Identifying Groundwater Recharge Sites through Environmental Stable Isotopes in an Alluvial Aquifer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Ordinary Least Squares Regression
2.3. Sampling, Preservation, and Laboratory Analysis
3. Results
3.1. Isotopic Composition of Precipitation
3.2. Isotopic Composition of Groundwater and Recharge Sites
3.3. Deuterium Excess
4. Discussion
Recharge to Aquifers
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kendall, C.; Doctor, D.H. Stable Isotope Applications in Hydrologic Studies. In Treatise on Geochemistry, 1st ed.; Drever, J.I., Ed.; Elsevier: Amsterdam, The Netherlands, 2003; Volume 5, pp. 319–364. ISBN 978-0-08-098300-4. [Google Scholar]
- Bu-Li, C.; Xiao-Yan, L. Stable isotopes reveal sources of precipitation in the Qinghai Lake Basin of the northeastern Tibetan Plateau. Sci. Total Environ. 2015, 527, 26–37. [Google Scholar] [CrossRef]
- Prathibha, P.; Kothai, P.; Saradhi, I.V.; Pandit, G.G.; Puranik, V.D. Chemical characterization of precipitation at a coastal site in Trombay, Mumbai, India. Environ. Monit. Assess. 2010, 168, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Jinzhu, M.; Zhang, P.; Gaofeng, Z.; Yunquan, W.; Edmunds, W.M.; Zhenyu, D.; Jianhua, H. The composition and distribution of chemicals and isotopes in precipitation in the Shiyang River system, northwestern China. J. Hydrol. 2012, 436, 92–101. [Google Scholar] [CrossRef]
- Desboeufs, K.; Journet, E.; Rajot, J.L.; Chevailier, S.; Triquet, S.; Formenti, P.; Zakou, A. Chemistry of rain events in West Africa: Evidence of dust and biogenic influence in convective systems. Atmos. Chem. Phys. 2010, 10, 9283–9293. [Google Scholar] [CrossRef]
- Craig, H. Isotopic variations in meteoric waters. Science 1961, 133, 1702–1703. [Google Scholar] [CrossRef] [PubMed]
- Hsin-Fu, Y.; Hung-I, L.; Cheng-Haw, L.; Kuo-Chin, H.; Chi-Shin, W. Identifying Seasonal Groundwater Recharge Using Environmental Stable Isotopes. Water 2014, 6, 2849–2861. [Google Scholar] [CrossRef]
- Ingraham, N.L.; Caldwell, E.A.; Verhagen, B.T. Arid Catchments. In Isotope Tracers in Catchment Hydrology, 1st ed.; Kendall, C., McDonell, J.J., Eds.; Elsevier: Amsterdam, The Netherlands, 1998; pp. 435–465. ISBN 978-0-444-81546-0. [Google Scholar]
- Shanafield, M.; Cook, P.G. Transmission losses, infiltration and groundwater recharge through ephemeral and intermittent streambeds: A review of applied methods. J. Hyhdrol. 2014, 511, 518–529. [Google Scholar] [CrossRef]
- Kretzchmar, T.G.; Frommen, T. Stable isotope composition of surface and groundwater in Baja California, Mexico. Procedia Earth Planet. Sci. 2013, 7, 451–454. [Google Scholar] [CrossRef]
- Lachniet, M.S.; Patterson, W.P. Oxygen isotope values of precipitation and surface waters in northern Central America (Belize and Guatemala) are dominated by temperature and amount effects. Earth Planet. Sci. Lett. 2009, 284, 435–446. [Google Scholar] [CrossRef]
- Goldsmith, G.R.; Muñoz-Villers, L.E.; Holwerda, F.; McDonell, J.J.; Asbjornsen, H.; Dawson, T.E. Stable isotopes reveal linkages among ecohydrological processes in a seasonally dry tropical montane cloud forest. Ecohydrology 2012, 5, 779–790. [Google Scholar] [CrossRef]
- Quezadas, P.; Cortés, A.; Inguaggiato, S.; Salas, M.R.; Cervantes, J.; Heilweil, M. Meteoric isotopic gradient on the windward side of the Sierra Madre Oriental area, Veracruz-Mexico. Geofís. Int. 2015, 54, 267–276. [Google Scholar] [CrossRef]
- Hernández-Antonio, A.; Mahlknecht, J.; Tamez-Meléndez, C.; Ramos-Leal, J.; Ramírez-Orozco, A.; Parra, R.; Ornelas-Soto, N.; Eastoe, J. Groundwater flow processes and mixing in active volcanic systems: The case of Guadalajara (Mexico). Hydrol. Earth Syst. Sci. 2015, 19, 3937–3950. [Google Scholar] [CrossRef]
- Hartsough, P.; Poulson, S.R.; Biondi, F.; Galindo-Estrada, I. Stable Isotope Characterization of the Ecohydrological Cycle at a Tropical. Arct. Antarct. Alp. Res. 2008, 40, 343–354. [Google Scholar] [CrossRef]
- Comisión Nacional del Agua (CONAGUA). Actualización de la Disponibilidad Media Anual de Agua Subterránea, Acuífero (3225) Calera; Diario Oficial de la Federación, Government of Mexico: Mexico City, Mexico, 2009.
- Junez-Ferreira, H.; Mojarro Davila, F.; Bautista-Capetillo, C.; Villalobos De Alba, A.; Steiner, J.L.; Avila-Carrasco, J. Quantitative and qualitative analysis of groundwater in aguanaval and chupaderos aquifers (Mexico). J. Earth Sci. Eng. 2013, 3, 425–436. [Google Scholar]
- Júnez-Ferreira, H.; Bautista-Capetillo, C.F.; González-Trinidad, J. Análisis geoestadístico espacial de cuatro iones mayoritarios y arsénico en el acuífero Calera, Zacatecas. Tecnol. Cienc. Agua 2013, 4, 175–181. [Google Scholar]
- Hughes, C.E.; Crawford, J. A new precipitation weighted method for determining the meteoric water line for hydrological applications demonstrated using Australian and global GNIP data. J. Hydrol. 2012, 464, 344–351. [Google Scholar] [CrossRef]
- International Atomic Energy Agency (IAEA). Guidebook on Nuclear Techniques in Hydrology; IAEA Technical Report Series No. 91; IAEA: Vienna, Austria, 1983. [Google Scholar]
- Thivya, C.; Chidambaram, S.; Rao, M.S.; Gopalakrishnan, M.; Thilagavathi, R.; Prasanna, M.V.; Nepolian, M. Identification of Recharge Processes in Groundwater in Hard Rock Aquifers of Madurai District Using Stable Isotopes. Environ. Process. 2016, 3, 463–477. [Google Scholar] [CrossRef]
- Rozanski, K.; Araguás-Araguás, L.; Gonfiantini, R. Isotopic Patterns in Modern Global Precipitation. Int. At. Energy Agency 1993, 78, 1–36. [Google Scholar] [CrossRef]
- Rao, W.; Guillin, H.; Hongbin, T.; Jin, K.; Wang, S.; Chen, T. Chemical and Sr isotopic characteristics of rainwater on the Alxa Desert Plateau North China: Implication for air quality and ion sources. Atmos. Res. 2017, 193, 163–172. [Google Scholar] [CrossRef]
- Cloutier, V.; Lefebre, R.; Therrien, R.; Savard, M.M. Multivariate statistical analysis of geochemical data as indicative of the hydrogeochemical evolution of groundwater in a sedimentary rock aquifer system. J. Hydrol. 2008, 353, 294–313. [Google Scholar] [CrossRef]
- Moeck, C.; Radny, D.; Borer, P.; Rothardt, J.; Auckenthaler, A.; Berg, M.; Schirmer, M. Multicomponent statistical analysis to identify flow and transport processes in a highly-complex environment. J. Hydrol. 2016, 542, 437–449. [Google Scholar] [CrossRef]
- Montocoudiol, N.; Molson, J.; Lemieux, J.-M. Groundwater geochemistry of the Outaouais Region (Québec, Canada): A regional-scale study. Hydrogeol. J. 2015, 23, 377. [Google Scholar] [CrossRef]
- Gat, J.R. Oxygen and hydrogen isotopes in the hydrologic cycle. Ann. Rev. Earth Planet Sci. 1996, 24, 225–262. [Google Scholar] [CrossRef]
- Cappa, C.D.; Hendricks, M.B.; DePaolo, D.J.; Cohen, R.C. Isotopic fractionation of water during evaporation. J. Geophys. Res. Atmos. 2003, 108, 1–10. [Google Scholar] [CrossRef]
- Fynn, O.F.; Yidana, S.M.; Chegbeleh, L.P.; Yiran, G.B. Evaluating groundwater recharge processes using stable isotope signatures—The Nabogo catchment of the White Volta, Ghana. Arab J. Geosci. 2016, 9, 279. [Google Scholar] [CrossRef]
- Pacheco-Guerrero, A.; Goodrich, D.C.; González-Trinidad, J.; Júnez-Ferreira, H.E.; Bautista-Capetillo, C.F. Flooding in ephemeral streams: Incorporating transmission losses. J. Maps 2017, 13, 350–357. [Google Scholar] [CrossRef]
- McCallum, A.; Andersen, M.S.; Acworth, R.I. A New Method for Estimating Recharge to Unconfined Aquifers Using Differential River Gauging. Groundwater 2014, 52, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Goodrich, D.C.; Williams, D.G.; Unkrich, C.L.; Hogan, J.F.; Scott, R.L.; Hultine, K.R.; Pool, D.; Coes, A.L.; Miller, S. Comparison of Methods to Estimate Ephemeral Channel Recharge, Walnut Gulch, San Pedro River Basin, Arizona. In Groundwater Recharge in a Desert Environment: The Southwestern United States; Hogan, J.F., Phillips, F.M., Scanlon, B.R., Eds.; American Geophysical Union: Washington, DC, USA, 2013; Volume 9, pp. 77–99. [Google Scholar]
- Shentsis, I.; Rosenthal, E. Recharge of aquifers by flood events in an arid region. Hydrol. Process. 2003, 17, 695–712. [Google Scholar] [CrossRef]
- Baskaran, S.; Ransley, T.; Brodie, R.S.; Baker, P. Investigating groundwater-river interactions using environmental tracers. Aust. J. Earth Sci. 2009, 56, 13–19. [Google Scholar] [CrossRef]
- Wassenaar, L.I.; Van Wilgenburg, S.L.; Larson, K.; Hobson, K.A. A groundwater isoscape (δD, δ18O) for Mexico. J. Geochem. Explor. 2009, 102, 123–136. [Google Scholar] [CrossRef]
- Liu, J.; Song, X.; Sun, X.; Yuan, G.; Liu, X.; Wang, S. Isotopic composition of precipitation over Arid Northwestern China and its implications for the water vapor origin. J. Geogr. Sci. 2009, 19, 164–174. [Google Scholar] [CrossRef]
Site | Sample ID | Latitude | Longitude | Elevation (mamsl) |
---|---|---|---|---|
Fresnillo | RA1 | 23°10′43.77″ | 102°52′57.35″ | 2198 |
Villa de Cos | RA2, RA8, RA26 | 23°17′16.33″ | 102°20′29.33″ | 1984 |
La Bufa Zacatecas | RA6, RA7, RA18 | 22°46′43.23″ | 102°34′0.38″ | 2580 |
Genaro Codina | RA3, RA9, RA16 | 22°35′30.0″ | 102°39′2.68″ | 2330 |
Nueva Alianza | RA4, RA15 | 22°53′55.56″ | 102°51′33.44″ | 2287 |
Catarinas | RA11, RA12 | 23°6′13.80″ | 102°38′42.81″ | 2087 |
Trancoso | RA5, RA10, RA17 | 22°44′26.91″ | 102°22′5.07″ | 2200 |
Tanque de Guadalupe | RA13, RA23 | 24°33′49.27″ | 102°3′48.99″ | 1920 |
Estacion Camacho | RA14, RA25 | 24°26′26.45″ | 102°22′29.39″ | 1660 |
Concepción | RA19, RA21 | 23°59′59.7″ | 102°59′58.0″ | 1937 |
Rio Grande | RA20, RA28 | 23°49′38.02″ | 103°1′57.66″ | 1875 |
Sombrerete | RA24, RA29 | 23°23′52.90″ | 103°45′16.19″ | 2703 |
Juan Aldama | RA22, RA27 | 24°18′8.28″ | 103°23′7.57″ | 1994 |
Sample ID | δD | δ18O | pH | T | EC | d-Excess |
---|---|---|---|---|---|---|
RA1 | −88.76 | −13.92 | 7.07 | 12.7 | 143 | 22.60 |
RA2 | −100.14 | −16.44 | 7.13 | 12.4 | 178.1 | 31.38 |
RA3 | −98.62 | −16.22 | 7.54 | 11.4 | 219 | 31.14 |
RA4 | −64.00 | −9.50 | 7.76 | 13.3 | 312 | 12.00 |
RA5 | −110.20 | −17.80 | 7.77 | 16.7 | 71 | 32.20 |
RA6 | −88.53 | −15.32 | 7.5 | 15.2 | 95 | 34.03 |
RA7 | −47.01 | −10.16 | 7.4 | 15.6 | 89 | 34.27 |
RA8 | −50.70 | −8.40 | 7.6 | 16.2 | 143 | 16.50 |
RA9 | −54.44 | −8.84 | 7.78 | 12.9 | 233 | 16.28 |
RA10 | −50.50 | −9.92 | 7.6 | 13.2 | 108 | 28.86 |
RA11 | −75.08 | −13.20 | 7.4 | 15.3 | 103 | 30.52 |
RA12 | −20.04 | −4.70 | 7.5 | 16.2 | 107 | 17.56 |
RA13 | −27.50 | −5.10 | 7.6 | 14.9 | 175 | 13.30 |
RA14 | −84.80 | −14.03 | 7 | 15.3 | 169 | 27.44 |
RA15 | −44.21 | −6.41 | 7.2 | 16.2 | 143 | 7.07 |
RA16 | −62.80 | −10.06 | 7.56 | 12.3 | 101 | 17.68 |
RA17 | −65.00 | −12.60 | 7.77 | 17.5 | 78 | 35.80 |
RA18 | −70.90 | −12.54 | 7.5 | 15.2 | 194 | 29.42 |
RA19 | −55.80 | −11.40 | 7.93 | 16.9 | 101 | 35.40 |
RA20 | −35.01 | −6.52 | 7.6 | 16.2 | 111.2 | 17.15 |
RA21 | −68.14 | −12.37 | 7.07 | 14.3 | 176 | 30.82 |
RA22 | −24.50 | −5.35 | 7.4 | 14.3 | 95.2 | 18.30 |
RA23 | −36.42 | −6.64 | 7.3 | 14.7 | 85 | 16.70 |
RA24 | −61.70 | −11.20 | 7.2 | 15.1 | 82 | 27.90 |
RA25 | −21.18 | −3.03 | 7.1 | 16.1 | 138 | 3.06 |
RA26 | −11.17 | −1.15 | 7.3 | 14.3 | 179 | −1.97 |
RA27 | −53.68 | −5.37 | 7.8 | 15.7 | 253 | −10.72 |
RA28 | −53.82 | −8.44 | 7.3 | 15.2 | 145 | 13.70 |
RA29 | 10.11 | 2.74 | 7.3 | 16.8 | 158 | −11.81 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Trinidad, J.; Pacheco-Guerrero, A.; Júnez-Ferreira, H.; Bautista-Capetillo, C.; Hernández-Antonio, A. Identifying Groundwater Recharge Sites through Environmental Stable Isotopes in an Alluvial Aquifer. Water 2017, 9, 569. https://doi.org/10.3390/w9080569
González-Trinidad J, Pacheco-Guerrero A, Júnez-Ferreira H, Bautista-Capetillo C, Hernández-Antonio A. Identifying Groundwater Recharge Sites through Environmental Stable Isotopes in an Alluvial Aquifer. Water. 2017; 9(8):569. https://doi.org/10.3390/w9080569
Chicago/Turabian StyleGonzález-Trinidad, Julián, Anuard Pacheco-Guerrero, Hugo Júnez-Ferreira, Carlos Bautista-Capetillo, and Arturo Hernández-Antonio. 2017. "Identifying Groundwater Recharge Sites through Environmental Stable Isotopes in an Alluvial Aquifer" Water 9, no. 8: 569. https://doi.org/10.3390/w9080569
APA StyleGonzález-Trinidad, J., Pacheco-Guerrero, A., Júnez-Ferreira, H., Bautista-Capetillo, C., & Hernández-Antonio, A. (2017). Identifying Groundwater Recharge Sites through Environmental Stable Isotopes in an Alluvial Aquifer. Water, 9(8), 569. https://doi.org/10.3390/w9080569