Flooding in Delta Areas under Changing Climate: Response of Design Flood Level to Non-Stationarity in Both Inflow Floods and High Tides in South China
Abstract
:1. Introduction
2. Study Area and Methods
2.1. Study Area and Dataset
2.2. Methodology
2.2.1. Time-Varying Moments Estimating Nonstationary Inflow Floods and High Tidal Levels
2.2.2. One-Dimensional River Network Hydrodynamic Model
3. Results and Discussion
3.1. Non-Stationarity in the Inflow Floods and the Downstream Tidal Level
3.1.1. Increasing Inflow Floods
3.1.2. Varied High Tidal Level
3.2. Response of the Design Flood Level to Nonstationary Inflow Floods and the High Tidal Level
3.2.1. Response of Flood Level at a Single Spot
3.2.2. Response of the Flood Level along the River Channel
3.3. Leading Factors of Non-Stationarity and the Flood Level Response
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Trenberth, K.E. Conceptual Framework for Changes of Extremes of the Hydrological Cycle with Climate Change. In Weather and Climate Extremes; Springer: Dordrecht, The Netherlands, 1999; pp. 327–339. [Google Scholar]
- Groisman, P.Y.; Knight, R.W.; Karl, T.R.; Easterling, D.R.; Sun, B.; Lawrimore, J.H. Contemporary Changes of the Hydrological Cycle over the Contiguous United States: Trends Derived from In Situ Observations. J. Hydrometeorol. 2004, 5, 64–85. [Google Scholar] [CrossRef]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global Consequences of Land Use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Piao, S.; Ciais, P.; Huang, Y.; Shen, Z.; Peng, S.; Li, J.; Zhou, L.; Liu, H.; Ma, Y.; Ding, Y.; et al. The impacts of climate change on water resources and agriculture in China. Nature 2010, 467, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Schaller, N.; Kay, A.L.; Lamb, R.; Massey, N.R.; Van Oldenborgh, G.J.; Otto, F.E.; Sparrow, S.N.; Vautard, R.; Yiou, P.; Ashpole, I.; et al. Human Influence on Climate in the 2014 Southern England Winter Floods and Their Impacts. Nat. Clim. Chang. 2016, 6, 627–634. [Google Scholar] [CrossRef]
- Nicholls, R.J.; Cazenave, A. Sea-Level Rise and Its Impact on Coastal Zones. Science 2010, 328, 1517–1520. [Google Scholar] [CrossRef] [PubMed]
- Neumann, B.; Vafeidis, A.T.; Zimmermann, J.; Nicholls, R.J. Future Coastal Population Growth and Exposure to Sea-Level Rise and Coastal Flooding—A Global Assessment. PLoS ONE 2015, 10, 1–34. [Google Scholar] [CrossRef] [PubMed]
- Menéndez, M.; Woodworth, P.L. Changes in extreme high water levels based on a quasi-globaltide-gauge data set. J. Geophys. Res. 2010, 115, 234–244. [Google Scholar] [CrossRef]
- Xu, S.; Huang, W. Frequency Analysis for Predicting 1% Annual Maximum Water Levels in Florida Coast. Hydrol. Process. 2008, 22, 4507–4518. [Google Scholar] [CrossRef]
- Xu, S.; Huang, W. Effects of sea level rise on frequency analysis of 1% annual maximum water levels in the coast of Florida. Ocean Eng. 2013, 71, 96–102. [Google Scholar] [CrossRef]
- Chen, Y.M.; Huang, W.R.; Xu, S.D. Frequency Analysis of Extreme Water Levels Affected by Sea-Level Rise in East and Southeast Coasts of China. J. Coast. Res. 2014, 68, 105–112. [Google Scholar] [CrossRef]
- Zhong, H.; van Gelder, P.H.A.J.M.; van Overloop, P.J.A.T.M.; Wang, W. Application of a fast stochastic storm surge model on estimating the high water level frequency in the Lower Rhine Delta. Nat. Hazards 2014, 73, 743–759. [Google Scholar] [CrossRef]
- Méndez, F.J.; Menéndez, M.; Luceño, A.; Losada, I.J. Analyzing monthly extreme sea levels with a time-dependent GEV model. J. Atmos. Ocean. Technol. 2007, 24, 894–911. [Google Scholar] [CrossRef]
- Zheng, F.; Leonard, M.; Westra, S. Application of the design variable method to estimate coastal flood risk. J. Flood Risk Manag. 2015. [Google Scholar] [CrossRef]
- U.S. Army Corps of Engineers. Flood Risk Management Planning Workshop; Ocean County Community College: Toms River, NJ, USA, 2016. [Google Scholar]
- Hydrology Bureau of Guangdong Province. Report of Flood Control Planning in Pearl River Basin; Zhujiang River Commission: Guangzhou, China, 2007. [Google Scholar]
- Vidal, J. UN Report: World’s Biggest Cities Merging into ‘Mega-Regions’. Available online: guardian.co.uk (accessed on 13 March 2010).
- United Nations, Department of Economic and Social Affairs, Population Division. World Urbanization Prospects: The 2014 Revision; United Nations: New York, NY, USA, 2014. [Google Scholar]
- Cox, W. The World’s Ten Largest Megacities. The Huffington Post, 2016. Available online: http://www.huffingtonpost.com/wendell-cox/the-worlds-ten-largest-me_b_6684694.html (accessed on 19 Feburary 2016).
- Khaliq, M.N.; Ouarda, T.B.M.J.; Ondo, J.C.; Gachon, P.; Bobée, B. Frequency analysis of a sequence of dependentand/ornon-stationary hydro-meteorological observations: A review. J. Hydrol. 2006, 329, 534–552. [Google Scholar] [CrossRef]
- Strupczewski, W.G.; Singh, V.P.; Mitosek, H.T. Non-stationary approach to at-site flood frequency modelling. III. Flood analysis of Polish rivers. J. Hydrol. 2001, 248, 152–167. [Google Scholar] [CrossRef]
- Strupczewski, W.G.; Singh, V.P.; Feluch, W. Non-stationary approach to at-site flood frequency modelling. I: Maximum likelihood estimation. J. Hydrol. 2001, 248, 123–142. [Google Scholar]
- Hydrology Bureau of Guangdong Province (HBGP). Report on the Flood Control Plan of Pearl River Basin; HBGP: Guangzhou, China, 1998. [Google Scholar]
- Li, K.; Li, G.S. Calculation of return period for storm surge in the Pearl River Delta Region. Prog. Geogr. 2010, 29, 433–438. [Google Scholar]
- Chen, Z.S.; Liu, Z.M.; Lu, J.F. Flood Joint Probability Distribution of the Xijiang River and Beijiang River in Guangdong Province. Acta Sci. Nat. Univ. Sunyatseni 2011, 50, 110–115. (In Chinese) [Google Scholar]
- Wu, Z.Y.; Lu, G.H.; Liu, Z.Y. Trends of Extreme Flood Events in the Pearl River Basin under Climate Change. Prog. Inquisitiones Mutat. Clim. 2012, 8, 403–408. (In Chinese) [Google Scholar]
- Liu, Z.M.; Qin, G.H.; Chen, Z.S. Study on the correlation of the water level of the tidal river with upstream flood and estuary tide level. Shuili Xuebao 2013, 44, 1278–1285. (In Chinese) [Google Scholar]
- Liu, Y.; Guan, S. Study on the Characteristic of Multiply Events of Drought and Flood Probability in the Pearl River Basin based on Copula Function. Pearl River 2017, 38, 12–17. (In Chinese) [Google Scholar]
- Liu, J.; Chen, H.; Wang, J.X. Comparison among Theoretical Frequency Distributions of P-Ш, Log P-Ш and GL. J. China Hydrol. 2013, 33, 1–4. (In Chinese) [Google Scholar]
- Guan, S.; Zha, X.N.; Ding, B. Wetness-Dryness Encountering of Runoff of the Pearl River Basin Based on Copula Functions. Trop. Geogr. 2015, 35, 208–217. (In Chinese) [Google Scholar]
- Degond, P.; Markowich, P.A. On a one-dimensional steady-state hydrodynamic model for semiconductors. Appl. Math. Lett. 1990, 3, 25–29. [Google Scholar] [CrossRef]
- Preissmann, A. Propagation of translatory waves in channels and rivers (original in French “Propagation des intume scences dans les canaux et rivières”). In Proceedings of the first Congress of the French Association for Computation (AFCALTI) September, Grenoble, France, 14–16 September 1961; pp. 433–442. [Google Scholar]
- Center for Water Resources and Environment. One-Dimensional Hydrodynamic Model of the Pearl River Delta, Project Report (Part B); Sun Yat-sen University: Guangzhou, Guangdong, China, 2015; pp. 20–25. [Google Scholar]
- Kendall, M.G. (Ed.) Rank Correlation Methods; Hafner: New York, NY, USA, 1975. [Google Scholar]
- Mann, H.B. Non-parametric test against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Tang, Y.H.; Xi, S.F.; Chen, X.H.; Lian, Y.Q. Quantification of Multiple Climate Change and Human Activity Impact Factors on Flood Regimes in the Pearl River Delta of China. Adv. Meteorol. 2016. [Google Scholar] [CrossRef]
- Zhang, Q.; Gu, X.H.; Singh, V.P.; Xiao, M.Z. Flood frequency analysis with consideration of hydrological alterations: Changing properties, causes and implications. J. Hydrol. 2014, 519, 803–813. [Google Scholar] [CrossRef]
- Zhao, Y.F.; Zou, X.Q.; Cao, L.G.; Xu, X. Changes in precipitation extremes over the Pearl River Basin, southern China, during 1960–2012. Quat. Int. 2014, 333, 26–39. [Google Scholar] [CrossRef]
- Gemmer, M.; Fischer, T.; Jiang, T.; Su, B.; Liu, L.L. Trends in Precipitation Extremes in the Zhujiang River Basin, South China. J. Clim. 2010, 24, 750–761. [Google Scholar] [CrossRef]
- Zhang, S.R.; Lu, X.X. Hydrological responses to precipitation variation and diverse human activities in a mountainous tributary of the lower Xijiang, China. Catena 2009, 77, 130–142. [Google Scholar] [CrossRef]
- Wu, X.M.; Deng, J.Q.; Cheng, R.L.; Wu, T.S. A super-large tidal physical model for the Pearl River Estuary. Presented at International Conference on Estuaries and Coasts, Hangzhou, Zhejiang, China, 9–11 November 2003. [Google Scholar]
- He, H.J. Analysis of the Storms and Typhoons in the Pearl River Estuary. Ren Min Zhujiang 1981, 4, 34–51. (In Chinese) [Google Scholar]
- Ni, P. Project Report: Water and Sediment Characteristics and the Riverbed Evolution in the Pearl River Delta, 2.1.2; Institute of Water Resources and Hydropower Research of Guangdong Province (IWRHG): Guangzhou, Guangdong, China, 2014. (In Chinese) [Google Scholar]
- Chen, X.H.; Zhang, L.; Shi, Z. Study on spatial variability of water levels in rivernet of Pearl River delta. J. Hydraul. Eng. 2004, 10, 36–42. (In Chinese) [Google Scholar]
River Basin | No. | Gauge Station | Channel Name | Mann–Kendall |
---|---|---|---|---|
West River | 0 | Gaoyao | - | - |
1 | Wuzhou | - | Upward (z = 1.66) | |
North River | 2 | Shijiao | - | No (z = 0.38) |
Pearl River Delta Outlets | 3 | Sanshakou | Humen | No (z = 1.43) |
4 | Nansha | Jiaomen | No (z = −0.37) | |
5 | Wanqinshaxi | Hongqimen | No (z = 1.57) | |
6 | Hengmen | Hengmen | Upward (z = 2.96) | |
7 | Denglongshan | Modaomen | Upward (z = 1.96) | |
8 | Huangjin | Jitimen | Upward (z = 2.65) | |
9 | Xipaotai | Hutiaomen | Upward (z = 2.44) |
Probability Distribution Function | Time Trend Model | Time-Varying Model | m | σ |
---|---|---|---|---|
P3 | AL | P3-AL | ||
BL | P3-BL | |||
CL | P3-CL | |||
DL | P3-DL | |||
AP | P3-AP | |||
BP | P3-BP | |||
CP | P3-CP | |||
DP | P3-DP |
Station | Unit | T = 100 | T = 50 | T = 20 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
XT | X0 | E (%) | XT | X0 | E (%) | XT | X0 | E (%) | ||
Wu-zhou | m3/s | 65,926 | 56,101 | 17.51 | 61,990 | 52,573 | 17.91 | 56,373 | 47,564 | 18.52 |
Heng-men | m | 2.93 | 2.68 | 9.33 | 2.83 | 2.57 | 10.12 | 2.69 | 2.42 | 11.16 |
Denglong-shan | 3.00 | 2.63 | 14.07 | 2.88 | 2.50 | 15.20 | 2.70 | 2.31 | 16.88 | |
Huang-jin | 3.65 | 3.20 | 14.06 | 3.50 | 3.00 | 16.67 | 3.28 | 2.73 | 20.15 | |
Xipao-tai | 3.18 | 3.34 | −4.79 | 3.06 | 3.12 | −1.92 | 2.90 | 2.83 | 2.47 |
Scenario | Return Period | |
---|---|---|
Flood Flow | Extreme Tidal Level | |
1 | 100a | 100a |
2 | 100a | 50a |
3 | 50a | 100a |
4 | 50a | 50a |
Scenario Number | Group 1 | Group 2 | Group 3 |
---|---|---|---|
1 | Baiqing, Da’ao, Lianyao, Makou, Sanshui, Zhuyin, Zhuzhou | Baijiao, Ganzhu, Lanshi, Nanhua, Rongqi, Sanduo, Tianhe, Xiaolan, Zidong | Banshawei, Fengmamiao, Hengshan, Jiangmen, Ma’an, Sanshanjiao |
4 | Baijiao, Baiqing, Da’ao, Lianyao, Sanduo, Sanshui, Zhuzhou, Zhuyin, Zidong | Ganzhu, Lanshi, Makou, Ma’an, Rongqi, Xiaolan | Banshawei, Fengmamiao, Jiangmen, Hengshan, Nanhua, Sanshanjiao, Tianhe |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Y.; Guo, Q.; Su, C.; Chen, X. Flooding in Delta Areas under Changing Climate: Response of Design Flood Level to Non-Stationarity in Both Inflow Floods and High Tides in South China. Water 2017, 9, 471. https://doi.org/10.3390/w9070471
Tang Y, Guo Q, Su C, Chen X. Flooding in Delta Areas under Changing Climate: Response of Design Flood Level to Non-Stationarity in Both Inflow Floods and High Tides in South China. Water. 2017; 9(7):471. https://doi.org/10.3390/w9070471
Chicago/Turabian StyleTang, Yihan, Qizhong Guo, Chengjia Su, and Xiaohong Chen. 2017. "Flooding in Delta Areas under Changing Climate: Response of Design Flood Level to Non-Stationarity in Both Inflow Floods and High Tides in South China" Water 9, no. 7: 471. https://doi.org/10.3390/w9070471
APA StyleTang, Y., Guo, Q., Su, C., & Chen, X. (2017). Flooding in Delta Areas under Changing Climate: Response of Design Flood Level to Non-Stationarity in Both Inflow Floods and High Tides in South China. Water, 9(7), 471. https://doi.org/10.3390/w9070471