Figure 1.
Demand curves for different user types in a period of 24 h.
Figure 1.
Demand curves for different user types in a period of 24 h.
Figure 2.
Methodology for estimation of water demand using an optimization algorithm.
Figure 2.
Methodology for estimation of water demand using an optimization algorithm.
Figure 3.
Water distribution network for case studies: (a) case study I, and (b) case study II.
Figure 3.
Water distribution network for case studies: (a) case study I, and (b) case study II.
Figure 4.
Nodal head sensitivity for Net1 network.
Figure 4.
Nodal head sensitivity for Net1 network.
Figure 5.
Case I: Demand estimation at nodes (a) 2, (b) 4, (c) 6, and (d) 9.
Figure 5.
Case I: Demand estimation at nodes (a) 2, (b) 4, (c) 6, and (d) 9.
Figure 6.
Nodal demand multipliers with added white noise.
Figure 6.
Nodal demand multipliers with added white noise.
Figure 7.
Case I: Estimation of water demands with demand multiplier resolutions of = 0.05 and = 0.01 at nodes (a) 2, (b) 4, (c) 6, and (d) 9.
Figure 7.
Case I: Estimation of water demands with demand multiplier resolutions of = 0.05 and = 0.01 at nodes (a) 2, (b) 4, (c) 6, and (d) 9.
Figure 8.
Pipe flow rate sensitivity for Net1 network.
Figure 8.
Pipe flow rate sensitivity for Net1 network.
Figure 9.
Case II: Estimated nodal pressure heads using uncertain measurements.
Figure 9.
Case II: Estimated nodal pressure heads using uncertain measurements.
Figure 10.
Case II: Estimation of pipe flow rates in pipes (a) 2, (b) 5, (c) 6, and (d) 7 using uncertain measurements.
Figure 10.
Case II: Estimation of pipe flow rates in pipes (a) 2, (b) 5, (c) 6, and (d) 7 using uncertain measurements.
Figure 11.
Case II: Estimation of pipe flow rates in pipes (a) 3, (b) 8, (c) 10, and (d) 11 using uncertain measurements.
Figure 11.
Case II: Estimation of pipe flow rates in pipes (a) 3, (b) 8, (c) 10, and (d) 11 using uncertain measurements.
Figure 12.
Case III: Water distribution network.
Figure 12.
Case III: Water distribution network.
Figure 13.
Nodal head sensitivity for Net2 network.
Figure 13.
Nodal head sensitivity for Net2 network.
Figure 14.
Pipe flow rate sensitivity for Net2 network.
Figure 14.
Pipe flow rate sensitivity for Net2 network.
Figure 15.
Case III: Estimated nodal water demands and absolute error.
Figure 15.
Case III: Estimated nodal water demands and absolute error.
Figure 16.
Case III: Absolute error (%) in estimated nodal water demands.
Figure 16.
Case III: Absolute error (%) in estimated nodal water demands.
Table 1.
Case study I & II: Initialization of particle swarm optimization (PSO) parameters.
Table 1.
Case study I & II: Initialization of particle swarm optimization (PSO) parameters.
Parameter | Value |
---|
Population (P) | 50 |
Number of iterations (N) | 100 |
Inertia factor () | 0.5, 0.05 |
Social rate () | 0.9 |
Cognitive rate () | 2.5 |
Table 2.
Case I: Estimated nodal demands (liters per second—LPS).
Table 2.
Case I: Estimated nodal demands (liters per second—LPS).
Node | Actual | Estimated | % Error |
---|
2 | 9.46 | 9.44 | 0.2 |
3 | 9.46 | 8.24 | 12.9 |
4 | 6.31 | 6.49 | 2.7 |
5 | 9.46 | 9.55 | 0.1 |
6 | 12.62 | 13.40 | 6.2 |
7 | 9.46 | 8.58 | 9.3 |
8 | 6.31 | 6.35 | 0.6 |
9 | 6.31 | 6.17 | 2.2 |
Table 3.
Case I: Comparison of estimated nodal demands (gallons per minute—GPM) using particle swarm optimization (PSO) and the genetic algorithm (GA).
Table 3.
Case I: Comparison of estimated nodal demands (gallons per minute—GPM) using particle swarm optimization (PSO) and the genetic algorithm (GA).
Node | Actual | Estimated (PSO) | Estimated (GA) | % Error (PSO) | % Error (GA) |
---|
2 | 150 | 149.60 | 118.67 | 0.2 | 20.9 |
3 | 150 | 130.59 | 131.45 | 12.9 | 12.4 |
4 | 100 | 102.85 | 93.15 | 2.7 | 6.9 |
5 | 150 | 151.35 | 164.15 | 0.1 | 9.43 |
6 | 200/(150) | 212.36 | 140.58 | 6.2 | 6.3 |
7 | 150/(300) | 135.97 | (327.15) | 9.3 | 9.1 |
8 | 100/(50) | 100.63 | (50.34) | 0.6 | 0.7 |
9 | 100/(50) | 97.78 | (35.90) | 2.2 | 28.2 |
Table 4.
Case I: Estimated nodal demands (liters per second—LPS).
Table 4.
Case I: Estimated nodal demands (liters per second—LPS).
Node | Actual | Estimated ( = 0.05) | % Error | Estimated ( = 0.01) | % Error |
---|
2 | 9.39 | 9.33 | 0.3 | 9.37 | 0.2 |
3 | 9.39 | 8.58 | 8.6 | 8.75 | 6.8 |
4 | 6.26 | 6.39 | 2.1 | 6.43 | 2.7 |
5 | 9.39 | 9.75 | 3.8 | 9.57 | 1.9 |
6 | 12.53 | 12.87 | 2.7 | 13.10 | 4.5 |
7 | 9.39 | 8.65 | 7.9 | 8.57 | 8.7 |
8 | 6.26 | 6.22 | 0.6 | 6.30 | 0.6 |
9 | 6.26 | 6.17 | 1.4 | 6.15 | 1.7 |
Table 5.
Case II: Estimated nodal demands (liters per second—LPS) with uncertain measurements.
Table 5.
Case II: Estimated nodal demands (liters per second—LPS) with uncertain measurements.
Node | Actual | Estimated | % Error |
---|
2 | 9.39 | 9.59 | 2.1 |
3 | 9.39 | 9.42 | 0.3 |
4 | 6.26 | 5.77 | 7.9 |
5 | 9.39 | 8.78 | 6.5 |
6 | 12.53 | 13.08 | 4.4 |
7 | 9.39 | 9.75 | 3.8 |
8 | 6.26 | 6.50 | 3.7 |
9 | 6.26 | 5.99 | 4.4 |
Table 6.
Case II: Estimated pipe flows (liters per second—LPS) with uncertain measurements.
Table 6.
Case II: Estimated pipe flows (liters per second—LPS) with uncertain measurements.
Pipe | Actual | Estimated | % Error |
---|
1 | 117.75 | 117.73 | 0.0 |
2 | 77.62 | 77.74 | 0.2 |
3 | 8.22 | 7.95 | 3.2 |
4 | 12.11 | 12.55 | 3.6 |
5 | 7.54 | 7.57 | 0.5 |
6 | 2.81 | 2.58 | 8.3 |
7 | −48.44 | −48.85 | 0.9 |
8 | 30.68 | 30.40 | 0.9 |
9 | 11.52 | 11.52 | 0.0 |
10 | 1.91 | 2.18 | 13.9 |
11 | 9.12 | 9.07 | 0.5 |
12 | 3.49 | 3.41 | 2.2 |