A Stochastic Multi-Objective Chance-Constrained Programming Model for Water Supply Management in Xiaoqing River Watershed
Abstract
:1. Introduction
2. Methodology
2.1. Multi-Objective SCCP Model with Normal Probability Distribution
2.2. Multi-Objective SCCP Model with Log-Normal Probability Distribution
- Step 1:
- Gain in-depth insights into the targeted watershed system, identify all uncertain variables and design major system objectives and constraints;
- Step 2:
- Formulate a SMOCCP model;
- Step 3:
- Determine two solution algorithm rules associated with the multi-objective functions and the parameters presented as log-normal probability distributions;
- Step 4:
- Combine two objective functions into an integrated one and convert stochastic constraints to their respective crisp equivalents;
- Step 5:
- Obtain final solutions of f1, opt, f2, opt and Xopt under various probability levels and weight coefficients, respectively.
3. Case Study
3.1. Introduction and Problem Description of Xiaoqing River Watershed
- (i)
- Severe water resource shortage and even flow cutoff in some tributaries: For example, the Jinan section of the Xiaoqing River is located in the mid-latitude zone in Northern China, where the rainfall distribution exhibits uneven characteristics and focuses on June to September, leading to frequent occurrences of drought and flooding disasters. The multi-year average surface runoff in this section is about 352.79 million m3, which is far below the required water demands.
- (ii)
- Poor water quality: the Xiaoqing River receives industrial, agricultural and household wastewater sourced from eighteen counties, resulting in significant degradation of water quality. As stated in the “Report on the Water Quality of Critical Water Function Areas in the Shandong Province”, the total length of evaluated river is roughly 1682.6 km. Among them, the river length for meeting the water quality requirement is only 590.2 km, while the polluted river length reaches 1092 km.
- (iii)
- Imperfect infrastructure and management regime of this watershed: The overly high leakage loss of the water-transportation pipeline leads to a reduced amount of available water resources. A separate management mechanism is applied to this watershed for the time being, leading to unclear definitions in rights, responsibilities and obligations for the watershed management.
3.2. Generalization of Xiaoqing River Watershed
3.3. System Parameters and Model Formulation
- (1)
- Water consumption constraints:
- (2)
- Reservoir constraints:
- (3)
- Treatment plant constraints:
- (4)
- Water source constraints:
- (5)
- Technical constraints
4. Result Analysis and Discussion
4.1. Result Analysis
4.2. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Cai, J.L.; Varis, L.; Yin, H. China’s water resources vulnerability: A spatio-temporal analysis during 2003–2013. J. Clean. Prod. 2017, 142, 2901–2910. [Google Scholar] [CrossRef]
- Cao, X.C.; Wang, Y.B.; Wu, P.; Zhao, X.N.; Wang, J. An evaluation of the water utilization and grain production of irrigated and rain-fed croplands in China. Sci. Total Environ. 2015, 529, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.H.; Loucks, D.P. An inexact two-stage stochastic programming model for water resources management under uncertainty. Civ. Eng. Environ. Syst. 2000, 17, 95–118. [Google Scholar] [CrossRef]
- Haguma, D.; Leconte, R.; Krau, S.; Cote, P.; Brissette, F. Water Resources Optimization Method in the Context of Climate Change. J. Water Resour. Plan. Manag. 2015, 141, 04014051. [Google Scholar] [CrossRef]
- Tan, Q.; Huang, G.H.; Cai, Y.P.; Yang, Z.F. A non-probabilistic programming approach enabling risk-aversion analysis for supporting sustainable watershed development. J. Clean. Prod. 2016, 112, 4771–4788. [Google Scholar] [CrossRef]
- Rouge, C.; Tilmant, A. Using stochastic dual dynamic programming in problems with multiple near-optimal solutions. Water Resour. Res. 2016, 52, 4151–4163. [Google Scholar] [CrossRef]
- Davidsen, C.; Pereira-Cardenal, S.J.; Liu, S.X.; Mo, X.G.; Rosbjerg, D.; Bauer-Gottwein, P. Shortage management modeling for urban water supply systems. J. Water Resour. Plan. Manag. 2015, 141, 04014086. [Google Scholar] [CrossRef]
- Maeda, S.; Kuroda, H.; Yoshida, K.; Tanaka, K. A GIS-aided two-phase grey fuzzy optimization model for nonpoint source pollution control in a small watershed. Paddy Water Environ. 2017, 15, 263–276. [Google Scholar] [CrossRef]
- Xu, T.Y.; Qin, X.S. Solving water management problem through combined genetic algorithm and fuzzy simulation. J. Environ. Inf. 2013, 22, 39–48. [Google Scholar] [CrossRef]
- Xu, T.Y.; Qin, X.S. Integrating decision analysis with fuzzy programming: Application in urban water distribution system operation. J. Water Resour. Plan. Manag. 2014, 140, 638–648. [Google Scholar] [CrossRef]
- Xu, T.Y.; Qin, X.S. A sequential fuzzy model with general-shaped parameters for water supply-demand analysis. Water Resour. Manag. 2015, 29, 1431–1446. [Google Scholar] [CrossRef]
- Qin, X.S.; Xu, Y. Analyzing urban water supply through an acceptability-index-based interval approach. Adv. Water Resour. 2011, 34, 873–886. [Google Scholar] [CrossRef]
- Zhou, F.; Dong, Y.J.; Wu, J.; Zheng, J.L.; Zhao, Y. An Indirect Simulation-Optimization Model for Determining Optimal TMDL Allocation under Uncertainty. Water 2015, 7, 6634–6650. [Google Scholar] [CrossRef]
- Cai, Y.P.; Huang, G.H.; Wang, X.; Li, G.C.; Tan, Q. An inexact programming approach for supporting ecologically sustainable water supply with the consideration of uncertain water demand by ecosystems. Stoch. Environ. Res. Risk A 2011, 25, 721–735. [Google Scholar] [CrossRef]
- Dai, C.; Cai, Y.P.; Liu, Y.; Wang, W.J.; Guo, H.C. A generalized interval fuzzy chance-constrained programming method for domestic wastewater management under uncertainty—A case study of Kunming, China. Water Resour. Manag. 2015, 29, 3015–3036. [Google Scholar] [CrossRef]
- Dong, C.; Tan, Q.; Huang, G.H.; Cai, Y.P. A dual-inexact fuzzy stochastic model for water resources management and non-point source pollution mitigation under multiple uncertainties. Hydrol. Earth Syst. Sci. 2014, 18, 1793–1803. [Google Scholar] [CrossRef]
- Fan, Y.R.; Huang, G.H.; Guo, P.; Yang, A.L. Inexact two-stage stochastic partial programming: Application to water resources management under uncertainty. Stoch. Environ. Res. Risk A 2012, 26, 281–293. [Google Scholar] [CrossRef]
- Fan, Y.R.; Huang, G.H.; Huang, K.; Baetz, B.W. Planning water resources allocation under multiple uncertainties through a generalized fuzzy two-stage stochastic programming method. IEEE Trans. Fuzzy Syst. 2015, 23, 1488–1504. [Google Scholar] [CrossRef]
- Guo, P.; Huang, G.H. Two-stage fuzzy chance-constrained programming: Application to water resources management under dual uncertainties. Stoch. Environ. Res. Risk A 2009, 3, 349–359. [Google Scholar] [CrossRef]
- Sreekanth, J.; Datta, B.; Mohapatra, P.K. Optimal short-term reservoir operation with integrated long-term goals. Water Resour. Manag. 2012, 10, 2833–2850. [Google Scholar] [CrossRef]
- Jothiprakash, V.; Arunkumar, R.; Rajan, A.A. Optimal crop planning using a chance constrained linear programming model. Water Policy 2011, 5, 734–749. [Google Scholar] [CrossRef]
- Guo, P.; Wang, X.L.; Zhu, H.; Li, M. Inexact fuzzy chance-constrained nonlinear programming approach for crop water allocation under precipitation variation and sustainable development. J. Water Resour. Plan. Manag. 2014, 9, 05014003. [Google Scholar] [CrossRef]
- Caldeira, T.L.; Beskow, S.; de Mello, C.R.; Faria, L.C.; de Souza, M.R.; Guedes, H.A.S. Probabilistic modelling of extreme rainfall events in the Rio Grande do Sul state. Rev. Bras. Eng. Agric. Ambient. 2015, 19, 197–203. [Google Scholar] [CrossRef]
- Fattahi, P.; Fayyaz, S. A compromise programming model to integrated urban water management. Water Resour. Manag. 2010, 24, 1211–1227. [Google Scholar] [CrossRef]
- Han, Y.; Xu, S.G.; Xu, X.Z. Modeling multisource multiuser water resources allocation. Water Resour. Manag. 2008, 22, 911–923. [Google Scholar] [CrossRef]
- Yang, W. A multi-objective optimization approach to allocate environmental flows to the artificially restored wetlands of China’s Yellow River Delta. Ecol. Model. 2011, 222, 261–267. [Google Scholar] [CrossRef]
- Huang, G.H. A hybrid inexact-stochastic water management model. Eur. J. Oper. Res. 1996, 107, 137–158. [Google Scholar] [CrossRef]
- Kursad, A.; Hadi, G. A chance-constrained approach to stochastic line balancing problem. Eur. J. Oper. Res. 2007, 180, 1098–1115. [Google Scholar]
- Xu, Y.; Huang, G.H.; Qin, X.S.; Cao, M.F. SRCCP: A stochastic robust chance-constrained programming model for municipal solid waste management under uncertainty. Resour. Conserv. Recycl. 2009, 53, 352–363. [Google Scholar] [CrossRef]
- Daniel, M.Z.; Kramer, R.A.; Taylor, B.; Sarin, S.C. Chance constrained programming models for risk-based economic and policy analysis of soil conservation. Agric. Resour. Econ. Rev. 1994, 23, 58–65. [Google Scholar]
- Cui, B.S.; Wang, C.F.; Tao, W.D.; You, Z.Y. River channel network design for drought and flood control: A case study of Xiaoqinghe River basin, Jinan City, China. J. Environ. Manag. 2009, 90, 3675–3686. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Huang, G.H.; Xu, T.Y. Inexact Management Modeling for Urban Water Supply Systems. J. Environ. Inf. 2012, 20, 34–43. [Google Scholar] [CrossRef]
- Xu, G.; Yang, Y.Q.; Liu, B.B.; Xu, Y.H.; Wu, A.J. An efficient hybrid multi-objective particle swarm optimization with a multi-objective dichotomy line search. J. Comput. Appl. Math. 2015, 280, 310–326. [Google Scholar] [CrossRef]
- Ahmadi, A.; Tiruta-Barna, L. Process modelling-life cycle assessment-multiobjective optimization tool for the eco-design of conventional treatment processes of potable water. J. Clean. Prod. 2015, 100, 116–125. [Google Scholar] [CrossRef]
- Vazhayil, J.P.; Balasubramanian, R. Optimization of India’s electricity generation portfolio using intelligent Pareto-search genetic algorithm. Int. J. Electr. Power 2014, 55, 13–20. [Google Scholar] [CrossRef]
Type | Item | System Parameters (×103 m3) | |
---|---|---|---|
Beginning Inventory | Maximum Capacities | ||
Water source | Surface water | 19,000 | 2950 |
Groundwater | 4200 | 3600 | |
Treatment Plant | First Water Purification Plant | 7.5 | 1300 |
Second Water Purification Plant | 13 | 2100 | |
Dajin Sewage Treatment Plant | 0 | 10,000,000 | |
Tantou Sewage Treatment Plant | 0 | 10,000,000 | |
Reservoir | Dazhan Reservoir | 26 | 3150 |
Duzhuang Reservoir | 13.5 | 580 | |
Mengshan Reservoir | 3.5 | 185 | |
Duozhuang Reservoir | 13.5 | 345 | |
Xinglin Reservoir | 4.5 | 185 | |
Langmaoshan Reservoir | 38 | 560 | |
Taihe Reservoir | 6.5 | 345 |
Type | Parameters | Item | ||||||
---|---|---|---|---|---|---|---|---|
r = 1 | r = 2 | r = 3 | r = 4 | r = 5 | r = 6 | r = 7 | ||
t = 1 | transportation cost | 0 | 320 | 420 | 0 | 418 | 0 | 0 |
leakage rate | 0 | 0.05 | 0.05 | 0 | 0.01 | 0 | 0 | |
t = 2 | transportation cost | 0 | 220 | 0 | 222 | 315 | 350 | 110 |
leakage rate | 0 | 0.05 | 0 | 0.03 | 0.03 | 0.07 | 0.01 | |
t = 3 | transportation cost | 4400 | 1400 | 1350 | 530 | 0 | 0 | 0 |
leakage rate | 0.51 | 0.25 | 0.25 | 0.08 | 0 | 0 | 0 | |
t = 4 | transportation cost | 330 | 0 | 0 | 386 | 0 | 0 | 110 |
leakage rate | 0.01 | 0 | 0 | 0.03 | 0 | 0 | 0.06 | |
b = 1 | transportation cost | 580 | 0 | 0 | 0 | 0 | 0 | 0 |
leakage rate | 0.45 | 0 | 0 | 0 | 0 | 0 | 0 | |
b = 2 | transportation cost | 0 | 180 | 0 | 0 | 0 | 0 | 0 |
leakage rate | 0 | 0.15 | 0 | 0 | 0 | 0 | 0 | |
b = 3 | transportation cost | 0 | 0 | 180 | 0 | 0 | 0 | 0 |
leakage rate | 0 | 0 | 0.10 | 0 | 0 | 0 | 0 | |
b = 4 | transportation cost | 0 | 0 | 0 | 180 | 0 | 0 | 0 |
leakage rate | 0 | 0 | 0 | 0.38 | 0 | 0 | 0 | |
b = 5 | transportation cost | 0 | 0 | 0 | 0 | 180 | 0 | 0 |
leakage rate | 0 | 0 | 0 | 0 | 0.15 | 0 | 0 | |
b = 6 | transportation cost | 0 | 0 | 0 | 0 | 0 | 340 | 0 |
leakage rate | 0 | 0 | 0 | 0 | 0 | 0.42 | 0 | |
b = 7 | transportation cost | 0 | 0 | 0 | 0 | 0 | 0 | 180 |
leakage rate | 0 | 0 | 0 | 0 | 0 | 0 | 0.05 |
Planning Period | Required Water Amounts (×103 m3) | Recovered Water Amounts (×103 m3) | |||||||
---|---|---|---|---|---|---|---|---|---|
b = 1 | b = 2 | b = 3 | b = 4 | b = 5 | b = 6 | b = 7 | Surface Water | Groundwater | |
1 | 6.10 m | 4.65 | 4.55 | 4.85 | 4.28 | 4.61 | 4.58 | 3172 | 629 |
0.63 s | 0.29 | 0.23 | 0.52 | 0.17 | 0.28 | 0.25 | |||
2 | 5.75 | 4.62 | 4.52 | 4.82 | 4.28 | 4.60 | 4.52 | 10,343 | 2059 |
0.75 | 0.25 | 0.21 | 0.49 | 0.15 | 0.26 | 0.21 | |||
3 | 5.34 | 4.62 | 4.52 | 4.82 | 4.28 | 4.60 | 4.52 | 14,359 | 2914 |
0.61 | 0.25 | 0.21 | 0.49 | 0.15 | 0.26 | 0.21 | |||
4 | 5.27 | 4.62 | 4.52 | 4.82 | 4.28 | 4.60 | 4.52 | 8492 | 1648 |
0.75 | 0.25 | 0.21 | 0.49 | 0.15 | 0.26 | 0.21 | |||
5 | 5.36 | 4.65 | 4.55 | 4.85 | 4.28 | 4.61 | 4.58 | 13,267 | 2676 |
0.59 | 0.29 | 0.23 | 0.52 | 0.17 | 0.28 | 0.25 | |||
6 | 5.35 | 4.70 | 4.61 | 4.90 | 4.29 | 4.63 | 4.61 | 16,782 | 3432 |
0.86 | 0.35 | 0.28 | 0.54 | 0.21 | 0.37 | 0.29 | |||
7 | 5.10 | 4.45 | 4.28 | 4.70 | 4.10 | 4.52 | 4.29 | 15,455 | 3169 |
0.81 | 0.32 | 0.21 | 0.35 | 0.14 | 0.21 | 0.20 | |||
8 | 5.34 | 4.62 | 4.52 | 4.82 | 4.28 | 4.60 | 4.52 | 11,782 | 2387 |
0.61 | 0.25 | 0.21 | 0.49 | 0.15 | 0.26 | 0.21 | |||
9 | 5.35 | 4.70 | 4.58 | 4.90 | 4.29 | 4.61 | 4.61 | 2606 | 541 |
0.78 | 0.35 | 0.25 | 0.54 | 0.20 | 0.29 | 0.28 | |||
10 | 5.47 | 4.80 | 4.61 | 5.00 | 4.32 | 4.65 | 4.65 | 225 | 65 |
0.75 | 0.40 | 0.29 | 0.54 | 0.20 | 0.40 | 0.40 | |||
11 | 5.47 | 4.75 | 4.61 | 5.00 | 4.31 | 4.65 | 4.63 | 239 | 53 |
0.67 | 0.37 | 0.28 | 0.54 | 0.20 | 0.40 | 0.37 | |||
12 | 5.51 | 4.72 | 4.60 | 4.90 | 4.31 | 4.63 | 4.61 | 74 | 56 |
0.40 | 0.37 | 0.26 | 0.54 | 0.20 | 0.37 | 0.29 |
p | Transferred Path | k = 1 | k = 2 | k = 3 | k = 4 | k = 5 | k = 6 | k = 7 | k = 8 | k = 9 | k = 10 | k = 11 | k = 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.01 | S1→T1 | 2026.92 | 400.41 | 148.43 | 521.78 | 566.54 | 438.24 | 359.36 | 419.15 | 558.86 | 666.17 | 978.77 | 20.84 |
S1→T2 | 4274.80 | 1514.01 | 48.12 | 48.13 | 48.23 | 2085.75 | 535.48 | 1622.93 | 1160.58 | 4042.63 | 101.58 | 0.19 | |
S2→T4 | 3539.77 | 22,874.71 | 0.76 | 0.55 | 0.43 | 0.36 | 0.32 | 0.29 | 0.26 | 0.24 | 0.21 | 0.19 | |
T1→R5 | 310.55 | 0.17 | 242.93 | 121.55 | 128.23 | 140.34 | 98.85 | 121.55 | 136.63 | 140.79 | 91.78 | 0.14 | |
T2→R4 | 1049.58 | 651.13 | 295.46 | 651.13 | 707.83 | 785.01 | 407.88 | 651.13 | 785.01 | 867.57 | 867.57 | 785.01 | |
T2→R6 | 915.28 | 341.22 | 341.22 | 93.06 | 0.00 | 722.87 | 0.00 | 943.37 | 363.59 | 494.48 | 339.48 | 0.17 | |
T2→R7 | 180.19 | 506.52 | 154.35 | 0.00 | 0.00 | 557.01 | 122.25 | 12.20 | 0.37 | 540.15 | 0.00 | 208.53 | |
T4→R1 | 3539.32 | 3283.20 | 1577.32 | 2021.45 | 1531.93 | 2864.25 | 1965.14 | 1577.32 | 2375.16 | 2475.19 | 2052.53 | 1155.28 | |
R2→B2 | 240.15 | 215.08 | 215.08 | 215.08 | 240.15 | 288.58 | 213.04 | 215.08 | 288.58 | 364.58 | 320.05 | 310.59 | |
R4→B4 | 686.59 | 631.59 | 631.59 | 631.59 | 686.59 | 761.46 | 395.64 | 631.59 | 761.46 | 841.54 | 841.54 | 761.46 | |
R7→B7 | 184.89 | 156.46 | 156.46 | 156.46 | 184.89 | 206.44 | 121.03 | 156.46 | 200.99 | 280.76 | 253.98 | 206.44 | |
0.05 | S1→T1 | 1940.36 | 341.72 | 66.21 | 451.33 | 288.19 | 319.54 | 340.47 | 392.49 | 452.19 | 603.60 | 488.84 | 255.12 |
S1→T2 | 3971.32 | 1248.16 | 0.00 | 0.01 | 0.11 | 1343.04 | 389.65 | 999.62 | 851.09 | 2856.74 | 0.35 | 0.19 | |
S2→T4 | 2291.94 | 14,086.40 | 0.76 | 0.55 | 0.43 | 0.36 | 0.32 | 0.29 | 0.26 | 0.24 | 0.21 | 0.19 | |
T1→R5 | 296.34 | 0.17 | 219.40 | 109.78 | 114.02 | 121.89 | 89.98 | 109.78 | 119.60 | 123.24 | 56.84 | 0.32 | |
T2→R4 | 839.35 | 464.96 | 109.29 | 464.96 | 497.59 | 543.28 | 322.47 | 464.96 | 543.28 | 600.41 | 600.41 | 543.28 | |
T2→R6 | 854.63 | 284.97 | 284.97 | 284.97 | 26.61 | 614.88 | 0.00 | 524.30 | 298.94 | 375.93 | 121.77 | 0.17 | |
T2→R7 | 150.64 | 485.74 | 137.26 | 137.26 | 157.20 | 171.45 | 63.28 | 0.37 | 0.37 | 215.61 | 199.68 | 171.45 | |
T4→R1 | 2291.48 | 1973.42 | 1041.50 | 1215.03 | 1027.50 | 1591.93 | 1135.82 | 1041.50 | 1394.48 | 1487.76 | 1303.23 | 878.31 | |
R2→B2 | 197.44 | 181.04 | 181.04 | 181.04 | 197.44 | 228.16 | 171.09 | 181.04 | 228.16 | 277.17 | 249.11 | 241.74 | |
R4→B4 | 482.67 | 451.01 | 451.01 | 451.01 | 482.67 | 526.98 | 312.80 | 451.01 | 526.98 | 582.40 | 582.40 | 526.98 | |
R7→B7 | 155.63 | 135.88 | 135.88 | 135.88 | 155.63 | 169.73 | 105.94 | 135.88 | 166.55 | 213.45 | 197.68 | 169.73 | |
0.1 | S1→T1 | 1899.90 | 314.07 | 7.55 | 322.75 | 315.04 | 339.78 | 255.06 | 303.34 | 481.05 | 536.80 | 405.23 | 223.30 |
S1→T2 | 3843.06 | 1123.63 | 0.00 | 0.01 | 0.11 | 839.73 | 317.66 | 878.60 | 723.41 | 2323.68 | 0.35 | 0.19 | |
S2→T4 | 1816.46 | 10,904.65 | 0.76 | 0.55 | 0.43 | 0.36 | 0.32 | 0.29 | 0.26 | 0.24 | 0.21 | 0.19 | |
T1→R5 | 289.42 | 0.17 | 207.80 | 103.98 | 107.09 | 113.06 | 85.58 | 103.98 | 111.41 | 114.80 | 40.12 | 0.32 | |
T2→R4 | 754.13 | 388.56 | 32.89 | 388.56 | 412.37 | 446.49 | 284.51 | 388.56 | 446.49 | 493.45 | 493.45 | 446.49 | |
T2→R6 | 826.66 | 256.45 | 261.32 | 258.89 | 265.37 | 304.62 | 0.00 | 480.88 | 269.31 | 324.83 | 27.13 | 0.17 | |
T2→R7 | 136.84 | 475.81 | 127.32 | 127.32 | 143.41 | 154.46 | 29.97 | 0.37 | 0.37 | 186.30 | 174.71 | 154.46 | |
T4→R1 | 1816.00 | 1504.45 | 834.78 | 926.29 | 830.46 | 1163.99 | 848.01 | 834.78 | 1049.86 | 1134.20 | 1022.99 | 758.92 | |
R2→B2 | 177.88 | 165.15 | 165.15 | 165.15 | 177.88 | 201.30 | 152.22 | 165.15 | 201.30 | 239.49 | 217.96 | 211.51 | |
R4→B4 | 400.00 | 376.90 | 376.90 | 376.90 | 400.00 | 433.09 | 275.98 | 376.90 | 433.09 | 478.64 | 478.64 | 433.09 | |
R7→B7 | 141.97 | 126.05 | 126.05 | 126.05 | 141.97 | 152.91 | 98.68 | 126.05 | 150.68 | 184.44 | 172.96 | 152.91 |
p | Transferred Path | k = 1 | k = 2 | k = 3 | k = 4 | k = 5 | k = 6 | k = 7 | k = 8 | k = 9 | k = 10 | k = 11 | k = 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.01 | S1→T1 | 921.66 | 2366.99 | 0.00 | 0.00 | 0.02 | 713.33 | 598.08 | 471.55 | 282.45 | 1071.53 | 0.06 | 679.81 |
S1→T2 | 4227.46 | 504.30 | 145.88 | 0.00 | 0.00 | 0.00 | 0.00 | 263.33 | 205.07 | 785.94 | 758.62 | 662.47 | |
S2→T4 | 3579.00 | 30,689.08 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | |
T1→R5 | 310.55 | 56.22 | 0.00 | 308.42 | 128.23 | 0.00 | 239.18 | 71.31 | 0.00 | 142.84 | 139.14 | 137.60 | |
T2→R4 | 654.23 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
T2→R6 | 915.28 | 341.22 | 324.96 | 331.68 | 379.79 | 447.32 | 275.55 | 102.66 | 0.00 | 494.48 | 494.48 | 447.32 | |
T2→R7 | 528.68 | 158.04 | 154.45 | 155.93 | 174.74 | 0.00 | 0.00 | 158.04 | 203.02 | 283.60 | 256.55 | 208.53 | |
T4→R1 | 3539.32 | 3283.20 | 1577.32 | 2021.45 | 1531.93 | 2864.25 | 1965.14 | 1577.32 | 2375.16 | 2475.19 | 2052.53 | 1155.28 | |
R2→B2 | 240.15 | 215.08 | 215.08 | 215.08 | 240.15 | 288.58 | 213.04 | 215.08 | 288.58 | 364.58 | 320.05 | 310.59 | |
R4→B4 | 686.59 | 631.59 | 631.59 | 631.59 | 686.59 | 761.46 | 395.64 | 631.59 | 761.46 | 841.54 | 841.54 | 761.46 | |
R7→B7 | 184.89 | 156.46 | 156.46 | 156.46 | 184.89 | 206.44 | 121.03 | 156.46 | 200.99 | 280.76 | 253.98 | 206.44 | |
0.05 | S1→T1 | 835.10 | 2284.77 | 0.00 | 0.00 | 0.02 | 277.48 | 626.91 | 305.46 | 172.92 | 882.87 | 0.06 | 554.48 |
S1→T2 | 3475.50 | 136.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 426.50 | 243.39 | 217.79 | 581.42 | 524.86 | |
S2→T4 | 2775.17 | 19,600.92 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | |
T1→R5 | 296.34 | 32.69 | 0.00 | 296.65 | 114.02 | 121.89 | 89.98 | 42.51 | 0.00 | 125.29 | 121.77 | 120.22 | |
T2→R4 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
T2→R6 | 854.63 | 265.88 | 287.89 | 273.23 | 321.26 | 348.16 | 239.32 | 284.97 | 72.72 | 0.00 | 375.93 | 348.16 | |
T2→R7 | 499.12 | 133.04 | 137.90 | 134.67 | 93.33 | 0.00 | 0.00 | 137.26 | 168.24 | 215.61 | 199.68 | 171.45 | |
T4→R1 | 2291.48 | 1973.42 | 1041.50 | 1215.03 | 1027.50 | 1591.93 | 1135.82 | 1041.50 | 1394.48 | 1487.76 | 1303.23 | 878.31 | |
R2→B2 | 197.44 | 181.04 | 181.04 | 181.04 | 197.44 | 228.16 | 171.09 | 181.04 | 228.16 | 277.17 | 249.11 | 241.74 | |
R4→B4 | 482.67 | 451.01 | 451.01 | 451.01 | 482.67 | 526.98 | 312.80 | 451.01 | 526.98 | 582.40 | 582.40 | 526.98 | |
R7→B7 | 155.63 | 135.88 | 135.88 | 135.88 | 155.63 | 169.73 | 105.94 | 135.88 | 166.55 | 213.45 | 197.68 | 169.73 | |
0.1 | S1→T1 | 794.64 | 2245.52 | 0.00 | 0.00 | 0.02 | 149.45 | 482.89 | 167.37 | 269.16 | 796.94 | 0.06 | 497.84 |
S1→T2 | 3433.32 | 106.31 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 844.40 | 176.47 | 463.72 | |
S2→T4 | 2214.48 | 15486.11 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | |
T1→R5 | 289.42 | 21.10 | 0.00 | 290.85 | 107.09 | 113.06 | 2.70 | 0.00 | 111.41 | 116.84 | 113.41 | 111.86 | |
T2→R4 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
T2→R6 | 826.66 | 242.81 | 272.14 | 243.23 | 283.85 | 304.62 | 148.05 | 0.00 | 0.00 | 649.66 | 0.00 | 304.62 | |
T2→R7 | 485.33 | 123.78 | 130.25 | 123.87 | 0.00 | 0.00 | 53.13 | 127.32 | 152.20 | 186.30 | 174.71 | 154.46 | |
T4→R1 | 1816.00 | 1504.45 | 834.78 | 926.29 | 830.46 | 1163.99 | 848.01 | 834.78 | 1049.86 | 1134.20 | 1022.99 | 758.92 | |
R2→B2 | 177.88 | 165.15 | 165.15 | 165.15 | 177.88 | 201.30 | 152.22 | 165.15 | 201.30 | 239.49 | 217.96 | 211.51 | |
R4→B4 | 400.00 | 376.90 | 376.90 | 376.90 | 400.00 | 433.09 | 275.98 | 376.90 | 433.09 | 478.64 | 478.64 | 433.09 | |
R7→B7 | 141.97 | 126.05 | 126.05 | 126.05 | 141.97 | 152.91 | 98.68 | 126.05 | 150.68 | 184.44 | 172.96 | 152.91 |
P | Weighted Combination | Objective Function | Variation Levels of Targeted Parameters | ||||||
---|---|---|---|---|---|---|---|---|---|
−75% | −50% | −25% | 1 | +25% | +50% | +75% | |||
0.01 | w1 = 0.9 | TC (×106 RMB) | 12.89 | 25.78 | 38.67 | 51.56 | 64.46 | 77.35 | 90.24 |
w2 = 0.1 | LL (×103 m3) | 19,055.62 | 19,055.62 | 19,055.62 | 19,055.62 | 19,055.62 | 19,055.62 | 19,055.62 | |
w1 = 0.1 | TC (×106 RMB) | 13.50 | 27.01 | 40.51 | 54.01 | 67.51 | 81.01 | 94.51 | |
w2 = 0.9 | LL (×103 m3) | 18,976.33 | 18,976.33 | 18,976.33 | 18,976.33 | 18,976.33 | 18,976.33 | 18,976.33 | |
0.05 | w1 = 0.9 | TC (×106 RMB) | 8.62 | 17.24 | 25.86 | 34.48 | 43.10 | 51.72 | 60.34 |
w2 = 0.1 | LL (×103 m3) | 12,813.74 | 12,813.74 | 12,813.74 | 12,813.74 | 12,813.74 | 12,813.74 | 12,813.74 | |
w1 = 0.1 | TC (×106 RMB) | 9.09 | 18.17 | 27.26 | 36.34 | 45.43 | 54.51 | 63.60 | |
w2 = 0.9 | LL (×103 m3) | 12,753.19 | 12,753.19 | 12,753.19 | 12,753.19 | 12,753.19 | 12,753.19 | 12,753.19 | |
0.1 | w1 = 0.9 | TC (×106 RMB) | 7.01 | 14.01 | 21.02 | 28.02 | 35.03 | 42.03 | 49.04 |
w2 = 0.1 | LL (×103 m3) | 10,440.01 | 10,440.01 | 10,440.01 | 10,440.01 | 10,440.01 | 10,440.01 | 10,440.01 | |
w1 = 0.1 | TC (×106 RMB) | 7.39 | 14.79 | 22.18 | 29.57 | 36.96 | 44.36 | 51.75 | |
w2 = 0.9 | LL (×103 m3) | 10,389.75 | 10,389.75 | 10,389.75 | 10,389.75 | 10,389.75 | 10,389.75 | 10,389.75 |
P | Weighted Combination | Objective Function | Variation Levels of Targeted Parameters | ||||||
---|---|---|---|---|---|---|---|---|---|
−0.99% | −0.66% | −0.33% | 1 | 0.33% | 0.66% | 0.99% | |||
0.01 | w1 = 0.9 | TC (×106 RMB) | 51.19 | 51.32 | 51.44 | 51.56 | 51.69 | 51.81 | 51.94 |
w2 = 0.1 | LL (×103 m3) | 18732.59 | 18839.74 | 18947.42 | 19055.62 | 19164.35 | 19273.62 | 19383.43 | |
w1 = 0.1 | TC (×106 RMB) | 53.63 | 53.75 | 53.88 | 54.01 | 54.13 | 54.26 | 54.39 | |
w2 = 0.9 | LL (×103 m3) | 18,654.29 | 18,761.11 | 18,868.46 | 18,976.33 | 19,084.73 | 19,193.66 | 19,303.14 | |
0.05 | w1 = 0.9 | TC (×106 RMB) | 34.24 | 34.32 | 34.40 | 34.48 | 34.56 | 34.64 | 34.72 |
w2 = 0.1 | LL (×103 m3) | 12,598.37 | 12,669.82 | 12,741.60 | 12,813.74 | 12,886.22 | 12,959.05 | 13,032.23 | |
w1 = 0.1 | TC (×106 RMB) | 36.09 | 36.17 | 36.26 | 36.34 | 36.43 | 36.51 | 36.60 | |
w2 = 0.9 | LL (×103 m3) | 12,538.81 | 12,609.93 | 12,681.39 | 12,753.19 | 12,825.34 | 12,897.84 | 12,970.69 | |
0.1 | w1 = 0.9 | TC (×106 RMB) | 27.83 | 27.89 | 27.96 | 28.02 | 28.09 | 28.15 | 28.22 |
w2 = 0.1 | LL (×103 m3) | 10,265.40 | 10,323.33 | 10,381.53 | 10,440.01 | 10,498.77 | 10,557.81 | 10,617.13 | |
w1 = 0.1 | TC (×106 RMB) | 29.37 | 29.44 | 29.50 | 29.57 | 29.64 | 29.71 | 29.78 | |
w2 = 0.9 | LL (×103 m3) | 10,215.96 | 10,273.62 | 10,331.54 | 10,389.75 | 10,448.23 | 10,507.00 | 10,566.04 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Li, W.; Ding, X. A Stochastic Multi-Objective Chance-Constrained Programming Model for Water Supply Management in Xiaoqing River Watershed. Water 2017, 9, 378. https://doi.org/10.3390/w9060378
Xu Y, Li W, Ding X. A Stochastic Multi-Objective Chance-Constrained Programming Model for Water Supply Management in Xiaoqing River Watershed. Water. 2017; 9(6):378. https://doi.org/10.3390/w9060378
Chicago/Turabian StyleXu, Ye, Wei Li, and Xiaowen Ding. 2017. "A Stochastic Multi-Objective Chance-Constrained Programming Model for Water Supply Management in Xiaoqing River Watershed" Water 9, no. 6: 378. https://doi.org/10.3390/w9060378
APA StyleXu, Y., Li, W., & Ding, X. (2017). A Stochastic Multi-Objective Chance-Constrained Programming Model for Water Supply Management in Xiaoqing River Watershed. Water, 9(6), 378. https://doi.org/10.3390/w9060378