Agricultural Water Productivity Oriented Water Resources Allocation Based on the Coordination of Multiple Factors
Abstract
:1. Introduction
2. Methodology
2.1. Fuzzy Optimum Selecting Theory
- (1)
- Calculate the relative membership matrix
- (2)
- Determination of superior and inferior membership degrees
- (3)
- Derivation of the relative optimum membership degree
2.2. Fractional Programming Model for Agricultural Water Allocation
Objective Function:
Constraints:
- (1)
- Surface water supply constraints.
- (2)
- Water balance constraint.
- (3)
- Groundwater supply constraint.
- (4)
- Crop water requirement constraint.
- (5)
- Ecological health constraint.
- (6)
- Nonnegative constraint.
2.3. Multi-Dimensional Regulation Theory
3. Case Study
3.1. Study Area
3.2. Parameter Determination
4. Results Analysis and Discussion
4.1. Results of Relative Optimum Membership Degree
4.2. Water Resources Optimal Allocation Schemes
4.3. Effects on the Multi-Dimensional System
4.4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Guo, S.; Shen, G.Q.; Peng, Y. Embodied agricultural water use in China from 1997 to 2010. J. Clean. Prod. 2016, 112, 3176–3184. [Google Scholar]
- Du, T.S.; Kang, S.Z.; Zhang, X.Y.; Zhang, J.H. China’s food security is threatened by the unsustainable use of water resources in North and Northwest China. Food Energy Secur. 2014, 3, 7–18. [Google Scholar] [CrossRef]
- Feng, Z.M.; Yang, Y.Z.; You, Z. Research on the Water Resources Restriction on Population Distribution in China. J. Nat. Resour. 2014, 29, 1637–1648. [Google Scholar]
- Kang, S.Z.; Hao, X.M.; Du, T.S.; Tong, L.; Su, X.L.; Lu, H.N.; Li, X.L.; Huo, Z.L.; Li, S.; Ding, R.S. Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice. Agric. Water Manag. 2017, 179, 5–17. [Google Scholar] [CrossRef]
- Kijne, J.W. Water productivity under saline conditions. In Water Productivity in Agriculture: Limits and Opportunities for Improvement; CABI Publishing: Wallingford, UK, 2003; pp. 89–102. [Google Scholar]
- Birendra, K.C.; Schultz, B.; Prasad, K. Water management to meet present and future food demand. Irrig. Drain. 2011, 60, 348–359. [Google Scholar]
- Du, T.S.; Kang, S.Z.; Zhang, J.H.; Davies, W.J. Deficit irrigation and sustainable water-resource strategies in agriculture for China’s food security. J. Exp. Bot. 2015, 66, 2253–2269. [Google Scholar] [CrossRef] [PubMed]
- Singh, A. Irrigation planning and management through optimization modelling. Water Resour. Manag. 2014, 28, 1–14. [Google Scholar] [CrossRef]
- Anwar, A.A.; Clarke, D. Irrigation scheduling using mixed-integer linear programming. J. Irrig. Drain. Eng. 2001, 127, 63–69. [Google Scholar] [CrossRef]
- Hsu, N.S.; Cheng, W.C.; Cheng, W.M.; Wei, C.C.; Yeh, W.W.G. Optimization and capacity expansion of a water distribution system. Adv. Water Resour. 2008, 31, 776–786. [Google Scholar] [CrossRef]
- Singh, A.; Panda, S.N. Development and application of an optimization model for the maximization of net agricultural return. Agric. Water Manag. 2012, 115, 267–275. [Google Scholar] [CrossRef]
- Garg, N.K.; Dadhich, S.M. Integrated non-linear model for optimal cropping pattern and irrigation scheduling under deficit irrigation. Agric. Water Manag. 2014, 140, 1–13. [Google Scholar] [CrossRef]
- Zarghami, M.; Safari, N.; Szidarovszky, F.; Islam, S. Nonlinear interval parameter programming combined with cooperative games: A tool for addressing uncertainty in water allocation using water diplomacy framework. Water Resour. Manag. 2015, 29, 4285–4303. [Google Scholar] [CrossRef]
- Jin, L.; Huang, G.H.; Fan, Y.R.; Nie, X.H.; Cheng, G.H. A hybrid dynamic dual interval programming for irrigation water allocation under uncertainty. Water Resour. Manag. 2012, 26, 1183–1200. [Google Scholar] [CrossRef]
- Davidsen, C.; Pereira-Cardenal, S.J.; Liu, S.X.; Mo, X.G.; Rosbjerg, D.; Bauer-Gottwein, P. Using stochastic dynamic programming to support water resources management in the Ziya River Basin, China. J. Water Resour. Plan. Manag. 2015, 141, 04014086. [Google Scholar] [CrossRef]
- Azaiez, M.N.; Hariga, M.; Al-Harkan, I. A chance-constrained multi-period model for a special multi-reservoir system. Comput. Oper. Res. 2005, 32, 1337–1351. [Google Scholar] [CrossRef]
- Fu, Q.; Zhao, K.; Liu, D.; Jiang, Q.X.; Li, T.X.; Zhu, C.H. The application of a water rights trading model based on two-stage interval-parameter stochastic programming. Water Resour. Manag. 2016, 30, 2227–2243. [Google Scholar] [CrossRef]
- Lankford, B. Localising irrigation efficiency. Irrig. Drain. 2006, 55, 345–362. [Google Scholar] [CrossRef]
- Molden, D.; Oweis, T.; Steduto, P.; Bindraban, P.; Hanjra, M.A.; Kijne, J. Improving agricultural water productivity: Between optimism and caution. Agric. Water Manag. 2010, 97, 528–535. [Google Scholar] [CrossRef]
- Guo, P.; Chen, X.H.; Li, M.; Li, J.B. Fuzzy chance-constrained linear fractional programming approach for optimal water allocation. Stoch. Environ. Res. Risk Assess. 2014, 28, 1601–1612. [Google Scholar] [CrossRef]
- Li, M.; Guo, P.; Ren, C.F. Water resources management models based on two-level linear fractional programming method under uncertainty. J. Water Resour. Plan. Manag. 2015, 141, 05015001. [Google Scholar] [CrossRef]
- Zhou, Y.; Huang, G.; Baetz, B.W. Multilevel Factorial Fractional Programming for Sustainable Water Resources Management. J. Water Resour. Plan. Manag. 2016, 142, 04016063. [Google Scholar] [CrossRef]
- Singh, A. Simulation-optimization modeling for conjunctive water use management. Agric. Water Manag. 2014, 141, 23–29. [Google Scholar] [CrossRef]
- Safavi, H.R.; Esmikhani, M. Conjunctive use of surface water and groundwater: Application of support vector machines (SVMs) and genetic algorithms. Water Resour. Manag. 2013, 27, 2623–2644. [Google Scholar] [CrossRef]
- An-Vo, D.A.; Mushtaq, T.; Nguyen-Ky, T.; Bundschuh, J.; Tran-Cong, T.; Maraseni, T.N.; Reardon-Smith, K. Nonlinear optimization using production functions to estimate economic benefit of conjunctive water use for multicrop production. Water Resour. Manag. 2015, 29, 2153–2170. [Google Scholar] [CrossRef]
- Wu, X.; Zheng, Y.; Wu, B.; Tian, Y.; Han, F.; Zheng, C.M. Optimizing conjunctive use of surface water and groundwater for irrigation to address human-nature water conflicts: A surrogate modeling approach. Agric. Water Manag. 2016, 163, 380–392. [Google Scholar] [CrossRef]
- Gutiérrez-Martín, C.; Borrego-Marín, M.M.; Berbel, J. The Economic Analysis of Water Use in the Water Framework Directive Based on the System of Environmental-Economic Accounting for Water: A Case Study of the Guadalquivir River Basin. Water 2017, 9, 180. [Google Scholar] [CrossRef]
- Jiang, Q.X.; Fu, Q.; Zhu, C.H.; Wang, Z.L. Research progress of water resources optimal allocation based on theory of multidimensional critical regulation and control. J. Northeast Agric. Univ. 2015, 46, 103–108, (In Chinese with English Abstract). [Google Scholar]
- Li, X.J.; Kang, S.Z.; Niu, J.; Du, T.S.; Tong, L.; Li, S.E.; Ding, R.S. Applying uncertain programming model to improve regional farming economic benefits and water productivity. Agric. Water Manag. 2017, 179, 352–365. [Google Scholar] [CrossRef]
- Zuo, Q.T.; Zhou, K.F.; Xia, J.; Chen, X.; Wang, Y.Q. A quantified study method and its application to sustainable management of water resources in arid basins. Sci. China Earth Sci. 2007, 50, 9–15. [Google Scholar] [CrossRef]
- Wang, X.L.; Wang, G.X.; Wu, Y.X.; Xu, Y.; Gao, H. Comprehensive assessment of regional water usage efficiency control based on game theory weight and a matter-element model. Water 2017, 9, 113. [Google Scholar] [CrossRef]
- Chen, S.Y. Theory and technology of multi objective and multi stage fuzzy optimal selection of water resources. Adv. Water Sci. 1990, 1, 33–43, (In Chinese with English Abstract). [Google Scholar]
- Chen, S.Y. Theory of fuzzy optimum selection for multistage and multiobjective decision making system. J. Fuzzy Math. 1994, 2, 163–174. [Google Scholar]
- Li, M.; Guo, P.; Zhang, L.D.; Zhang, C.L. Uncertain and multi-objective programming models for crop planting structure optimization. Front. Agric. Sci. Eng. 2016, 3, 34–45. [Google Scholar] [CrossRef]
- Mei, X.R.; Kang, S.Z.; Yu, Q.; Huang, Y.F.; Zhong, X.L.; Gong, D.Z.; Huo, Z.L.; Liu, E.K. Synergistic promotion of crop productivity and water use efficiency in farmland in Huang Huai Hai Plain. Chin. J. Agric. Sci. 2013, 46, 1149–1157, (In Chinese with English Abstract). [Google Scholar]
- Chang, J.X.; Huang, Q.; Wang, Y.M.; Xue, X.J. Water resources evolution direction distinguishing model based on dissipative structure theory and gray relational entropy. J. Hydraul. Eng. 2002, 33, 107–112. [Google Scholar]
- Li, M.; Guo, P.; Singh, V.P. An efficient irrigation water allocation model under uncertainty. Agric. Syst. 2016, 144, 46–57. [Google Scholar] [CrossRef]
- Gonzalez, R.; Ouarda, T.B.M.J.; Marpu, P.R.; Allam, M.M.; Eltahir, E.A.; Pearson, S. Water Budget Analysis in Arid Regions, Application to the United Arab Emirates. Water 2016, 8, 415–432. [Google Scholar] [CrossRef]
- Yu, Y.; Disse, M.; Yu, R.D.; Yu, G.A.; Sun, L.X.; Huttner, P.; Rumbaur, C. Large-scale hydrological modeling and decision-making for agricultural water consumption and allocation in the main stem Tarim River, China. Water 2015, 7, 2821–2839. [Google Scholar] [CrossRef]
- Aljamal, M.S.; Sammis, T.W.; Ball, S.; Smeal, D. Computing the crop water production function for onion. Agric. Water Manag. 2000, 46, 29–41. [Google Scholar] [CrossRef]
- Igbadun, H.E.; Tarimo, A.K.P.R.; Salim, B.A.; Mahoo, H.F. Evaluation of selected crop water production functions for an irrigated maize crop. Agric. Water Manag. 2007, 94, 1–10. [Google Scholar] [CrossRef]
- Kang, S.Z.; Su, X.L.; Du, T.S. Watershed Scale Water Resources Transformation and Water Saving Regulation Model in Arid Northwest China—Take Shiyang River Basin in Gansu As an Example; China Water Conservancy and Hydropower Publishing House: Beijing, China, 2009; (In Chinese with English Abstract). [Google Scholar]
- Su, X.L.; Li, J.F.; Singh, V.P. Optimal allocation of agricultural water resources based on virtual water subdivision in Shiyang River Basin. Water Resour. Manag. 2014, 28, 2243–2257. [Google Scholar] [CrossRef]
Parameter | Unit | Spring Wheat | Spring Maize | Oil Flax | Seed Watermelon | Cotton |
---|---|---|---|---|---|---|
ai | - | 1.8148 | 2.4091 | 0.5133 | 0.6973 | 0.6753 |
bi | - | −507.96 | −421.35 | 529.72 | 1478.61 | −132.88 |
Irrigation quota | m3/ha | 4100 | 4050 | 3500 | 2250 | 2100 |
Planting area | 104 ha | 0.4026 | 0.8682 | 0.96 | 0.2088 | 0.6798 |
Water use productivity | kg/m3 | 1.79 | 2.5 | 0.76 | 1.45 | 0.77 |
Market price | Yuan/kg | 2 | 1.7 | 6 | 7 | 12 |
Planting cost per unit area | Yuan/ha | 3500 | 3500 | 3000 | 4500 | 3000 |
Labor cost per unit area | Yuan/ha | 6000 | 8500 | 7000 | 7000 | 8000 |
Planting proportion | % | 12.91 | 27.83 | 30.78 | 6.69 | 21.79 |
Output per unit area | kg/ha | 7321.16 | 10,143.4 | 2652.38 | 3268.62 | 1621.67 |
Profit per unit area | Yuan/ha | 5142.32 | 6258.12 | 8566.5 | 8111.72 | 8460.02 |
Per capita crop yield demand | kg/per | 200 | 150 | 30 | 5 | 50 |
Crop | Index | Growth Period | March | April | May | June | July | August | September | October | Total |
---|---|---|---|---|---|---|---|---|---|---|---|
Spring wheat | IR | 3.21–7.16 | 154.35 | 1023.15 | 1755.04 | 1969.12 | 1145.25 | 0.00 | 0.00 | 0.00 | 6046.91 |
EP | 2.84 | 54.40 | 60.80 | 100.80 | 170.12 | 0.00 | 0.00 | 0.00 | 388.95 | ||
Spring maize | IR | 4.14–9.13 | 0.00 | 195.30 | 908.86 | 1413.32 | 1731.43 | 1745.37 | 284.65 | 0.00 | 6278.92 |
EP | 0.00 | 29.01 | 60.80 | 100.80 | 329.60 | 287.20 | 33.97 | 0.00 | 841.39 | ||
Oil flax | IR | 4.17–8.27 | 0.00 | 172.68 | 1347.62 | 1667.40 | 1647.38 | 754.19 | 0.00 | 0.00 | 5589.27 |
EP | 0.00 | 23.57 | 60.80 | 100.80 | 329.60 | 250.14 | 0.00 | 0.00 | 764.92 | ||
Seed watermelon | IR | 5.1–9.17 | 0.00 | 0.00 | 579.79 | 794.00 | 1378.42 | 662.97 | 268.23 | 0.00 | 3683.41 |
EP | 0.00 | 0.00 | 60.80 | 100.80 | 329.60 | 287.20 | 44.43 | 0.00 | 822.83 | ||
Cotton | IR | 4.21–10.22 | 0.00 | 58.16 | 282.06 | 285.84 | 1159.89 | 879.45 | 627.90 | 84.80 | 3378.09 |
EP | 0.00 | 16.32 | 60.80 | 100.80 | 329.60 | 287.20 | 78.40 | 70.40 | 943.52 |
Crop | Net Benefit per Unit Area (Yuan/ha) | Commodity Proportion (%) | Irrigation Quota (m3/ha) | Per Capita Guarantee Rate | |
---|---|---|---|---|---|
Spring wheat | 5142.32 | 18.32 | 4100 | 0.47 | 0.1919 |
Spring maize | 6258.12 | 54.75 | 4050 | 1.86 | 0.4374 |
Oil flax | 8566.50 | 15.83 | 3500 | 2.69 | 0.5730 |
Seed watermelon | 8111.72 | 4.24 | 2250 | 4.33 | 0.6897 |
Cotton | 8460.02 | 6.85 | 2100 | 0.70 | 0.5186 |
α | β | Resource Dimension | Economic Dimension | Social Dimension | Ecological Dimension |
---|---|---|---|---|---|
Surface Water Allocation Proportion | Revenue per Unit Water | Comprehensive Agricultural Water Productivity | Groundwater Exploitation | ||
(%) | (Yuan/m3) | (kg/ha) | (%) | ||
0.5 | 0.5 | 42.65 | 0.79 | 1.98 | 59.86 |
0.55 | 48.99 | 1.23 | 1.90 | 67.06 | |
0.6 | 56.07 | 1.56 | 1.85 | 71.11 | |
0.65 | 59.98 | 1.83 | 1.80 | 88.58 | |
1 | 0.5 | 37.00 | 0.79 | 1.98 | 59.86 |
0.55 | 42.50 | 1.23 | 1.90 | 67.06 | |
0.6 | 48.64 | 1.56 | 1.85 | 71.11 | |
0.65 | 52.03 | 1.83 | 1.80 | 88.58 | |
0.7 | 58.15 | 2.05 | 1.76 | 92.79 | |
0.75 | 64.11 | 2.25 | 1.73 | 100.00 | |
1.5 | 0.5 | 43.54 | 0.79 | 1.98 | 59.86 |
0.55 | 49.71 | 1.23 | 1.90 | 67.06 | |
0.6 | 55.87 | 1.56 | 1.85 | 71.11 | |
0.65 | 62.04 | 1.83 | 1.80 | 88.58 | |
0.7 | 68.20 | 2.05 | 1.76 | 92.79 | |
0.75 | 74.78 | 2.25 | 1.73 | 100 | |
0.8 | 86.47 | 2.51 | 1.75 | 100 |
α | β | Order Degree | Coordination Degree | |||
---|---|---|---|---|---|---|
Resource Dimension | Economic Dimension | Ecological Dimension | Social Dimension | |||
0.5 | 0.5 | 0.49 | 0.32 | 1.00 | 1.00 | 0.6282 |
0.55 | 0.57 | 0.49 | 0.89 | 0.96 | 0.6976 | |
0.6 | 0.65 | 0.62 | 0.84 | 0.93 | 0.7505 | |
0.65 | 0.69 | 0.73 | 0.68 | 0.91 | 0.7467 | |
1 | 0.5 | 0.43 | 0.32 | 1.00 | 1.00 | 0.6063 |
0.55 | 0.49 | 0.49 | 0.89 | 0.96 | 0.6732 | |
0.6 | 0.56 | 0.62 | 0.84 | 0.93 | 0.7243 | |
0.65 | 0.60 | 0.73 | 0.68 | 0.91 | 0.7207 | |
0.7 | 0.67 | 0.82 | 0.65 | 0.89 | 0.7493 | |
0.75 | 0.74 | 0.90 | 0.60 | 0.87 | 0.7676 | |
1.5 | 0.5 | 0.50 | 0.32 | 1.00 | 1.00 | 0.6314 |
0.55 | 0.57 | 0.49 | 0.89 | 0.96 | 0.7001 | |
0.6 | 0.65 | 0.62 | 0.84 | 0.93 | 0.7499 | |
0.65 | 0.72 | 0.73 | 0.68 | 0.91 | 0.7531 | |
0.7 | 0.79 | 0.82 | 0.65 | 0.89 | 0.7798 | |
0.75 | 0.86 | 0.90 | 0.60 | 0.87 | 0.7977 | |
0.8 | 1.00 | 1.00 | 0.60 | 0.88 | 0.8529 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Li, M.; Guo, P.; Zhang, C.; Tan, Q. Agricultural Water Productivity Oriented Water Resources Allocation Based on the Coordination of Multiple Factors. Water 2017, 9, 490. https://doi.org/10.3390/w9070490
Zhao J, Li M, Guo P, Zhang C, Tan Q. Agricultural Water Productivity Oriented Water Resources Allocation Based on the Coordination of Multiple Factors. Water. 2017; 9(7):490. https://doi.org/10.3390/w9070490
Chicago/Turabian StyleZhao, Jianming, Mo Li, Ping Guo, Chenglong Zhang, and Qian Tan. 2017. "Agricultural Water Productivity Oriented Water Resources Allocation Based on the Coordination of Multiple Factors" Water 9, no. 7: 490. https://doi.org/10.3390/w9070490