Chlorophyll-A Prediction of Lakes with Different Water Quality Patterns in China Based on Hybrid Neural Networks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Set
2.2. Trophic Level Index
2.3. The Self-Organizing Map
2.4. The Optimized Back-Propagation Neural Networks
3. Results and Discussion
3.1. The Clustering Results of Sampling Sites
3.2. Different Predictors of Chlorophyll-A for Sites with Various Water Quality Characteristics
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Paerl, H.W.; Paul, V.J. Climate change: Links to global expansion of harmful cyanobacteria. Water Res. 2012, 46, 1349–1363. [Google Scholar] [CrossRef] [PubMed]
- Berry, M.A.; Davis, T.W.; Cory, R.M.; Duhaime, M.B.; Johengen, T.H.; Kling, G.W.; Marino, J.A.; Den Uyl, P.A.; Gossiaux, D.; Dick, G.J. Cyanobacterial harmful algal blooms are a biological disturbance to western Lake Erie bacterial communities. Environ. Microbiol. 2017, 19, 1149–1162. [Google Scholar] [CrossRef] [PubMed]
- Mallin, M.A.; McIver, M.R.; Wambach, E.J.; Robuck, A.R. Algal blooms, circulators, waterfowl, and eutrophic Greenfield Lake, North Carolina. Lake Reserv. Manag. 2016, 32, 168–181. [Google Scholar] [CrossRef]
- De Oliveira Marcionilio, S.M.L.; Machado, K.B.; Carneiro, F.M.; Ferreira, M.E.; Carvalho, P.; Vieira, L.C.G.; de Moraes Huszar, V.L.; Nabout, J.C. Environmental factors affecting chlorophyll-a concentration in tropical floodplain lakes, Central Brazil. Environ. Monit. Assess. 2016, 188, 611. [Google Scholar] [CrossRef] [PubMed]
- Wei, D.; Yuan, G.; Simon, F. Seasonal characteristics of chlorophyll-a and its relationship with environmental factors in Yunmeng Lake of China. J. Environ. Biol. 2016, 37, 1073. [Google Scholar]
- Jeppesen, E.; Brucet, S.; Naselli-Flores, L.; Papastergiadou, E.; Stefanidis, K.; Noges, T.; Noges, P.; Attayde, J.L.; Zohary, T.; Coppens, J. Ecological impacts of global warming and water abstraction on lakes and reservoirs due to changes in water level and related changes in salinity. Hydrobiologia 2015, 750, 201–227. [Google Scholar] [CrossRef]
- Mahdy, A.; Hilt, S.; Filiz, N.; Beklioğlu, M.; Hejzlar, J.; Özkundakci, D.; Papastergiadou, E.; Scharfenberger, U.; Šorf, M.; Stefanidis, K. Effects of water temperature on summer periphyton biomass in shallow lakes: A pan-European mesocosm experiment. Aquat. Sci. 2015, 77, 499–510. [Google Scholar] [CrossRef]
- Paerl, H.W.; Xu, H.; Hall, N.S.; Rossignol, K.L.; Joyner, A.R.; Zhu, G.; Qin, B. Nutrient limitation dynamics examined on a multi-annual scale in Lake Taihu, China: Implications for controlling eutrophication and harmful algal blooms. J. Freshw. Ecol. 2015, 30, 5–24. [Google Scholar] [CrossRef]
- Xu, H.; Paerl, H.W.; Qin, B.; Zhu, G.; Hall, N.; Wu, Y. Determining critical nutrient thresholds needed to control harmful cyanobacterial blooms in eutrophic Lake Taihu, China. Environ. Sci. Technol. 2014, 49, 1051–1059. [Google Scholar] [CrossRef] [PubMed]
- Daggett, C.T.; Saros, J.E.; Lafrancois, B.M.; Simon, K.S.; Amirbahman, A. Effects of increased concentrations of inorganic nitrogen and dissolved organic matter on phytoplankton in boreal lakes with differing nutrient limitation patterns. Aquat. Sci. 2015, 77, 511–521. [Google Scholar] [CrossRef]
- Carpenter, S.R.; Cole, J.J.; Pace, M.L.; Wilkinson, G.M. Response of plankton to nutrients, planktivory and terrestrial organic matter: A model analysis of whole-lake experiments. Ecol. Lett. 2016, 19, 230–239. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Yao, L.; Liu, G.; Liu, W. Heavy metals in water, sediments and submerged macrophytes in ponds around the Dianchi Lake, China. Ecotoxicol. Environ. Saf. 2014, 107, 200–206. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Chen, L.; Liu, L.-Z.; Shi, W.-L.; Meng, X.-Z. Comprehensive risk assessment of heavy metals in lake sediment from public parks in Shanghai. Ecotoxicol. Environ. Saf. 2014, 102, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Huo, S.; Ma, C.; He, Z.; Xi, B.; Su, J.; Zhang, L.; Wang, J. Prediction of physico-chemical variables and chlorophyll a criteria for ecoregion lakes using the ratios of land use to lake depth. Environ. Earth Sci. 2015, 74, 3709–3719. [Google Scholar] [CrossRef]
- Jiang, Y.-J.; He, W.; Liu, W.-X.; Qin, N.; Ouyang, H.-L.; Wang, Q.-M.; Kong, X.-Z.; He, Q.-S.; Yang, C.; Yang, B. The seasonal and spatial variations of phytoplankton community and their correlation with environmental factors in a large eutrophic Chinese lake (Lake Chaohu). Ecol. Indic. 2014, 40, 58–67. [Google Scholar] [CrossRef]
- Kohonen, T. Essentials of the self-organizing map. Neural Netw. 2013, 37, 52–65. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Song, Y.; Liu, R.; Pan, H.; Xiang, L.; Qian, F. Identifying changes in dissolved organic matter content and characteristics by fluorescence spectroscopy coupled with self-organizing map and classification and regression tree analysis during wastewater treatment. Chemosphere 2014, 113, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Kuo, J.-T.; Wang, Y.-Y.; Lung, W.-S. A hybrid neural–genetic algorithm for reservoir water quality management. Water Res. 2006, 40, 1367–1376. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.; Mo, J.; Chen, L.; Chen, W. Using genetic algorithm-back propagation neural network prediction and finite-element model simulation to optimize the process of multiple-step incremental air-bending forming of sheet metal. Mater. Des. 2010, 31, 267–277. [Google Scholar] [CrossRef]
- Piao, S.; Ciais, P.; Huang, Y.; Shen, Z.; Peng, S.; Li, J.; Zhou, L.; Liu, H.; Ma, Y.; Ding, Y. The impacts of climate change on water resources and agriculture in China. Nature 2010, 467, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Deng, X. Sustainable Urbanization in Western China. Environ. Sci. Policy Sustain. Dev. 2014, 56, 12–24. [Google Scholar] [CrossRef]
- Huo, S.; Ma, C.; Xi, B.; Su, J.; Zan, F.; Ji, D.; He, Z. Establishing eutrophication assessment standards for four lake regions, China. J. Environ. Sci. 2013, 25, 2014–2022. [Google Scholar] [CrossRef]
- Jin, X.-C.; Tu, Q.-Y. Rules of Eutrophication Investigation in Lake; China Environmental Science Press: Beijing, China, 1990. [Google Scholar]
- Chang, L.-C.; Shen, H.-Y.; Chang, F.-J. Regional flood inundation nowcast using hybrid som and dynamic neural networks. J. Hydrol. 2014, 519, 476–489. [Google Scholar] [CrossRef]
- Chon, T.-S. Self-organizing maps applied to ecological sciences. Ecol. Inform. 2011, 6, 50–61. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Kawamura, A.; Tong, T.N.; Nakagawa, N.; Amaguchi, H.; Gilbuena, R. Clustering spatio–seasonal hydrogeochemical data using self-organizing maps for groundwater quality assessment in the Red River Delta, Vietnam. J. Hydrol. 2015, 522, 661–673. [Google Scholar] [CrossRef]
- Park, Y.-S.; Céréghino, R.; Compin, A.; Lek, S. Applications of artificial neural networks for patterning and predicting aquatic insect species richness in running waters. Ecol. Model. 2003, 160, 265–280. [Google Scholar] [CrossRef]
- Jin, Y.-H.; Kawamura, A.; Park, S.-C.; Nakagawa, N.; Amaguchi, H.; Olsson, J. Spatiotemporal classification of environmental monitoring data in the Yeongsan River Basin, Korea, using self-organizing maps. J. Environ. Monit. 2011, 13, 2886–2894. [Google Scholar] [CrossRef] [PubMed]
- Maier, H.R.; Jain, A.; Dandy, G.C.; Sudheer, K.P. Methods used for the development of neural networks for the prediction of water resource variables in river systems: Current status and future directions. Environ. Model. Softw. 2010, 25, 891–909. [Google Scholar] [CrossRef]
- Najah, A.; El-Shafie, A.; Karim, O.A.; El-Shafie, A.H. Application of artificial neural networks for water quality prediction. Neural Comput. Appl. 2013, 22, 187–201. [Google Scholar] [CrossRef]
- Li, X.; Sha, J.; Wang, Z.-L. A comparative study of multiple linear regression, artificial neural network and support vector machine for the prediction of dissolved oxygen. Hydrol. Res. 2016. [Google Scholar] [CrossRef]
- Cawley, G.C.; Talbot, N.L. Fast exact leave-one-out cross-validation of sparse least-squares support vector machines. Neural Netw. 2004, 17, 1467–1475. [Google Scholar] [CrossRef] [PubMed]
- Leiwen, J.; Yufen, T.; Zhijie, Z.; Tianhong, L.; Jianhua, L. Water resources, land exploration and population dynamics in arid areas-the case of the Tarim River Basin in Xinjiang of China. Popul. Environ. 2005, 26, 471–503. [Google Scholar] [CrossRef]
- Lei, X.; Lu, J.; Liu, Z.; Tong, Y.; Li, S. Concentration and distribution of antibiotics in water-sediment system of Bosten Lake, Xinjiang. Environ. Sci. Pollut. Res. 2015, 22, 1670–1678. [Google Scholar] [CrossRef] [PubMed]
- Torbick, N.; Hu, F.; Zhang, J.; Qi, J.; Zhang, H.; Becker, B. Mapping chlorophyll-a concentrations in West Lake, China using Landsat 7 ETM+. J. Gt. Lakes Res. 2008, 34, 559–565. [Google Scholar] [CrossRef]
- Li, X.; Xu, Y.; Zhao, G.; Shi, C.; Wang, Z.-L.; Wang, Y. Assessing threshold values for eutrophication management using Bayesian method in Yuqiao Reservoir, North China. Environ. Monit. Assess. 2015, 187, 195. [Google Scholar] [CrossRef] [PubMed]
- Smith, V.H.; Tilman, G.D.; Nekola, J.C. Eutrophication: Impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environ. Pollut. 1999, 100, 179–196. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, W.; Li, D.; Shen, Y.; Li, G.; Liu, Y. First report of aphantoxins in China—waterblooms of toxigenic aphanizomenon flos-aquae in Lake Dianchi. Ecotoxicol. Environ. Saf. 2006, 65, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Muqi, X.; Jiang, Z.; Yuyao, H.; Yurong, G.; Shen, Z.; Yijian, T.; Chengqing, Y.; Zijian, W. The ecological degradation and restoration of Baiyangdian lake, China. J. Freshw. Ecol. 1998, 13, 433–446. [Google Scholar] [CrossRef]
- Admiraal, W.; Blanck, H.; Buckert-de Jong, M.; Guasch, H.; Ivorra, N.; Lehmann, V.; Nyström, B.; Paulsson, M.; Sabater, S. Short-term toxicity of zinc to microbenthic algae and bacteria in a metal polluted stream. Water Res. 1999, 33, 1989–1996. [Google Scholar] [CrossRef]
- McPherson, B.F.; Miller, R.L. Causes of Ught Avi'enuation in Tampa Bay and Charlotte Harbor, Southwestern Florida1. JAWRA J. Am. Water Resour. Assoc. 1994, 30, 43–53. [Google Scholar] [CrossRef]
- Morrison, G.; Sherwood, E.T.; Boler, R.; Barron, J. Variations in water clarity and chlorophylla in Tampa Bay, Florida, in response to annual rainfall, 1985–2004. Estuaries Coasts 2006, 29, 926–931. [Google Scholar] [CrossRef]
- Hoyer, M.V.; Frazer, T.K.; Notestein, S.K.; Canfield, J.; Daniel, E. Nutrient, chlorophyll, and water clarity relationships in Florida’s nearshore coastal waters with comparisons to freshwater lakes. Can. J. Fish. Aquat. Sci. 2002, 59, 1024–1031. [Google Scholar] [CrossRef]
- Rinta-Kanto, J.M.; Wilhelm, S.W. Diversity of microcystin-producing cyanobacteria in spatially isolated regions of Lake Erie. Appl. Environ. Microbiol. 2006, 72, 5083–5085. [Google Scholar] [CrossRef] [PubMed]
- Cheung, M.Y.; Liang, S.; Lee, J. Toxin-producing cyanobacteria in freshwater: A review of the problems, impact on drinking water safety, and efforts for protecting public health. J. Microbiol. 2013, 51, 1. [Google Scholar] [CrossRef] [PubMed]
- Wicks, R.J.; Thiel, P.G. Environmental factors affecting the production of peptide toxins in floating scums of the cyanobacterium Microcystis aeruginosa in a hypertrophic African reservoir. Environ. Sci. Technol. 1990, 24, 1413–1418. [Google Scholar] [CrossRef]
- Rinaldi, M.; Fuzzi, S.; Decesari, S.; Marullo, S.; Santoleri, R.; Provenzale, A.; Hardenberg, J.; Ceburnis, D.; Vaishya, A.; O’Dowd, C.D. Is chlorophyll-a the best surrogate for organic matter enrichment in submicron primary marine aerosol? J. Geophys. Res.: Atmos. 2013, 118, 4964–4973. [Google Scholar] [CrossRef]
- Phillips, G.; Pietiläinen, O.-P.; Carvalho, L.; Solimini, A.; Solheim, A.L.; Cardoso, A. Chlorophyll–nutrient relationships of different lake types using a large European dataset. Aquat. Ecol. 2008, 42, 213–226. [Google Scholar] [CrossRef]
- Downing, J.A.; McCauley, E. The nitrogen: Phosphorus relationship in lakes. Limnol. Oceanogr. 1992, 37, 936–945. [Google Scholar] [CrossRef]
- Sanz-Lázaro, C.; Fodelianakis, S.; Guerrero-Meseguer, L.; Marín, A.; Karakassis, I. Effects of organic pollution on biological communities of marine biofilm on hard substrata. Environ. Pollut. 2015, 201, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Meyers, P.A.; Ishiwatari, R. Lacustrine organic geochemistry—An overview of indicators of organic matter sources and diagenesis in lake sediments. Org. Geochem. 1993, 20, 867–900. [Google Scholar] [CrossRef]
- Tonietto, A.E.; Lombardi, A.T.; Choueri, R.B.; Vieira, A.A.H. Chemical behavior of Cu, Zn, Cd, and Pb in a eutrophic reservoir: Speciation and complexation capacity. Environ. Sci. Pollut. Res. 2015, 22, 15920–15930. [Google Scholar] [CrossRef] [PubMed]
- Giguère, A.; Campbell, P.G.; Hare, L.; McDonald, D.G.; Rasmussen, J.B. Influence of lake chemistry and fish age on cadmium, copper, and zinc concentrations in various organs of indigenous yellow perch (Perca flavescens). Can. J. Fish. Aquat. Sci. 2004, 61, 1702–1716. [Google Scholar] [CrossRef]
- Xue, H.; Kistler, D.; Sigg, L. Competition of copper and zinc for strong ligands in a eutrophic lake. Limnol. Oceanogr. 1995, 40, 1142–1152. [Google Scholar] [CrossRef]
- Karadede-Akin, H.; Ünlü, E. Heavy metal concentrations in water, sediment, fish and some benthic organisms from Tigris River, Turkey. Environ. Monit. Assess. 2007, 131, 323–337. [Google Scholar] [CrossRef] [PubMed]
- Altındağ, A.; Yiğit, S. Assessment of heavy metal concentrations in the food web of Lake Beyşehir, Turkey. Chemosphere 2005, 60, 552–556. [Google Scholar] [CrossRef] [PubMed]
- Jun, X.; Chen, Y.D. Water problems and opportunities in the hydrological sciences in China. Hydrol. Sci. J. 2001, 46, 907–921. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Z.; Zhang, J.; Zhang, Y.; Liu, H.; Yan, S. Large-scale utilization of water hyacinth for nutrient removal in Lake Dianchi in China: The effects on the water quality, macrozoobenthos and zooplankton. Chemosphere 2012, 89, 1255–1261. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Lin, E.; Ma, S.; Ju, H.; Guo, L.; Xiong, W.; Li, Y.; Xu, Y. Adaptation of agriculture to warming in Northeast China. Clim. Chang. 2007, 84, 45–58. [Google Scholar] [CrossRef]
Cluster Numbers | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|
DBI | 0.52 | 0.50 | 0.48 | 0.57 | 0.50 | 0.50 | 0.53 | 0.65 | 0.49 |
Parameters | Cluster I | Cluster II | Cluster III | Cluster IV | ||||
---|---|---|---|---|---|---|---|---|
Mean | STD | Mean | STD | Mean | STD | Mean | STD | |
Temp (°C) | 18.87 | 2.06 | 16.76 | 2.32 | 17.37 | 3.22 | 17.24 | 1.96 |
pH | 8.28 | 0.39 | 8.34 | 0.37 | 8.15 | 0.39 | 8.13 | 0.48 |
SD (m) | 2.91 | 1.25 | 2.00 | 0.78 | 1.11 | 0.78 | 0.44 | 28.59 |
DO (mg/L) | 7.83 | 1.20 | 7.28 | 1.18 | 8.63 | 1.68 | 8.51 | 1.18 |
CODMn (mg/L) | 3.72 | 1.75 | 3.37 | 1.27 | 4.86 | 2.54 | 5.30 | 3.79 |
BOD (mg/L) | 1.37 | 0.48 | 1.36 | 0.41 | 2.38 | 1.11 | 2.73 | 1.70 |
NH3-N (mg/L) | 0.12 | 0.07 | 0.12 | 0.07 | 0.77 | 3.16 | 0.69 | 1.91 |
petroleum (10−1 mg/L) | 0.10 | 0.07 | 0.18 | 0.11 | 0.23 | 0.16 | 0.38 | 0.48 |
TN (mg/L) | 1.08 | 0.35 | 1.48 | 1.61 | 2.81 | 4.03 | 2.33 | 2.47 |
TP (mg/L) | 0.02 | 0.01 | 0.03 | 0.02 | 0.09 | 0.19 | 0.13 | 0.17 |
Chla (10−2 mg/L) | 0.41 | 0.31 | 0.82 | 0.77 | 2.33 | 3.46 | 4.64 | 9.56 |
volatile phenol (10−2 mg/L) | 0.10 | 0.03 | 0.10 | 0.02 | 0.10 | 0.04 | 0.13 | 0.07 |
Hg (10−4 mg/L) | 0.25 | 0.08 | 0.16 | 0.11 | 0.24 | 0.16 | 0.24 | 0.10 |
Pb (10−2 mg/L) | 0.46 | 0.25 | 0.24 | 0.20 | 0.23 | 0.18 | 0.39 | 0.26 |
Cu (10−2 mg/L) | 1.41 | 1.09 | 0.83 | 0.97 | 1.59 | 1.08 | 0.93 | 0.95 |
Zn (10−1 mg/L) | 0.19 | 0.08 | 0.21 | 0.11 | 0.17 | 0.10 | 0.21 | 0.12 |
fluoride (mg/L) | 0.31 | 0.14 | 0.26 | 0.11 | 0.42 | 0.19 | 0.58 | 0.74 |
Se (10−3 mg/L) | 0.19 | 0.26 | 0.64 | 0.52 | 0.50 | 0.56 | 0.48 | 0.30 |
As (10−2 mg/L) | 0.16 | 0.22 | 0.25 | 0.16 | 0.19 | 0.17 | 0.36 | 0.47 |
Cd (10−3 mg/L) | 0.37 | 0.28 | 0.22 | 0.19 | 0.24 | 0.21 | 0.34 | 0.40 |
Cr (10−2 mg/L) | 0.24 | 0.10 | 0.29 | 0.22 | 0.23 | 0.10 | 0.25 | 0.11 |
cyanide (10−2 mg/L) | 0.22 | 0.05 | 0.20 | 0.05 | 0.22 | 0.04 | 0.24 | 0.08 |
anionic surfactant (10−1 mg/L) | 0.28 | 0.09 | 0.29 | 0.08 | 0.36 | 0.32 | 0.43 | 0.35 |
sulfide (10−2 mg/L) | 1.00 | 0.39 | 0.77 | 0.32 | 0.77 | 0.83 | 0.81 | 0.82 |
Clusters | Training | Testing | ||
---|---|---|---|---|
R2 | RMSE | R2 | RMSE | |
Cluster I | 0.84 | 0.0016 | 0.93 | 0.0030 |
Cluster II | 0.96 | 0.0011 | 0.89 | 0.0006 |
Cluster III | 0.96 | 0.012 | 0.96 | 0.012 |
Cluster IV | 0.97 | 0.0093 | 0.93 | 0.0040 |
Clusters | Selected Variables |
---|---|
Cluster I | Temp, SD, DO, CODMn, TN, TP, Hg, Cu, Zn, fluoride, cyanide |
Cluster II | Temp, pH, NH3-N, petroleum, TN, TP, volatile phenol, Hg, Pb, Zn, fluoride, Se, sulfide |
Cluster III | Temp, pH, DO, BOD, TP, Pb, Se, anionic surfactant |
Cluster IV | pH, SD, CODMn, NH3-N, petroleum, TP, Zn, Se, Cd, Cr, cyanide, anionic surfactant, sulfide |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Sha, J.; Wang, Z.-L. Chlorophyll-A Prediction of Lakes with Different Water Quality Patterns in China Based on Hybrid Neural Networks. Water 2017, 9, 524. https://doi.org/10.3390/w9070524
Li X, Sha J, Wang Z-L. Chlorophyll-A Prediction of Lakes with Different Water Quality Patterns in China Based on Hybrid Neural Networks. Water. 2017; 9(7):524. https://doi.org/10.3390/w9070524
Chicago/Turabian StyleLi, Xue, Jian Sha, and Zhong-Liang Wang. 2017. "Chlorophyll-A Prediction of Lakes with Different Water Quality Patterns in China Based on Hybrid Neural Networks" Water 9, no. 7: 524. https://doi.org/10.3390/w9070524
APA StyleLi, X., Sha, J., & Wang, Z. -L. (2017). Chlorophyll-A Prediction of Lakes with Different Water Quality Patterns in China Based on Hybrid Neural Networks. Water, 9(7), 524. https://doi.org/10.3390/w9070524