 2002; p. 870. [Google Scholar]
- Kenway, S.; Gregory, A.; McMahon, J. Urban Water Mass Balance Analysis. J. Ind. Ecol. 2011, 15, 693–706. [Google Scholar] [CrossRef]
- Loubet, P.; Roux, P.; Loiseau, E.; Bellon-Maurel, V. Life cycle assessments of urban water systems: A comparative analysis of selected peer-reviewed literature. Water Res. 2014, 67, 187–202. [Google Scholar] [CrossRef] [PubMed]
- Maheepala, S.; Leighton, B.; Mirza, F.; Rahilly, M.; Rahman, J. Hydro Planner-a linked modelling system for water quantity and quality simulation of total water cycle. In MODSIM 2005 International Congress on Modelling and Simulation. Modelling and Simulation Society of Australia and New Zealand; The Modelling and Simulation Society of Australia and New Zealand Inc.: Perth, WA, Australia, 2005; pp. 170–176. [Google Scholar]
- Mitchell, V.G.; Mein, R.G.; McMahon, T.A. Modelling the urban water cycle. Environ. Model. Softw. 2001, 16, 615–629. [Google Scholar] [CrossRef]
- Mitchell, V.G.; Diaper, C. Simulating the urban water and contaminant cycle. Environ. Model. Softw. 2006, 21, 129–134. [Google Scholar] [CrossRef]
- Niza, S.; Rosado, L.; Ferrão, P. Urban Metabolism. J. Ind. Ecol. 2009, 13, 384–405. [Google Scholar] [CrossRef]
- Sakellari, I.; Makropoulos, C.; Butler, D.; Memon, F.A. Modelling sustainable urban water management options. Proc.-Inst. Civ. Eng. Eng. Sustain. 2005, 158, 143. [Google Scholar] [CrossRef]
- Snowdon, D.; Hardy, M.J.; Rahman, J.M. Urban Developer: A model architecture for manageably building urban water cycle models spanning multiple scales. In Proceedings of the 19th International Congress on Modelling and Simulation, Perth, Australia, 12–16 December 2011; pp. 12–16. [Google Scholar]
- Venkatesh, G.; Sægrov, S.; Brattebø, H. Dynamic metabolism modelling of urban water services—Demonstrating effectiveness as a decision-support tool for Oslo, Norway. Water Res. 2014, 61, 19–33. [Google Scholar] [CrossRef] [PubMed]
- Urich, C.; Bach, P.M.; Sitzenfrei, R.; Kleidorfer, M.; McCarthy, D.T.; Deletic, A.; Rauch, W. Modelling of Evolving Cities and Urban Water Systems in DAnCE4Water. In Proceedings of the ESE2012 Symposium Organisers Gratefully Acknowledge Support from a Number of Organisations, Newcastle, UK, 3–5 July 2012; pp. 141–155. [Google Scholar]
- Willuweit, L.; O’Sullivan, J.J. A decision support tool for sustainable planning of urban water systems: Presenting the Dynamic Urban Water Simulation Model. Water Res. 2013, 47, 7206–7220. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, V.G.; Duncan, H.; Inma, R.M.; Stewart, J.; Vieritz, A.; Holt, P.; Grant, A.; Fletcher, T.D.; Coleman, J.; Maheepala, S.; et al. State of the Art Review of Integrated Urban Water Models; Novatech: Lyon, France, 2007; pp. 1–8. [Google Scholar]
- Mitchell, V.; McMahon, T.; Mein, R. Components of the Total Water Balance of an Urban Catchment. Environ. Manag. 2003, 32, 735–746. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, V.G.; Cleugh, H.A.; Grimmond, C.S.B.; Xu, J. Linking urban water balance and energy balance models to analyse urban design options. Hydrol. Process. 2008, 22, 2891–2900. [Google Scholar] [CrossRef]
- Gray, S.R.; Becker, N.S.C. Contaminant flows in urban residential water systems. Urban Water 2002, 4, 331–346. [Google Scholar] [CrossRef]
- Clauson-Kaas, J.; Poulsen, T.S.; Jacobsen, B.N.; Guildal, T.; Wenzel, H. Environmental accounting—A decision support tool in WWTP operation and management. Water Sci. Technol. 2001, 44, 25–30. [Google Scholar] [PubMed]
- Hillman, T.; Ramaswami, A. Greenhouse gas emission footprints and energy use benchmarks for eight US cities. Environ. Sci. Technol. 2010, 44, 1902–1910. [Google Scholar] [CrossRef] [PubMed]
- Keller, J.; Hartley, K. Greenhouse gas production in wastewater treatment: Process selection is the major factor. Water Sci. Technol. 2003, 47, 43–48. [Google Scholar] [PubMed]
- Racoviceanu, A.I.; Karney, B.W.; Kennedy, C.A.; Colombo, A.F. Life-Cycle Energy Use and Greenhouse Gas Emissions Inventory for Water Treatment Systems. J. Infrastruct. Syst. 2007, 13, 261–270. [Google Scholar] [CrossRef]
- Rothausen, S.G.S.A.; Conway, D. Greenhouse-gas emissions from energy use in the water sector. Nat. Clim. Chang. 2011, 1, 210–219. [Google Scholar] [CrossRef]
- Strutt, J.; Wilson, S.; Shorney-Darby, H.; Shaw, A.; Byers, A. Assessing the carbon footprint of water production. J. Am. Water Works Assoc. 2008, 100, 80–91. [Google Scholar]
- Chen, S.; Chen, B. Urban energy–water nexus: A network perspective. Appl. Energy 2016, 184, 905–914. [Google Scholar] [CrossRef]
- Elías-Maxil, J.A.; van der Hoek, J.P.; Hofman, J.; Rietveld, L. Energy in the urban water cycle: Actions to reduce the total expenditure of fossil fuels with emphasis on heat reclamation from urban water. Renew. Sustain. Energy Rev. 2014, 30, 808–820. [Google Scholar] [CrossRef]
- Gleick, P.H. Water and Energy. Annu. Rev. Energy Environ. 1994, 19, 267–299. [Google Scholar] [CrossRef]
- Kenway, S.J.; Lant, P.A.; Priestley, A.; Daniels, P. The connection between water and energy in cities: A review. Water Sci. Technol. 2011, 63, 1983–1990. [Google Scholar] [CrossRef] [PubMed]
- Kenway, S.J.; Priestley, A.; Cook, S.; Seo, S.; Inman, M.; Gregory, A.; Hall, M. Energy Use in the Provision and Consumption of Urban Water in Australia and New Zealand; CSIRO: Water for a Healthy Country National Research Flagship: Canberra, Australia, 2008.
- Olsson, D.G. Water and Energy Nexus water energy nexus. In Encyclopedia of Sustainability Science and Technology; Meyers, R.A., Ed.; Springer: New York, NY, USA, 2012; pp. 11932–11946. [Google Scholar]
- Plappally, A.K.; Lienhard V, J.H. Energy requirements for water production, treatment, end use, reclamation, and disposal. Renew. Sustain. Energy Rev. 2012, 16, 4818–4848. [Google Scholar] [CrossRef]
- Siddiqi, A.; Anadon, L.D. The water–energy nexus in Middle East and North Africa. Energy Policy 2011, 39, 4529–4540. [Google Scholar] [CrossRef]
- Stokes, J.R.; Horvath, A. Energy and air emission effects of water supply. Environ. Sci. Technol. 2009, 43, 2680–2687. [Google Scholar] [CrossRef] [PubMed]
- Hofman, J.; Hofman-Caris, R.; Nederlof, M.; Frijns, J.; Loosdrecht, M. van Water and energy as inseparable twins for sustainable solutions. Water Sci. Technol. 2011, 63, 88–92. [Google Scholar] [CrossRef] [PubMed]
- Remy, C.; Jekel, M. Sustainable wastewater management: Life cycle assessment of conventional and source-separating urban sanitation systems. Water Sci. Technol. 2008, 58, 1555–1562. [Google Scholar] [CrossRef] [PubMed]
- Wagner, I.; Breil, P. The role of ecohydrology in creating more resilient cities. Ecohydrol. Hydrobiol. 2013, 13, 113–134. [Google Scholar] [CrossRef]
- Venkatesh, G.; Brattebø, H. Analysis of chemicals and energy consumption in water and wastewater treatment, as cost components: Case study of Oslo, Norway. Urban Water J. 2011, 8, 189–202. [Google Scholar] [CrossRef]
- Venkatesh, G.; Brattebø, H. Environmental impact analysis of chemicals and energy consumption in wastewater treatment plants: Case study of Oslo, Norway. Water Sci. Technol. 2011, 63, 1018–1031. [Google Scholar] [CrossRef] [PubMed]
- Haider, H.; Sadiq, R.; Tesfamariam, S. Performance indicators for small- and medium-sized water supply systems: A review. Environ. Rev. 2013, 22, 1–40. [Google Scholar] [CrossRef]
- Organization World Health. Guidelines for Drinking-Water Quality: Recommendations; World Health Organization: Geneva, Switzerland, 2004. [Google Scholar]
- Vilanova, M.R.N.; Magalhães Filho, P.; Balestieri, J.A.P. Performance measurement and indicators for water supply management: Review and international cases. Renew. Sustain. Energy Rev. 2015, 43, 1–12. [Google Scholar] [CrossRef]
- Balfaqih, H.; Nopiah, Z.M. Performance measurement factors for water supply: A systematic review. In AIP Conference Proceedings; AIP Publishing: New York, NY, USA, 2015; Volume 1643, pp. 770–775. [Google Scholar]
- Der Bruggen, B.V.; Borghgraef, K.; Vinckier, C. Causes of Water Supply Problems in Urbanised Regions in Developing Countries. Water Resour. Manag. 2009, 24, 1885–1902. [Google Scholar] [CrossRef]
- Donkor, E.; Mazzuchi, T.; Soyer, R.; Roberson, A. Urban Water Demand Forecasting: Review of Methods and Models. J. Water Resour. Plan. Manag. 2014, 140, 146–159. [Google Scholar] [CrossRef]
- Herrera, M.; Torgo, L.; Izquierdo, J.; Pérez-García, R. Predictive models for forecasting hourly urban water demand. J. Hydrol. 2010, 387, 141–150. [Google Scholar] [CrossRef]
- Froukh, M.L. Decision-Support System for Domestic Water Demand Forecasting and Management. Water Resour. Manag. 2001, 15, 363–382. [Google Scholar] [CrossRef]
- Billings, R.B.; Jones, C.V. Forecasting Urban Water Demand; American Water Works Association: Denver, CO, USA, 2011. [Google Scholar]
- Mylopoulos, Y.A.; Mentes, A.K.; Theodossiou, I. Modeling Residential Water Demand Using Household Data: A Cubic Approach. Water Int. 2004, 29, 105–113. [Google Scholar] [CrossRef]
- Arbués, F.; Garcia-Valiñas, M.Á.; Martinez-Espiñeira, R. Estimation of residential water demand: A state-of-the-art review. J. Socio-Econ. 2003, 32, 81–102. [Google Scholar] [CrossRef]
- Rauch, W.; Bertrand-Krajewski, J.L.; Krebs, P.; Mark, O.; Schilling, W.; Schutze, M.; Vanrolleghem, P.A. Deterministic modelling of integrated urban drainage systems. Water Sci. Technol. 2002, 45, 81–94. [Google Scholar] [PubMed]
- Butler, D.; Parkinson, J. Towards sustainable urban drainage. Water Sci. Technol. 1997, 35, 53–63. [Google Scholar] [CrossRef]
- Delleur, J. The Evolution of Urban Hydrology: Past, Present, and Future. J. Hydraul. Eng. 2003, 129, 563–573. [Google Scholar] [CrossRef]
- Mitchell, V.G.; Mein, R.G.; McMahon, T.A. Utilising Stormwater and Wastewater Resources in Urban Areas. Aust. J. Water Resour. 2002, 6, 31–43. [Google Scholar]
- Kärrman, E. Strategies towards sustainable wastewater management. Urban Water 2001, 3, 63–72. [Google Scholar] [CrossRef]
- Yazdanfar, Z.; Sharma, A. Urban drainage system planning and design—Challenges with climate change and urbanization: A review. Water Sci. Technol. 2015, 72, 165–179. [Google Scholar] [CrossRef] [PubMed]
- Vanrolleghem, P.A.; Jeppsson, U.; Carstensen, J.; Carlsson, B.; Olsson, G. Integration of wastewater treatment plant design and operation—A systematic approach using cost functions. Water Sci. Technol. 1996, 34, 159–171. [Google Scholar] [CrossRef]
- Rivas, A.; Irizar, I.; Ayesa, E. Model-based optimisation of Wastewater Treatment Plants design. Environ. Model. Softw. 2008, 23, 435–450. [Google Scholar] [CrossRef]
- Dominguez, D.; Gujer, W. Evolution of a wastewater treatment plant challenges traditional design concepts. Water Res. 2006, 40, 1389–1396. [Google Scholar] [CrossRef] [PubMed]
- Alasino, N.; Mussati, M.C.; Scenna, N. Wastewater treatment plant synthesis and design. Ind. Eng. Chem. Res. 2007, 46, 7497–7512. [Google Scholar] [CrossRef]
- Niemczynowicz, J. Urban hydrology and water management—Present and future challenges. Urban Water 1999, 1, 1–14. [Google Scholar] [CrossRef]
- House, M.A.; Ellis, J.B.; Herricks, E.E.; Hvitved-Jacobsen, T.; Seager, J.; Lijklema, L.; Aalderink, H.; Clifforde, I.T. Urban drainage–impacts on receiving water quality. Water Sci. Technol. 1993, 27, 117–158. [Google Scholar]
- Gurnell, A.; Lee, M.; Souch, C. Urban Rivers: Hydrology, Geomorphology, Ecology and Opportunities for Change. Geogr. Compass 2007, 1, 1118–1137. [Google Scholar] [CrossRef]
- Candela, L.; Fabregat, S.; Josa, A.; Suriol, J.; Vigués, N.; Mas, J. Assessment of soil and groundwater impacts by treated urban wastewater reuse. A case study: Application in a golf course (Girona, Spain). Sci. Total Environ. 2007, 374, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Gregory, K.J. The human role in changing river channels. Geomorphology 2006, 79, 172–191. [Google Scholar] [CrossRef]
- Mitchell, V.G. Aquacycle User Manual; CRC for Catchment Hydrology; Monash University: Clayton, Australia, 2000. [Google Scholar]
- Wolf, L.; Morris, B.L.; Burn, S.; Hötzl, H. The AISUWRS approach. In Urban Water Resources Toolbox—Integrating Groundwater into Urban Water Management; Wolf, L., Morris, B., Burn, S., Eds.; IWA Publishing: London, UK, 2006. [Google Scholar]
- Mitchell, V.G.; Diaper, C. UVQ: A tool for assessing the water and contaminant balance impacts of urban development scenarios. Water Sci. Technol. 2005, 52, 91–98. [Google Scholar] [PubMed]
- Mitchell, V.G.; Diaper, C. UVQ User Manual; CSIRO Urban Water, CMIT Report, No. 2005-282; CSIRO: Canberra, Australia, 2005. [Google Scholar]
- Burn, S.; DeSilva, D.; Ambrose, M.; Meddings, S.; Diaper, C.; Correll, R.; Miller, R.; Wolf, L. A decision support system for urban groundwater resource sustainability. Water Pract. Technol. 2006, 1, wpt2006010. [Google Scholar] [CrossRef]
- Liu, A. Influence of Rainfall and Catchment Characteristics on Urban Stormwater Quality; Doctor of Philosophy; Queensland University of Technology: Brisbane, Australia, 2011. [Google Scholar]
- Obropta, C.C.; Kardos, J.S. Review of Urban Stormwater Quality Models: Deterministic, Stochastic, and Hybrid Approaches1. JAWRA J. Am. Water Resour. Assoc. 2007, 43, 1508–1523. [Google Scholar] [CrossRef]
- Andersen, H.S.; Tamašauskas, H.; Mark, O. The full urban water cycle–modeling with MIKE URBAN. In Proceedings of the 7th International Conference on Urban Drainage Modelling, Dresden, Germany, 15–17 September 2004. [Google Scholar]
- Sitzenfrei, R.; Rauch, W. From water networks to a “Digital City”: A shift of paradigm in assessment of urban water systems. In Proceedings of the 12th International Conference on Urban Drainage, Porto Alegre, Brazil, 11–16 September 2011; pp. 11–16. [Google Scholar]
- Žibienė, G.; Žibas, A. Capability Assessment of Application of Software MIKE URBAN for Rural Water Distribution System Operation Optimization. Rural Dev. 2013, 6, 524–530. [Google Scholar]
- Ingeduld, P.; Pradhan, A.; Svitak, Z.; Terrai, A. Modelling Intermittent Water Supply Systems with EPANET. In Water Distribution Systems Analysis Symposium 2006; American Society of Civil Engineers: New York, NY, USA, 2008; pp. 1–8. [Google Scholar]
- Metelka, T. Integrated urban water cycle modeling. In Integrated Urban Water Resources Management; NATO Security through Science Series; Hlavinek, P., Kukharchyk, T., Marsalek, J., Mahrikova, I., Eds.; Springer: Dordrecht, The Netherlands, 2006; pp. 51–58. [Google Scholar]
- Makropoulos, C. Thinking platforms for smarter urban water systems: Fusing technical and socio-economic models and tools. Geol. Soc. Lond. Spec. Publ. 2014, 408, 201–219. [Google Scholar] [CrossRef]
- Rozos, E.; Makropoulos, C. Source to tap urban water cycle modelling. Environ. Model. Softw. 2013, 41, 139–150. [Google Scholar] [CrossRef]
- Kossieris, P.; Panayiotakis, A.; Tzouka, K.; Gerakopoulou, P.; Rozos, E.; Makropoulos, C. An eLearning Approach for Improving Household Water Efficiency. Proc. Eng. 2014, 89, 1113–1119. [Google Scholar] [CrossRef]
- Hunt, J.; Anda, M.; Mathew, K.; Ho, G. A water efficiency rating system for land developments implementing integrated urban water management. Water Sci. Technol. Water Supply 2006, 6, 1–7. [Google Scholar]
- Cresswell, D.; Piantadosi, J.; Rosenberg, K. Watercress User Manual, 2002.
- Maier, H.R.; Paton, F.L.; Dandy, G.C.; Connor, J.D. Impact of Drought on Adelaide’s Water Supply System: Past, Present, and Future. In Drought in Arid and Semi-Arid Regions; Schwabe, K., Albiac, J., Connor, J.D., Hassan, R.M., González, L.M., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 41–62. [Google Scholar]
- Paton, F.L.; Dandy, G.C.; Maier, H.R. Integrated framework for assessing urban water supply security of systems with non-traditional sources under climate change. Environ. Model. Softw. 2014, 60, 302–319. [Google Scholar] [CrossRef]
- Hydrodynamics, Rainfall Runoff and Real Time Control. User Manual; Daltares Sobek: Delft, The Netherlands, 2017.
- Feikema, P.M.; Sheridan, G.J.; Argent, R.M.; Lane, P.N.J.; Grayson, R.B. Using E2 to model the impacts of bushfires on water quality in South-Eastern Australia. In Proceedings of the MODSIM 2005 International Congress on Modelling and Simulation, Melbourne, Australia, December 2005; Modelling and Simulation Society of Australia and New Zealand: Melbourne, Australia; pp. 170–176. [Google Scholar]
- Grant, A.; Maheepala, S.; Mirza, F.; Leighton, B.; Rahilly, M.; Rahman, J.; Perraud, J.-M.; Sharma, A. Hydro Planner: Providing an Improved Process for Assessing Urban Water Supply-demand Balance. In Proceedings of the 30th Hydrology & Water Resources Symposium: Past, Present & Future, Tasmania, Australia, 4–7 December 2006; pp. 456–461. [Google Scholar]
- Nazari, S.; Mousavi, S.; Behzadian, K.; Kapelan, Z. Sustainable Urban Water Management: A Simulation Optimization Approach. In Proceedings of the 11th International Conference on Hydroinformatics, New York, NY, USA, 17–21 August 2014. [Google Scholar]
- Behzadian, K.; Kapelan, Z.; Govindarajan, V.; Brattebø, H.; Sægrov, S.; Rozos, E.; Makropoulos, C. Quantitative UWS Performance Model: WaterMet2. Transitions to the Urban Water Services of Tomorrow (TRUST) Project. 2014. Available online: https://riunet.upv.es/handle/10251/46620 (accessed on 18 April 2017).
- Behzadian, K.; Kapelan, Z. Advantages of integrated and sustainability based assessment for metabolism based strategic planning of urban water systems. Sci. Total Environ. 2015, 527–528, 220–231. [Google Scholar] [CrossRef] [PubMed]
- Ugarelli, R.; Almeida, M.C.; Behzadian, K.; Liserra, T.; Smeets, P.; Kapelan, Z.; Sægrov, S. Sustainability risk based assessment of the integrated urban water system: A case study of Oslo. In Proceedings of the 11th International Conference on Hydroinformatics, New York, NY, USA, 17–21 August 2014. [Google Scholar]
- Graddon, A.R.; Kuczera, G.; Hardy, M.J. A flexible modelling environment for integrated urban water harvesting and re-use. Water Sci. Technol. 2011, 63, 2268–2278. [Google Scholar] [CrossRef] [PubMed]
- Jefferson, C.; Hardy, M.; Kuczera, G. Integrated Urban Water Management: Combining Multi-Criterion Optimization and Decision Analysis. In Computing in Civil Engineering (2005); American Society of Civil Engineers: Cancun, Mexico, 2005; pp. 1–12. [Google Scholar]
- Hardy, M.J. Integrated Urban Water Cycle Management: New Tools for a New Perspective. Ph.D. Thesis, Newcastle University, Newcastle, Australia, 2007. [Google Scholar]
- eWaterCRC. Urban Developer: Technical Overview; e Water CRC: Canberra, Australia, 2011. [Google Scholar]
- Urich, C.; Bach, P.M.; Hellbach, C.; Sitzenfrei, R.; Kleidorfer, M.; McCarthy, D.T.; Deletic, A.; Rauch, W. Dynamics of cities and water infrastructure in the DAnCE4Water model. In Proceedings of the 12th International Conference on Urban Drainage, Porto Alegre, Brazil, 11–16 September 2011; pp. 10–15. [Google Scholar]
- Sitzenfrei, R.; Fach, S.; Kinzel, H.; Rauch, W. A multi-layer cellular automata approach for algorithmic generation of virtual case studies: VIBe. Water Sci. Technol. J. Int. Assoc. Water Pollut. Res. 2010, 61, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Sitzenfrei, R.; Fach, S.; Kleidorfer, M.; Urich, C.; Rauch, W. Dynamic virtual infrastructure benchmarking: DynaVIBe. Water Sci. Technol. Water Supply 2010, 10, 600–609. [Google Scholar] [CrossRef]
- De Haan, J.; Ferguson, B.; Brown, R.; Deletic, A. A workbench for societal transitions in water sensitive cities. In Proceedings of the 12nd International Conference on Urban Drainage, Porto Alegre, Brazil, 11–16 September 2011. [Google Scholar]
- De Haan, F.J.; Ferguson, B.; Deletic, A.; Brown, R.R. Exploring scenarios for urban water systems using a socio-technical model. In Proceedings of the Ninth International Conference on Urban Drainage Modelling; Prodanovic, D., Plavšic, J., Eds.; Faculty of Civil Engineering, University of Belgrade: Belgrade, Serbia, 2012. [Google Scholar]
- Bach, P.M.; McCarthy, D.T.; Urich, C.; Sitzenfrei, R.; Kleidorfer, M.; Rauch, W.; Deletic, A. DAnCE4Water’s BPM: A planning algorithm for decentralised water management options. In Proceedings of the Ninth International Conference on Urban Drainage Modelling; Faculty of Civil Engineering, University of Belgrade: Belgrade, Serbia, 2012. [Google Scholar]
- Sitzenfrei, R.; Möderl, M.; Rauch, W. Automatic generation of water distribution systems based on GIS data. Environ. Model. Softw. 2013, 47, 138–147. [Google Scholar] [CrossRef] [PubMed]
- Sitzenfrei, R.; Möderl, M.; Rauch, W. Assessing the impact of transitions from centralised to decentralised water solutions on existing infrastructures—Integrated city-scale analysis with VIBe. Water Res. 2013, 47, 7251–7263. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, C.; Pincetl, S.; Bunje, P. The study of urban metabolism and its applications to urban planning and design. Environ. Pollut. 2011, 159, 1965–1973. [Google Scholar] [CrossRef] [PubMed]
- Gandy, M. Rethinking urban metabolism: Water, space and the modern city. City 2004, 8, 363–379. [Google Scholar] [CrossRef]
- Brunner, P.H. Reshaping urban metabolism. J. Ind. Ecol. 2007, 11, 11–13. [Google Scholar] [CrossRef]
- International Organization for Standardization (ISO). Environmental Management: Life Cycle Assessment: Principles and Framework; ISO: Geneva, Switzerland, 2006; Volume 14040. [Google Scholar]
- International Organization for Standardization (ISO). Environmental Management: Life Cycle Assessment: Requirements and Guidelines; ISO: Geneva, Switzerland, 2006. [Google Scholar]
- Urich, C.; Sitzenfrei, R.; Möderl, M.; Rauch, W. An agent-based approach for generating virtual sewer systems. Water Sci. Technol. 2010, 62, 1090–1097. [Google Scholar] [CrossRef] [PubMed]
- Sitzenfrei, R.; Möderl, M.; Rauch, W. Graph-based approach for generating virtual water distribution systems in the software VIBe. Water Sci. Technol. Water Supply 2010, 10, 923–932. [Google Scholar] [CrossRef]
- De Haan, F.J.; Ferguson, B.C.; Deletic, A.; Brown, R.R. A socio-technical model to explore urban water systems scenarios. Water Sci. Technol. J. Int. Assoc. Water Pollut. Res. 2013, 68, 714–721. [Google Scholar] [CrossRef] [PubMed]
- Vanderkimpen, P.; Melger, E.; Peeters, P. Flood modeling for risk evaluation: A MIKE FLOOD vs. SOBEK 1D2D benchmark study. In Flood Risk Management: Research and Practice; Taylor & Francis Group: Boca Raton, FL, USA, 2009. [Google Scholar]
- Qin, H.-P.; Su, Q.; Khu, S.-T. An Integrated Model for Water Management in a Rapidly Urbanizing Catchment. Environ. Model. Softw. 2011, 26, 1502–1514. [Google Scholar] [CrossRef]
- Chenevey, B.; Buchberger, S. Impact of Urban Development on Local Water Balance. In World Environmental and Water Resources Congress 2013; American Society of Civil Engineers: New York, NY, USA, 2013; pp. 2625–2636. [Google Scholar]
- Donia, N.; Manoli, E.; Assimacopoulos, D. Modelling the urban water system of Alexandria using the Aquacycle model. J. Water Reuse Desalination 2013, 3, 69–84. [Google Scholar] [CrossRef]
- Duong, T.T.H.; Adin, A.; Jackman, D.; van der Steen, P.; Vairavamoorthy, K. Urban water management strategies based on a total urban water cycle model and energy aspects—Case study for Tel Aviv. Urban Water J. 2011, 8, 103–118. [Google Scholar] [CrossRef]
- Shukla, R.L.; Barron, O.; Turner, J.; Grant, A.; Sharma, A.; Bell, J.; Nikraz, H. Rural Towns-Liquid Assets: Analysis Using Water Balance Modelling for Water Resources Availability for Rural Towns in Western Australia. Eur. Water 2011, 36, 53–64. [Google Scholar]
- Schulz, M.; Short, M.D.; Peters, G.M. A streamlined sustainability assessment tool for improved decision making in the urban water industry. Integr. Environ. Assess. Manag. 2012, 8, 183–193. [Google Scholar] [CrossRef] [PubMed]
- Pak, G.; Lee, J.; Kim, H.; Yoo, C.; Yun, Z.; Choi, S.; Yoon, J. Applicability of Aquacycle model to urban water cycle analysis. Desalination Water Treat. 2010, 19, 80–85. [Google Scholar] [CrossRef]
- Lee, J.; Pak, G.; Yoo, C.; Kim, S.; Yoon, J. Effects of land use change and water reuse options on urban water cycle. J. Environ. Sci. 2010, 22, 923–928. [Google Scholar] [CrossRef]
- Zhang, Y.; Grant, A.; Sharma, A.; Donghui, C.; Liang, C. Assessment of rainwater use and greywater reuse in high-rise buildings in a brownfield site. Water Sci. Technol. 2009, 60, 575–581. [Google Scholar] [CrossRef] [PubMed]
- Steendam, R. The Effects of Urban Water Management Options on the Water Balance and Energy Use in a New Urban Development (Haulander Weg): A Field Research in Hamburg, Germany. Master’s Thesis, UNESCO-IHE, Delft, The Netherlands, 2009. [Google Scholar]
- Gires, A.; de Gouvello, B. Consequences to water suppliers of collecting rainwater on housing estates. Water Sci. Technol. 2009, 60, 543–553. [Google Scholar] [CrossRef] [PubMed]
- Situmorang, M.R. Modelling Urban Water Cycle: An Approach for Future Urban Water Supply Alternatives. Master’s Thesis, UNESCO-IHE, Delft, The Netherlands, 2008. [Google Scholar]
- Sharma, A.K.; Gray, S.; Diaper, C.; Liston, P.; Howe, C. Assessing integrated water management options for urban developments—Canberra case study. Urban Water J. 2008, 5, 147–159. [Google Scholar] [CrossRef]
- Lekkas, D.F.; Manoli, E.; Assimacopoulos, D. Integrated urban water modelling using the aquacycle model. Glob. NEST J. 2008, 10, 310–319. [Google Scholar]
- De SanSan Miguel Brinquis, M.d.l.P. Simulation of the Total Urban Water Cycle in a Neighbourhood of a Spanish City and Establishment of Urban Water Sustainable Indicators. Master’s Thesis, University of Wageningen, Dundee, UK, 2007. [Google Scholar]
- Lee, J.; Pak, G.; Yoo, C.; Yoon, J. Analysis of urban water cycle considering water reuse options. Water Sci. Technol. Water Supply 2007, 7, 101–107. [Google Scholar] [CrossRef]
- Cleugh, H.A.; Bui, E.; Simon, D.; Xu, J.; Mitchell, V.G. The impact of suburban design on water use and microclimate. In Proceedings of the MODSIM 2005 International Congress on Modelling and Simulation, Melbourne, Australia, December 2005; Modelling and Simulation Society of Australia and New Zealand: Melbourne, Australia; pp. 10–14. [Google Scholar]
- Cleugh, H.A.; Bui, E.N.; Mitchell, V.G.; Xu, J.; Grimmond, C.S.B.; Simon, D.A.P. Evapotranspiration in urban water balance models: A methodological framework. In Proceedings of the MODSIM 2005 International Congress on Modelling and Simulation, Melbourne, Australia, 12–15 December 2005; Modelling and Simulation Society of Australia and New Zealand: Melbourne, Australia, 2005; pp. 2012–2018. [Google Scholar]
- Marleni, N.; Gray, S.; Sharma, A.; Burn, S.; Muttil, N. Impact of water management practice scenarios on wastewater flow and contaminant concentration. J. Environ. Manag. 2015, 151, 461–471. [Google Scholar] [CrossRef] [PubMed]
- Gurung, T.R.; Stewart, R.A.; Beal, C.D.; Sharma, A.K. Smart meter enabled water end-use demand data: Platform for the enhanced infrastructure planning of contemporary urban water supply networks. J. Clean. Prod. 2015, 87, 642–654. [Google Scholar] [CrossRef]
- Gurung, T.R.; Sharma, A. Communal rainwater tank systems design and economies of scale. J. Clean. Prod. 2014, 67, 26–36. [Google Scholar] [CrossRef]
- Poustie, M.S.; Deletic, A. Modeling integrated urban water systems in developing countries: Case study of Port Vila, Vanuatu. AMBIO 2014, 43, 1093–1111. [Google Scholar] [CrossRef] [PubMed]
- Cook, S.; Sharma, A.; Chong, M. Performance Analysis of a Communal Residential Rainwater System for Potable Supply: A Case Study in Brisbane, Australia. Water Resour. Manag. 2013, 27, 4865–4876. [Google Scholar] [CrossRef]
- Leitner, K. Water Balance of Vienna as Framework for a Substance Flow Analysis of Copper. Master’s Thesis, University of Natural Resources and Life Sciences, Vienaa, Austria, 2013. [Google Scholar]
- Tjandraatmadja, G.; Sharma, A.K.; Grant, T.; Pamminger, F. A Decision Support Methodology for Integrated Urban Water Management in Remote Settlements. Water Resour. Manag. 2013, 27, 433–449. [Google Scholar] [CrossRef]
- Martinez, S.E.; Escolero, O.; Wolf, L. Total Urban Water Cycle Models in Semiarid Environments—Quantitative Scenario Analysis at the Area of San Luis Potosi, Mexico. Water Resour. Manag. 2011, 25, 239–263. [Google Scholar] [CrossRef]
- Shin, S.-M.; Choi, G.-E.; Lee, S.-E.; Park, H.-K. Study on decentralized options of the in-stream flow for restoring the Gyobang cheon: Application of the Urban Volume and Quality (UVQ) model to examine feasibilities in water quantity and quality. J. Korean Soc. Water Wastewater 2011, 25, 699–706. [Google Scholar]
- Cook, S.; Sharma, A.; Batten, D.; Burn, S. Matching alternative water services to industry type: An eco-industrial approach. Water Sci. Technol. Water Supply 2010, 10, 969–977. [Google Scholar] [CrossRef]
- Sharma, A.; Burn, S.; Gardner, T.; Gregory, A. Role of decentralised systems in the transition of urban water systems. Water Sci. Technol. Water Supply 2010, 10, 577–583. [Google Scholar] [CrossRef]
- Rueedi, J.; Cronin, A.A.; Morris, B.L. Estimation of sewer leakage to urban groundwater using depth-specific hydrochemistry. Water Environ. J. 2009, 23, 134–144. [Google Scholar] [CrossRef]
- Goonrey, C.M.; Perera, B.J. C.; Lechte, P.; Maheepala, S.; Mitchell, V.G. A technical decision-making framework: Stormwater as an alternative supply source. Urban Water J. 2009, 6, 417–429. [Google Scholar] [CrossRef]
- Vizintin, G.; Souvent, P.; Veselič, M.; Cencur Curk, B. Determination of urban groundwater pollution in alluvial aquifer using linked process models considering urban water cycle. J. Hydrol. 2009, 377, 261–273. [Google Scholar] [CrossRef]
- Zhang, Y.; Grant, A.; Sharma, A.; Chen, D.; Chen, L. Alternative Water Resources for Rural Residential Development in Western Australia. Water Resour. Manag. 2009, 24, 25–36. [Google Scholar] [CrossRef]
- Morris, B.; Rueedi, J.; Cronin, A.A.; Diaper, C.; DeSilva, D. Using linked process models to improve urban groundwater management: An example from Doncaster England. Water Environ. J. 2007, 21, 229–240. [Google Scholar] [CrossRef]
- Wolf, L.; Klinger, J.; Hoetzl, H.; Mohrlok, U. Quantifying Mass Fluxes from Urban Drainage Systems to the Urban Soil-Aquifer System (11 pp). J. Soils Sediments 2007, 7, 85–95. [Google Scholar] [CrossRef]
- Souvent, P.; Vižintin, G.; Curk, B.Č. Impact assessment of an urban pollution on the aquifer of Ljubljana, Slovenia. In Geophysical Research Abstracts; Copernicus Publications: Copernicus, Germany, 2006; Volume 8, p. 05552. [Google Scholar]
- Rueedi, J.; Cronin, A.A.; Moon, B.; Wolf, L.; Hoetzl, H. Effect of different water management strategies on water and contaminant fluxes in Doncaster, United Kingdom. Water Sci. Technol. 2005, 52, 115–123. [Google Scholar] [PubMed]
- Eiswirth, M.; Wolf, L.; Hötzl, H. Balancing the contaminant input into urban water resources. Environ. Geol. 2004, 46, 246–256. [Google Scholar] [CrossRef]
- Thorndahl, S.; Balling, J.D.; Larsen, U.B.B. Analysis and integrated modelling of groundwater infiltration to sewer networks. Hydrol. Process. 2016, 30, 3228–3238. [Google Scholar] [CrossRef]
- Bisht, D.S.; Chatterjee, C.; Kalakoti, S.; Upadhyay, P.; Sahoo, M.; Panda, A. Modeling urban floods and drainage using SWMM and MIKE URBAN: A case study. Nat. Hazards 2016, 84, 749–776. [Google Scholar] [CrossRef]
- Kidmose, J.; Troldborg, L.; Refsgaard, J.C.; Bischoff, N. Coupling of a distributed hydrological model with an urban storm water model for impact analysis of forced infiltration. J. Hydrol. 2015, 525, 506–520. [Google Scholar] [CrossRef]
- Olsen, A.S.; Zhou, Q.; Linde, J.J.; Arnbjerg-Nielsen, K. Comparing Methods of Calculating Expected Annual Damage in Urban Pluvial Flood Risk Assessments. Water 2015, 7, 255–270. [Google Scholar] [CrossRef]
- Locatelli, L.; Gabriel, S.; Mark, O.; Mikkelsen, P.S.; Arnbjerg-Nielsen, K.; Taylor, H.; Bockhorn, B.; Larsen, H.; Kjølby, M.J.; Blicher, A.S.; et al. Modelling the impact of retention–detention units on sewer surcharge and peak and annual runoff reduction. Water Sci. Technol. 2015, 71, 898–903. [Google Scholar] [CrossRef] [PubMed]
- Mark, O.; Jørgensen, C.; Hammond, M.; Khan, D.; Tjener, R.; Erichsen, A.; Helwigh, B. A new methodology for modelling of health risk from urban flooding exemplified by cholera—Case Dhaka, Bangladesh. J. Flood Risk Manag. 2015. [Google Scholar] [CrossRef]
- Locatelli, L.; Mark, O.; Mikkelsen, P.S.; Arnbjerg-Nielsen, K.; Bergen Jensen, M.; Binning, P.J. Modelling of green roof hydrological performance for urban drainage applications. J. Hydrol. 2014, 519, 3237–3248. [Google Scholar] [CrossRef]
- Vezzaro, L.; Löwe, R.; Madsen, H.; Grum, M.; Mikkelsen, P.S. Investigating the use of stochastic forecast for RTC of urban drainage systems. In Proceedings of the 8th International Conference on Planning and Technologies for Sustainable Urban Water Management, Lyon, France, 23–27 June 2013. [Google Scholar]
- Andersen, S.T.; Erichsen, A.C.; Mark, O.; Albrechtsen, H.-J. Effects of a 20 year rain event: A quantitative microbial risk assessment of a case of contaminated bathing water in Copenhagen, Denmark. J. Water Health 2013, 11, 636–646. [Google Scholar] [CrossRef] [PubMed]
- Siekmann, M.; Vomberg, N.; Mirgartz, M.; Pinnekamp, J.; Mühle, S. Multifunctional Land Use in Urban Spaces to Adapt Urban Infrastructure. In Climate Change and the Sustainable Use of Water Resources; Filho, W.L., Ed.; Climate Change Management; Springer: Berlin/Heidelberg, Germany, 2012; pp. 611–625. [Google Scholar]
- Zhou, Q.; Mikkelsen, P.S.; Halsnæs, K.; Arnbjerg-Nielsen, K. Framework for economic pluvial flood risk assessment considering climate change effects and adaptation benefits. J. Hydrol. 2012, 414–415, 539–549. [Google Scholar] [CrossRef]
- Berggren, K.; Olofsson, M.; Viklander, M.; Svensson, M.; Gustafsson, A. Hydraulic Impacts on Urban Drainage Systems due to Changes in Rainfall Caused by Climatic Change. J. Hydrol. Eng. 2012, 17, 92–98. [Google Scholar] [CrossRef]
- Roldin, M.; Fryd, O.; Jeppesen, J.; Mark, O.; Binning, P.J.; Mikkelsen, P.S.; Jensen, M.B. Modelling the impact of soakaway retrofits on combined sewage overflows in a 3 km2 urban catchment in Copenhagen, Denmark. J. Hydrol. 2012, 452–453, 64–75. [Google Scholar] [CrossRef]
- Roldin, M.; Mark, O.; Kuczera, G.; Mikkelsen, P.S.; Binning, P.J. Representing soakaways in a physically distributed urban drainage model—Upscaling individual allotments to an aggregated scale. J. Hydrol. 2012, 414–415, 530–538. [Google Scholar] [CrossRef]
- Chen, A.S.; Hammond, M.J.; Djordjević, S.; Butler, D. Flood damage assessment for urban growth scenarios. In Proceedings of the International Conference on Flood Resilience: Experiences in Asia and Europe, Exeter, UK, 5–7 September 2013; pp. 5–7. [Google Scholar]
- Hammond, M.J.; Chen, A.S.; Djordjevic, S.; Butler, D.; Khan, D.M.; Rahman, S.M.M.; Haque, A.K.E. The Development of a Flood Damage Assessment Tool for Urban Areas. In Proceedings of the 9th International Joint IWA/IAHR Conference on Urban Drainage Modelling, Belgrade, Serbia, 3–6 September 2012. [Google Scholar]
- Morgan, M.C.; Hubbard, P.L.; Martz, R.J.; Moore, C.I.; Wittenberg, M.D.-I. A Collaborative Approach to Modeling the Hampton Roads Regional Wastewater Collection System. Proc. Water Environ. Fed. 2012, 305–326. [Google Scholar] [CrossRef]
- Nielsen, N.H.; Larsen, M.R.A.; Rasmussen, S.F. Development of a screening method to assess flood risk on Danish national roads and highway systems. Water Sci. Technol. 2011, 63, 2957–2966. [Google Scholar] [CrossRef] [PubMed]
- Borup, M.; Grum, M.; Mikkelsen, P.S. Real time adjustment of slow changing flow components in distributed urban runoff models. In Proceedings of the 12th International Conference on Urban Drainage, Porto Alegre, Brazil, 11–16 September 2011. [Google Scholar]
- Liu, A.; Egodawatta, P.; Kjolby, M.J.; Goonetilleke, A. Development of pollutant build-up parameters for MIKE URBAN for Southeast Queensland, Australia. In Proceedings of the International MIKE by DHI Conference, Copenhagen, Denmark, 6–8 September 2010; Danish Hydraulics Institute: Copenhagen, Denmark, 2010; pp. 024-1–024-15. [Google Scholar]
- Nagatani, T.; Yasuhara, K.; Murata, K.; Takeda, M.; Nakamura, T.; Fuchigami, T.; Terashima, K. Residual chlorine decay simulation in water distribution system. In The 7th International Symposium on Water Supply Technology; Citeseer: Yokohama, Japan, 2008; pp. 1–11. [Google Scholar]
- Koutiva, I.; Makropoulos, C. Modelling domestic water demand: An agent based approach. Environ. Model. Softw. 2016, 79, 35–54. [Google Scholar] [CrossRef]
- Universidad de Sevilla. Guía Para la Incorporación de la Gestión Sostenible del Agua en Áreas Urbanas; Universidad de Sevilla: Sevilla, Spain, 2015. [Google Scholar]
- Baki, S.; Makropoulos, C. Tools for Energy Footprint Assessment in Urban Water Systems. Proc. Eng. 2014, 89, 548–556. [Google Scholar] [CrossRef]
- Papariantafyllou, E.; Makropoulos, C. Developing Roadmaps for the Sustainable Management of the Urban Water Cycle: The Case of ww Reuse in Athens. In Proceedings of the 13th International Conference of Environmental Science and Technology, Athens, Greece, 5–7 September 2013. [Google Scholar]
- Rozos, E.; Makropoulos, C. Assessing the combined benefits of water recycling technologies by modelling the total urban water cycle. Urban Water J. 2012, 9, 1–10. [Google Scholar] [CrossRef]
- Koutiva, I.; Makropoulos, C. Linking Social Simulation and Urban Water Modelling Tools to Support Adaptive Urban Water Management; International Environmental Modelling and Software Society (iEMSs): Ottawa, ON, Canada, 2012. [Google Scholar]
- Rozos, E.; Baki, S.; Bouziotas, D.; Makropoulos, C. Exploring the link between urban development and water demand: The impact of water-aware technologies and options. In Proceedings of the Computing and Control for the Water Industry 2011, Exeter, UK, 5–7 September 2011. [Google Scholar]
- Bouziotas, D.; Rozos, E.; Makropoulos, C. Water and the city: Exploring links between urban growth and water demand management. J. Hydroinform. 2015, 17, 176–192. [Google Scholar] [CrossRef]
- Makropoulos, C.K.; Butler, D. Distributed Water Infrastructure for Sustainable Communities. Water Resour. Manag. 2010, 24, 2795–2816. [Google Scholar] [CrossRef]
- Rozos, E.; Makropoulos, C.K.; Butler, D. Design Robustness of Local Water-Recycling Schemes. J. Water Resour. Plan. Manag. 2010, 136, 531–538. [Google Scholar] [CrossRef]
- Beh, E.H.Y.; Maier, H.R.; Dandy, G.C. Adaptive, multiobjective optimal sequencing approach for urban water supply augmentation under deep uncertainty. Water Resour. Res. 2015, 51, 1529–1551. [Google Scholar] [CrossRef]
- Beh, E.H.Y.; Maier, H.R.; Dandy, G.C. Scenario driven optimal sequencing under deep uncertainty. Environ. Model. Softw. 2015, 68, 181–195. [Google Scholar] [CrossRef]
- Clark, R.; Gonzalez, D.; Dillon, P.; Charles, S.; Cresswell, D.; Naumann, B. Reliability of water supply from stormwater harvesting and managed aquifer recharge with a brackish aquifer in an urbanising catchment and changing climate. Environ. Model. Softw. 2015, 72, 117–125. [Google Scholar] [CrossRef]
- Beh, E.H.Y.; Dandy, G.C.; Maier, H.R.; Paton, F.L. Optimal sequencing of water supply options at the regional scale incorporating alternative water supply sources and multiple objectives. Environ. Model. Softw. 2014, 53, 137–153. [Google Scholar] [CrossRef]
- Barton, A.B.; Argue, J.R. Integrated urban water management for residential areas: A reuse model. Water Sci. Technol. 2009, 60, 813–823. [Google Scholar] [CrossRef] [PubMed]
- Marks, R.; Clark, R.; Rooke, E.; Berzins, A. Meadows, South Australia: Development through integration of local water resources. Desalination 2006, 188, 149–161. [Google Scholar] [CrossRef]
- Schmitter, P.; Goedbloed, A.; Galelli, S.; Babovic, V. Effect of Catchment-Scale Green Roof Deployment on Stormwater Generation and Reuse in a Tropical City. J. Water Resour. Plan. Manag. 2016, 142, 05016002. [Google Scholar] [CrossRef]
- Sušnik, J.; Strehl, C.; Postmes, L.A.; Vamvakeridou-Lyroudia, L.S.; Mälzer, H.-J.; Savić, D.A.; Kapelan, Z. Assessing Financial Loss due to Pluvial Flooding and the Efficacy of Risk-Reduction Measures in the Residential Property Sector. Water Resour. Manag. 2015, 29, 161–179. [Google Scholar] [CrossRef]
- Faraji, Y. Water Quality Modelling with SOBEK in Dutch Polders Subject to Salinization and River Water Flushing Case Study in Anna Paulownapolder. Master’s Thesis, Utrecht University, Utrecht, The Netherlands, 2015. [Google Scholar]
- Van Dijk, E.; van der Meulen, J.; Kluck, J.; Straatman, J.H.M. Comparing modelling techniques for analysing urban pluvial flooding. Water Sci. Technol. 2014, 69, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Vergroesen, T.; Verschelling, E.; Becker, B. Modelling of sustainable urban drainage measures. Rev. Ing. Innova 2014, 8, 1–16. [Google Scholar]
- Doan, C.D.; Liu, J.; Liong, S.-Y.; Verwey, A. Rainfall-runoff study for Singapore river catchment. In Proceedings of the 10th International Conference on Hydroinformatics, Hamburg, Germany, 14–18 July 2012. [Google Scholar]
- Hellmann, F.; Vermaat, J.E. Impact of climate change on water management in Dutch peat polders. Ecol. Model. 2012, 240, 74–83. [Google Scholar] [CrossRef]
- Mirza, F.; Maheepala, S.; Ashbolt, S.; Neumann, L.; Kinsman, D.; Coultas, E. HydroPlanner: A Prototype Modelling Tool to Aid Development of Integrated Urban Water Management Strategies; Urban Water Security Research Alliance Technical Report 108; Urban Water Security Research Alliance: City East, Australia, 2013. [Google Scholar]
- Kinsman, D.L.; Mirza, F.F.; Maheepala, S.; Neumann, L.E.; Coultas, E.H. Representing wastewater recycling in an integrated urban water modelling tool. Water Pract. Technol. 2012, 7, wpt2012002. [Google Scholar] [CrossRef]
- Mousavi, S.J.; Behzadian, K.; Kim, J.H.; Kapelan, Z. A Multi-objective Optimisation Approach to Optimising Water Allocation in Urban Water Systems. In Harmony Search Algorithm; Kim, J.H., Geem, Z.W., Eds.; Advances in Intelligent Systems and Computing; Springer: Berlin, Heidelberg, Germany, 2016; pp. 447–457. [Google Scholar]
- Liserra, T.; Benzedian, K.; Ugarelli, R.; Bertozzi, R.; Federico, V.D.; Kapelan, Z. Metabolism-based modelling for performance assessment of a water supply system: A case study of Reggio Emilia, Italy. Water Sci. Technol. Water Supply 2016, 16, 1221–1230. [Google Scholar] [CrossRef]
- Venkatesh, G.; Brattebø, H.; Sægrov, S.; Behzadian, K.; Kapelan, Z. Metabolism-modelling approaches to long-term sustainability assessment of urban water services. Urban Water J. 2017, 14, 11–22. [Google Scholar] [CrossRef]
- Morley, M.S.; Vitorino, D.; Behzadian, K.; Ugarelli, R.; Kapelan, Z.; Coelho, S.T.; Almeida, M.D.C. Decision support system for the long-term city metabolism planning problem. Water Sci. Technol. Water Supply 2015. [Google Scholar] [CrossRef]
- Behzadian, K.; Kapelan, Z. Modelling metabolism based performance of an urban water system using WaterMet2. Resour. Conserv. Recycl. 2015, 99, 84–99. [Google Scholar] [CrossRef]
- Nazari, S.; Mousavi, S.; Behzadian, K.; Kapelan, Z. Compromise Programming Based Scenario Analysis Of Urban Water Systems Management Options: Case Study Of Kerman City. In Proceedings of the International Conference on Hydroinformatics, New York, NY, USA, 16–21 August 2014. [Google Scholar]
- Thyer, M.; Hardy, M.; Coombes, P.; Patterson, C. The impact of end-use dynamics on urban water system design criteria. Aust. J. Water Resour. 2008, 12, 161–170. [Google Scholar]
- Hardy, M.; Kuczera, G.; Coombes, P.; Barbour, E.; Jurd, K. An evaluation of the performance of the application of the urbanCycle model to a gauged urban catchment. In Proceedings of the Rainwater and Urban Design 2007, Sydney, Australia, 21–23 August 2007; p. 340. [Google Scholar]
- Barton, A.; Coombes, P.; Rodriguez, J. Understanding ecological response in urban catchments. In Proceedings of the Rainwater and Urban Design 2007, Sydney, Australia, 21–23 August 2007; p. 61. [Google Scholar]
- Hardy, M.; Jefferson, C.; Coombes, P.; Kuczera, G. lntegrated Urban Water Cycle Management: Redefining the Boundaries. In Proceedings of the 28th International Hydrology and Water Resources Symposium: About Water, Symposium Proceedings. Wollongong, NSW, Australia, 10–13 November 2003; p. 1. [Google Scholar]
- Sapkota, M.; Arora, M.; Malano, H.; George, B.; Nawarathna, B.; Sharma, A.; Moglia, M. Development of a framework to evaluate the hybrid water supply systems. In Proceedings of the 20th International Congress on Modelling and Simulation, Adelaide Australia, 10–13 November 2013; pp. 1–6. [Google Scholar]
- Urich, C.; Sitzenfrei, R.; Kleidorfer, M.; Rauch, W. Klimawandel und Urbanisierung—Wie soll die Wasserinfrastruktur angepasst werden? Österr. Wasser-Abfallwirtsch. 2013, 65, 82–88. [Google Scholar] [CrossRef]
- Ferguson, B.C.; de Haan, F.J.; Brown, R.R.; Deletic, A. Testing a strategic action framework: Melbourne’s transition to WSUD. In WSUD 2012: Water Sensitive Urban Design; Building the Water Sensiitve Community, Proceedings of the 7th International Conference on Water Sensitive Urban Design, Melbourne, Australia, 21–23 February 2012; Engineers Australia: Barton, Australia; pp. 236–243.
- Bach, P.M.; Urich, C.; McCarthy, D.T.; Sitzenfrei, R.; Kleidorfer, M.; Rauch, W.; Deletic, A. Characterising a city for integrated performance assessment of water infrastructure in the DAnCE4Water model. In Proceedings of the 12nd International Conference on Urban Drainage, Porto Alegre, Brazil, 10–15 September 2011. [Google Scholar]
- Venkatesh, G. Testing different rehabilitation options in the drinking water pipeline network in Oslo using Dynamic Metabolism Model (DMM). J. Water Manag. Res. 2014, 70, 215–223. [Google Scholar]
- Willuweit, L.; O’Sullivan, J.J.; Shahumyan, H. Simulating the effects of climate change, economic and urban planning scenarios on urban runoff patterns of a metropolitan region. Urban Water J. 2015, 0, 1–16. [Google Scholar] [CrossRef]
- Willuweita, L.; O’Sullivana, J.J.; Shahumyanb, H. Modelling the effects of urban Growth scenarios on water demand and runoff patterns in Dublin Ireland. In Proceedings of the 20th International Congress on Modelling and Simulation, Adelaide, Australia, 10–13 November 2013; pp. 3162–3168. [Google Scholar]
- Farooqui, T.A.; Renouf, M.A.; Kenway, S.J. A metabolism perspective on alternative urban water servicing options using water mass balance. Water Res. 2016, 106, 415–428. [Google Scholar] [CrossRef] [PubMed]
- Marteleira, R.; Pinto, G.; Niza, S. Regional water flows—Assessing opportunities for sustainable management. Resour. Conserv. Recycl. 2014, 82, 63–74. [Google Scholar] [CrossRef]
- Chèvre, N.; Coutu, S.; Margot, J.; Wynn, H.K.; Bader, H.-P.; Scheidegger, R.; Rossi, L. Substance flow analysis as a tool for mitigating the impact of pharmaceuticals on the aquatic system. Water Res. 2013, 47, 2995–3005. [Google Scholar] [CrossRef] [PubMed]
- Bhaskar, A.S.; Welty, C. Water Balances along an Urban-to-Rural Gradient of Metropolitan Baltimore, 2001–2009. Environ. Eng. Geosci. 2012, 18, 37–50. [Google Scholar] [CrossRef]
- Charalambous, K.; Bruggeman, A.; Lange, M.A. Assessing the urban water balance: The Urban Water Flow Model and its application in Cyprus. Water Sci. Technol. 2012, 66, 635–643. [Google Scholar] [CrossRef] [PubMed]
- Chèvre, N.; Guignard, C.; Rossi, L.; Pfeifer, H.-R.; Bader, H.-P.; Scheidegger, R. Substance flow analysis as a tool for urban water management. Water Sci. Technol. 2011, 63, 1341–1348. [Google Scholar] [CrossRef] [PubMed]
- Järvi, L.; Grimmond, C.S.B.; Christen, A. The Surface Urban Energy and Water Balance Scheme (SUEWS): Evaluation in Los Angeles and Vancouver. J. Hydrol. 2011, 411, 219–237. [Google Scholar] [CrossRef]
- Haase, D. Effects of urbanisation on the water balance—A long-term trajectory. Environ. Impact Assess. Rev. 2009, 29, 211–219. [Google Scholar] [CrossRef]
- Van Rooijen, D.J.; Turral, H.; Wade Biggs, T. Sponge city: Water balance of mega-city water use and wastewater use in Hyderabad, India. Irrig. Drain. 2005, 54, S81–S91. [Google Scholar] [CrossRef]
- Binder, C.; Schertenleib, R.; Diaz, J.; Bader, H.-P.; Baccini, P. Regional Water Balance as a Tool for Water Management in Developing Countries. Int. J. Water Resour. Dev. 1997, 13, 5–20. [Google Scholar] [CrossRef]
- García, M.; Morales-Pinzón, T.; Guerrero Erazo, J. Análisis de flujos de agua en áreas metropolitanas desde la perspectiva del metabolismo urbano. Rev. Luna Azul. 2014, 234–249. [Google Scholar] [CrossRef]
- Chrysoulakis, N.; Lopes, M.; San José, R.; Grimmond, C.S.B.; Jones, M.B.; Magliulo, V.; Klostermann, J.E.M.; Synnefa, A.; Mitraka, Z.; Castro, E.A.; et al. Sustainable urban metabolism as a link between bio-physical sciences and urban planning: The BRIDGE project. Landsc. Urban Plan. 2013, 112, 100–117. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, W.; Li, X.; Zhang, G. Eco-efficiency of urban material metabolism: A case study in Xiamen, China. Int. J. Sustain. Dev. World Ecol. 2010, 17, 142–148. [Google Scholar] [CrossRef]
- Thériault, J.; Laroche, A.-M. Evaluation of the Urban Hydrologic Metabolism of the Greater Moncton Region, New Brunswick. Can. Water Resour. J. Rev. Can. Ressour. Hydr. 2009, 34, 255–268. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Z. Eco-efficiency of urban material metabolism: A case study in Shenzhen, China. Acta Ecol. Sin. 2007, 27, 3124–3131. [Google Scholar] [CrossRef]
- Sahely, H.R.; Dudding, S.; Kennedy, C.A. Estimating the urban metabolism of Canadian cities: Greater Toronto Area case study. Can. J. Civ. Eng. 2003, 30, 468–483. [Google Scholar] [CrossRef]
- Lee, S. Hydrological Metabolism and Water Resources Management of the Beijing Metropolitan Region in the Hai River Basin. Master’s Thesis, University of Toronto, Toronto, ON, Canada, 1998. [Google Scholar]
- Hermanowicz, S.W.; Asano, T. Abel Wolman’s “the metabolism of cities” revisited: A case for water recycling and reuse. Water Sci. Technol. 1999, 40, 29–36. [Google Scholar] [CrossRef]
- Loubet, P.; Roux, P.; Bellon-Maurel, V. WaLA, a versatile model for the life cycle assessment of urban water systems: Formalism and framework for a modular approach. Water Res. 2016, 88, 69–82. [Google Scholar] [CrossRef] [PubMed]
- Amores, M.J.; Meneses, M.; Pasqualino, J.; Antón, A.; Castells, F. Environmental assessment of urban water cycle on Mediterranean conditions by LCA approach. J. Clean. Prod. 2013, 43, 84–92. [Google Scholar] [CrossRef]
- Uche, J.; Martínez, A.; Castellano, C.; Subiela, V. Life cycle analysis of urban water cycle in two Spanish areas: Inland city and island area. Desalination Water Treat. 2013, 51, 280–291. [Google Scholar] [CrossRef]
- Godskesen, B.; Zambrano, K.C.; Trautner, A.; Johansen, N.-B.; Thiesson, L.; Andersen, L.; Clauson-Kaas, J.; Neidel, T.L.; Rygaard, M.; Kløverpris, N.H.; et al. Life cycle assessment of three water systems in Copenhagen–a management tool of the future. Water Sci. Technol. 2011, 63, 565–572. [Google Scholar] [CrossRef] [PubMed]
- Fagan, J.E.; Reuter, M.A.; Langford, K.J. Dynamic performance metrics to assess sustainability and cost effectiveness of integrated urban water systems. Resour. Conserv. Recycl. 2010, 54, 719–736. [Google Scholar] [CrossRef]
- El-Sayed Mohamed Mahgoub, M.; van der Steen, N.P.; Abu-Zeid, K.; Vairavamoorthy, K. Towards sustainability in urban water: A life cycle analysis of the urban water system of Alexandria City, Egypt. J. Clean. Prod. 2010, 18, 1100–1106. [Google Scholar] [CrossRef]
- Lane, J.; De Haas, D.; Lant, P. Life cycle impacts of the Gold Coast urban water cycle. In Proceedings of the Ozwater 2010, Brisbane, Australia, 8–10 March 2010. [Google Scholar]
- Jeppsson, U.; Hellström, D. Systems analysis for environmental assessment of urban water and wastewater systems. Water Sci. Technol. 2002, 46, 121–129. [Google Scholar] [PubMed]
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global Change and the Ecology of Cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef] [PubMed]
- Peter-Varbanets, M.; Zurbrügg, C.; Swartz, C.; Pronk, W. Decentralized systems for potable water and the potential of membrane technology. Water Res. 2009, 43, 245–265. [Google Scholar] [CrossRef] [PubMed]
- Al-Jayyousi, O.R. Greywater reuse: Towards sustainable water management. Desalination 2003, 156, 181–192. [Google Scholar] [CrossRef]
- Asano, T.; Levine, A.D. Wastewater reclamation, recycling and reuse: Past, present, and future. Water Sci. Technol. 1996, 33, 1–14. [Google Scholar] [CrossRef]
- Dixon, A.; Butler, D.; Fewkes, A. Water saving potential of domestic water reuse systems using greywater and rainwater in combination. Water Sci. Technol. 1999, 39, 25–32. [Google Scholar] [CrossRef]
- Hatt, B.E.; Deletic, A.; Fletcher, T.D. Integrated treatment and recycling of stormwater: A review of Australian practice. J. Environ. Manag. 2006, 79, 102–113. [Google Scholar] [CrossRef] [PubMed]
- Pidou, M.; Memon, F.A.; Stephenson, T.; Jefferson, B.; Jeffrey, P. Greywater recycling: A review of treatment options and applications. Inst. Civ. Eng. Proc. Eng. Sustain. 2007, 160, 119–131. [Google Scholar] [CrossRef]
- Fletcher, T.D.; Shuster, W.; Hunt, W.F.; Ashley, R.; Butler, D.; Arthur, S.; Trowsdale, S.; Barraud, S.; Semadeni-Davies, A.; Bertrand-Krajewski, J.-L.; et al. SUDS, LID, BMPs, WSUD and more—The evolution and application of terminology surrounding urban drainage. Urban Water J. 2014, 12, 525–542. [Google Scholar] [CrossRef]
- Shutes, B. A Design Manual Incorporating Best Practice Guidelines for Stormwater Management Options and Treatment under Extreme Conditions—Part B: The Potential of BMPs to Integrate with Existing Infrastructure (i.e., Retro-Fit/Hybrid Systems) and to Contribute to Other Sectors of the Urban Water Cycle; 018530—SWITCH WP2.1 Project; Middlesex University: London, UK, 2008. [Google Scholar]
- Macy, M.W.; Willer, R. From Factors to Actors: Computational Sociology and Agent-Based Modeling. Annu. Rev. Sociol. 2002, 28, 143–166. [Google Scholar] [CrossRef]
- Pataki, D.E.; Boone, C.G.; Hogue, T.S.; Jenerette, G.D.; McFadden, J.P.; Pincetl, S. Socio-ecohydrology and the urban water challenge. Ecohydrology 2011, 4, 341–347. [Google Scholar] [CrossRef]
- Sofoulis, Z. Big Water, Everyday Water: A Sociotechnical Perspective. Continuum 2005, 19, 445–463. [Google Scholar] [CrossRef]
- Koutiva, I.; Makropoulos, C. Towards adaptive water resources management: Simulating the complete socio-technical system through computational intelligence. In Proceedings of the 12th International Conference on Environmental Science and Technology, Rhodes, Greece, 8–10 September 2011. [Google Scholar]
- Brown, R.R.; Sharp, L.; Ashley, R.M. Implementation impediments to institutionalising the practice of sustainable urban water management. Water Sci. Technol. 2006, 54, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Brown, R.R.; Farrelly, M.A. Delivering sustainable urban water management: A review of the hurdles we face. Water Sci. Technol. 2009, 59, 839–846. [Google Scholar] [CrossRef] [PubMed]
- Abbott, M.B. Some Future Prospects in Hydroinformatics. In Practical Hydroinformatics; Abrahart, R.J., See, L.M., Solomatine, D.P., Eds.; Water Science and Technology Library; Springer: Berlin/Heidelberg, Germany, 2009; pp. 3–16. [Google Scholar]
- Mankad, A.; Tapsuwan, S. Review of socio-economic drivers of community acceptance and adoption of decentralised water systems. J. Environ. Manag. 2011, 92, 380–391. [Google Scholar] [CrossRef] [PubMed]
- Swyngedouw, E.; Kaïka, M.; Castro, E. Urban Water: A Political-Ecology Perspective. Built Environ. 1978 2002, 28, 124–137. [Google Scholar]
- Daigger, G.T. Evolving Urban Water and Residuals Management Paradigms: Water Reclamation and Reuse, Decentralization, and Resource Recovery. Water Environ. Res. 2009, 81, 809–823. [Google Scholar] [CrossRef] [PubMed]
- Nair, S.; George, B.; Malano, H.M.; Arora, M.; Nawarathna, B. Water–energy–greenhouse gas nexus of urban water systems: Review of concepts, state-of-art and methods. Resour. Conserv. Recycl. 2014, 89, 1–10. [Google Scholar] [CrossRef]
UWC Part | UWC Component | Internal Factor | External Factor | Source |
---|---|---|---|---|
Water supply subsystem | Raw-water intake | Population, availability, techniques | Climate, environment, economy, geography | [61,62,63,64,65] |
Water treatment | Population, techniques, quantity, quality, energy | Climate, economy, regulations, geography | ||
Storage | Population, techniques, energy | Climate, environment, economy, geography | ||
Water supply distribution | Population, techniques, quantity, quality, energy | Economy, geography, society, culture, environment, regulations | ||
Water demand | Water consumption | Population, weather, population density, land use, equipment, economy | Education, territory growth, culture, regulations | [66,67,68,69,70,71] |
Wastewater and stormwater subsystem | Collection | Population, weather, population density, land use, equipment geography, hydraulics, regulations, public health, environment, economy | Society, culture, education | [17,72,73,74,75,76,77] |
Treatment | Land use, equipment, geography, regulations, public health, quality, quantity, environment, economy, energy | Society, culture, education | [52,53,78,79,80,81] | |
Receiving Water | Equipment, geography, regulations, public health, quality, quantity, ecology, environment, economy | Territory growth, type of water-receiving body | [58,82,83,84,85,86] |
Model | Type of Model | Development Team or Institution | Country | Spatial Scale | Time Scale | Platform | Support Software | Simulated Processes | Model Emphasis | Software Link | Source | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
H | Hd | Hy | C | S | |||||||||||
Aquacycle | IUWCMs | CRCCH | Australia | Pr, Ne, GNe. | Daily | Windows | X | X | X | Hydric balance. | www.toolkit.net.au | [29,87] | |||
UVQ | IUWCMs | CSIRO | Australia | Pr, Ne, GNe, Cit. | Daily | Windows | X | X | X | X | Hydric and contaminants balance. | [30,88,89,90,91] | |||
MIKE URBAN | IUWCMs | DHI | Denmark | Ne, GNe, Cit. | Hourly and Daily | Windows | ArcGIS, MOUSE, SWMM5, EPANET2 MIKENET | X | X | X | X | X | Hydrological balance, hydraulic calculations. | www.mikepoweredbydhi.com | [92,93,94,95,96,97,98] |
UWOT | IUWCMs | The urban water management and hydroinformatics team of the School of Civil Engineering, NTUA | Greece | IndD, Pr, Ne, GNe, Cit. | 10 min to monthly | Windows, Linux, Matlab (for optimization) and eLearning platform | X | X | X | X | Optimization of the development of strategies for UWC management | www.watershare.eu | [9,32,99,100,101] | ||
WaterCress | IUWCMs | Richard Clark and David Cresswell | Australia | Pr, Cat. | Daily | Windows | X | X | X | X | Hydric and contaminant balance. | www.waterselect.com.au | [25,102,103,104,105] | ||
Sobek-Urban | IUWCMs | Daltares | The Netherlands | Cat, Ne, GNe Cit. | Minutes and seconds | Windows | GIS | X | X | X | X | X | Hydrological balance, hydraulic calculations, real-time control, water quality. | www.deltares.nl | [106] |
Hydro Planner | IUWCMs | CSIRO | Australia | Ne, Cit, Cat. | Daily | Windows | REsource ALlocation Model (REALM), E2 | X | X | X | X | Hydric balance. | [28,107,108] | ||
WaterMet2 | IUWCMs | Exeter University and NTUA | Greece and UK | Pr, GNe, Ci. | Daily | Windows | X | X | X | X | Hydric and contaminants balance, energy, greenhouse gases, chemical material balance. | www.emps.exeter.ac.uk | [24,109,110,111,112] | ||
UrbanCycle | IUWCMs | University of Newcastle | Australia | Pr, GNe, Cit. | Hourly, daily | FORTRAN | DRIP, Probabilistic Demand Model | X | X | X | Hydric balance. | [20,113,114,115] | |||
Urban Developer | IUWCMs | CRCCH | Australia | Pr, GNe, Cit. | Hourly, daily | Windows | MUSIC | X | X | X | Hydric balance. | www.ewater.org.au | [33,116] | ||
Dance4Water | IUWSMs | Monash University, University of Innsbruck, Centre for Water Sensitive Cities and Melbourne Water | Australia and Austria | Pr, Ne, GNe, Cit. | Daily | Virtual, Web | SWMM, UrbanSim | X | X | X | X | Hydrological balance, hydraulic calculation, UWC-related social factors | www.dance4water.org | [117,118,119,120,121,122,123,124] | |
DUWSiM | IUWCMs | Lars Willuweit and John J. O’Sullivan University College Dublin | Ireland | Ne, GNe, Cit. | Daily | Microsoft Excel | LARS-WG, MOLAND | X | X | X | X | Hydric and contaminant balance. | [36] | ||
WaND-OT1 | IUWCMs | University of Exeter | UK | IndD, Pr, Ne. | Daily | Matlab Symulink, Microsoft Excel (VBA) | X | X | X | Hydric balance. | [32] | ||||
DMM | IUWCMs or IUWSMs | Norwegian University of Science and Technology | Norway | Ne, Cit. | Hourly, daily, monthly, yearly | Microsoft Excel | X | X | X | Hydric balance energy, greenhouse gases. | [34] | ||||
Water Balance * | IUWCMs or IUWSMs | N/A | N/A | Pr, Ne, GNe, Cit. | Hourly, daily, monthly, yearly | SIMBOX, Matlab, Phyton, R, Microsoft Excel (VBA), ABIMO, | X | X | X | X | Hydric and contaminant balance, energy, greenhouse gases, chemical and material balance. | [26,38,39] | |||
Urban Metabolism * | IUWCMs or IUWSMs | N/A | N/A | Pr, Ne, GNe, Cit. | Hourly, daily, monthly, yearly | Excel (VBA), Matlab, Phyton, R. | X | X | X | X | Hydric and contaminant balance, energy, greenhouse gases, chemical and material balance. | [31,125,126,127] | |||
LCA * | IUWCMs or IUWSMs | N/A | N/A | Pr, Ne, GNe, Cit. | Hourly, daily, monthly, yearly | Matlab, Phyton, R, Symulink, Microsoft Excel (VBA), SIMAPRO, GaBi4 | X | X | X | X | Hydric and contaminant balance, energy, greenhouse gases, chemical and material balance. | [27,128,129] |
Model | Case Study | Country | Type of Application | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
WHB | C | SDDW | EISW | EIGW | RC | WWT | BMP | H | F | RT | RR | RGW | EGG | SF | |||
Aquacycle | [135] | USA | X | X | |||||||||||||
[136] | Egypt | X | X | X | X | ||||||||||||
[137] | Israel | X | X | X | X | X | |||||||||||
[138] | Australia | X | X | X | X | ||||||||||||
[139] | Australia | X | |||||||||||||||
[140] | South Korea | X | |||||||||||||||
[141] | South Korea | X | X | X | X | ||||||||||||
[142] | Australia | X | X | X | X | ||||||||||||
[143] | Germany | X | X | X | X | ||||||||||||
[144] | France | X | X | X | X | ||||||||||||
[145] | Ghana | X | X | X | X | X | |||||||||||
[146] | Australia | X | X | ||||||||||||||
[147] | Greece | X | X | X | X | X | X | ||||||||||
[39] | Australia | X | X | ||||||||||||||
[148] | Spain | X | X | X | |||||||||||||
[149] | South Korea | X | X | X | X | ||||||||||||
[150,151] | Australia | X | |||||||||||||||
[29] | Australia | X | X | X | X | ||||||||||||
Urban Volume Quality (UVQ) | [152] | Australia | X | X | X | X | X | X | |||||||||
[153] | Australia | X | X | X | X | X | |||||||||||
[154] | Australia | X | X | X | X | X | X | ||||||||||
[155] | Vanuatu | X | X | X | X | X | X | X | X | ||||||||
[156] | Australia | X | X | X | X | X | X | ||||||||||
[157] | Austria | X | X | ||||||||||||||
[158] | Australia | X | X | X | |||||||||||||
[159] | Mexico | X | X | X | X | X | |||||||||||
[160] | South Korea | X | X | X | X | ||||||||||||
[161] | Australia | X | X | X | X | ||||||||||||
[162] | Australia | X | X | X | X | ||||||||||||
[163] | UK | X | X | X | |||||||||||||
[164] | Australia | X | X | ||||||||||||||
[142] | Australia | X | X | X | X | X | X | X | |||||||||
[165] | Slovenia | X | X | X | |||||||||||||
[166] | Australia | X | X | X | X | X | |||||||||||
[167] | UK | X | X | X | |||||||||||||
[168] | Germany | X | X | X | |||||||||||||
[169] | Slovenia | X | X | X | |||||||||||||
[170] | UK | X | X | X | X | X | X | X | |||||||||
[171] | Germany | X | X | X | X | X | X | ||||||||||
MIKE URBAN | [172] | Denmark | X | X | |||||||||||||
[173] | India | X | X | ||||||||||||||
[174] | Denmark | X | X | X | |||||||||||||
[175] | Denmark | X | X | ||||||||||||||
[176] | Denmark | X | X | ||||||||||||||
[177] | India | X | |||||||||||||||
[178] | Denmark | X | X | ||||||||||||||
[179] | Denmark | X | X | ||||||||||||||
[96] | Lithuania | X | |||||||||||||||
[180] | Denmark | X | X | ||||||||||||||
[181] | Germany | X | X | ||||||||||||||
[182] | Denmark | X | X | ||||||||||||||
[183] | Sweden | X | |||||||||||||||
[184,185] | Denmark | X | X | ||||||||||||||
[185] | Denmark | X | |||||||||||||||
[186,187] | Bangladesh | X | X | ||||||||||||||
[188] | USA | X | |||||||||||||||
[189] | Denmark | X | X | ||||||||||||||
[190] | Denmark | X | X | ||||||||||||||
[191] | Australia | X | X | ||||||||||||||
[192] | Japan | X | |||||||||||||||
Urban Water Optioneering Tool (UWOT) | [193] | Greece | X | ||||||||||||||
[194] | Spain | X | X | X | X | X | |||||||||||
[195] | Greece | X | X | ||||||||||||||
[196] | Greece | X | X | X | X | ||||||||||||
[197] | Hypothetical | X | X | X | X | X | X | X | |||||||||
[198] | Greece | X | X | X | X | X | |||||||||||
[199,200] | Greece | X | |||||||||||||||
[201] | Hypothetical | X | X | X | X | X | X | X | |||||||||
[202] | Hypothetical | X | X | X | X | X | X | ||||||||||
WaterCress | [203] | Australia | X | X | |||||||||||||
[204] | Australia | X | X | ||||||||||||||
[205] | Australia | X | |||||||||||||||
[105] | Australia | X | X | X | X | ||||||||||||
[206] | Australia | X | |||||||||||||||
[104] | Australia | X | X | X | |||||||||||||
[207] | Australia | X | X | X | |||||||||||||
[208] | Australia | X | |||||||||||||||
Sobek-Urban | [209] | Singapore | X | X | |||||||||||||
[210] | The Netherlands | X | |||||||||||||||
[211] | The Netherlands | X | X | ||||||||||||||
[212] | The Netherlands | X | |||||||||||||||
[213] | The Netherlands | X | |||||||||||||||
[214] | Singapore | X | |||||||||||||||
[215] | The Netherlands | X | |||||||||||||||
Hydro Planner | [216] | Australia | X | X | X | X | X | X | X | X | X | ||||||
[217] | Australia | X | X | X | X | ||||||||||||
[108] | Australia | X | X | ||||||||||||||
WaterMet2 | [218] | Iran | X | X | X | X | X | X | |||||||||
[219] | Italia | X | X | ||||||||||||||
[220] | Norway | X | |||||||||||||||
[221] | Unspecified | X | X | ||||||||||||||
[222] | Unspecified | X | X | X | X | X | X | X | X | ||||||||
[112] | Norway | X | |||||||||||||||
[223] | Iran | X | X | ||||||||||||||
[24] | Norway | X | X | X | X | X | X | X | |||||||||
UrbanCycle | [113] | Hypothetical | X | X | X | X | X | ||||||||||
[224] | Australia | X | X | ||||||||||||||
[225] | Australia | X | X | X | |||||||||||||
[226] | Australia | X | X | ||||||||||||||
[227] | Australia | X | |||||||||||||||
Urban Developer | [228] | Hypothetical | X | ||||||||||||||
Dance4Water | [229] | Austria | X | X | X | ||||||||||||
[230] | Australia | X | X | X | |||||||||||||
[121] | Australia | X | |||||||||||||||
[122] | Australia | X | X | ||||||||||||||
[231] | Australia | X | X | ||||||||||||||
WaND-OT1 | [32] | UK | X | X | X | X | X | ||||||||||
Dynamic Metabolism Model (DMM) | [220] | Norway | X | ||||||||||||||
[34,232] | Norway | X | X | X | |||||||||||||
DUWSiM | [233,234] | Ireland | X | ||||||||||||||
[235] | Australia | X | X | X | X | X | |||||||||||
Water Balance | [236] | Portugal | X | X | X | X | |||||||||||
[237] | Switzerland | X | X | ||||||||||||||
[238] | USA | X | |||||||||||||||
[239] | Cyprus | X | X | X | |||||||||||||
[240] | Switzerland | X | X | ||||||||||||||
[241] | USA and Canada | X | X | ||||||||||||||
[26] | Australia | X | |||||||||||||||
[10] | UK | X | X | X | X | ||||||||||||
[242] | Germany | X | |||||||||||||||
[243] | India | X | X | ||||||||||||||
[244] | Colombia | X | X | X | X | X | |||||||||||
Urban Metabolism | [245] | Colombia | X | ||||||||||||||
[246] | UK | X | X | ||||||||||||||
[247] | China | X | |||||||||||||||
[248] | Canada | X | |||||||||||||||
[249] | China | X | |||||||||||||||
[250] | Canada | X | |||||||||||||||
[251] | China | X | |||||||||||||||
[252] | USA | X | X | ||||||||||||||
Life Cycle Assessment (LCA) | [253] | Hypothetical | X | X | |||||||||||||
[254] | Spain | X | X | X | X | X | |||||||||||
[255] | Spain | X | X | ||||||||||||||
[256] | Norway | X | X | ||||||||||||||
[59] | Norway | X | |||||||||||||||
[257] | Australia | X | X | X | X | X | |||||||||||
[258] | Egypt | X | |||||||||||||||
[259] | Australia | X | X | ||||||||||||||
[260] | Sweden | X | X |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peña-Guzmán, C.A.; Melgarejo, J.; Prats, D.; Torres, A.; Martínez, S. Urban Water Cycle Simulation/Management Models: A Review. Water 2017, 9, 285. https://doi.org/10.3390/w9040285
Peña-Guzmán CA, Melgarejo J, Prats D, Torres A, Martínez S. Urban Water Cycle Simulation/Management Models: A Review. Water. 2017; 9(4):285. https://doi.org/10.3390/w9040285
Chicago/Turabian StylePeña-Guzmán, Carlos Andrés, Joaquín Melgarejo, Daniel Prats, Andrés Torres, and Sandra Martínez. 2017. "Urban Water Cycle Simulation/Management Models: A Review" Water 9, no. 4: 285. https://doi.org/10.3390/w9040285
APA StylePeña-Guzmán, C. A., Melgarejo, J., Prats, D., Torres, A., & Martínez, S. (2017). Urban Water Cycle Simulation/Management Models: A Review. Water, 9(4), 285. https://doi.org/10.3390/w9040285