Watershed Variability in Streambank Erodibility and Implications for Erosion Prediction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Watershed Description
2.2. Jet Erosion Tests
2.3. Streambank Erosion Prediction
3. Results and Discussion
3.1. Variability of Erodibility Parameters
3.2. Longitudinal Trends
3.3. Implications for Lateral Retreat Prediction
3.4. Adjusting Erodibility Parameters during Model Calibration
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Wilson, C.G.; Kuhnle, R.A.; Bosch, D.D.; Steiner, J.L.; Starks, P.J.; Tomer, M.D.; Wilson, G.V. Quantifying relative contributions from sediment sources in Conservation Effects Assessment Project watersheds. J. Soil Water Conserv. 2008, 63, 523–532. [Google Scholar] [CrossRef]
- Fox, G.A.; Sheshukov, A.; Cruse, R.; Kolar, R.L.; Guertault, L.; Gesch, K.R.; Dutnell, R.C. Reservoir sedimentation and upstream sediment sources: Perspectives and future research needs on streambank and gully erosion. Environ. Manag. 2016, 57, 945–955. [Google Scholar] [CrossRef] [PubMed]
- Couper, P.R.; Maddock, I.P. Subaerial river bank erosion processes and their interaction with other bank erosion mechanisms on the River Arrow, Warwickshire, UK. Earth Surf. Process. Land. 2001, 26, 631–646. [Google Scholar] [CrossRef]
- Partheniades, E. Erosion and deposition of cohesive soils. J. Hydraul. Div. 1965, 91, 105–139. [Google Scholar]
- Hanson, G.J. Surface erodibility of earthern channels at high stresses. Part I: Open channel testing. Trans. ASAE 1990, 33, 127–131. [Google Scholar] [CrossRef]
- Hanson, G.J. Surface erodibility of earthen channels at high stresses. Part II: Developing an in situ testing device. Trans. ASAE 1990, 33, 132–137. [Google Scholar] [CrossRef]
- Langendoen, E.J. CONCEPTS—Conservational Channel Evolution and Pollutant Transport System: Stream Corridor Version 1.0; United States Agricultural Research Service (USDA-ARS): Oxford, MS, USA, 2000.
- Midgley, T.L.; Fox, G.A.; Heeren, D.M. Evaluation of the bank stability and toe erosion model (BSTEM) for predicting lateral retreat on composite streambanks. Geomorphology 2012, 145–146, 107–114. [Google Scholar] [CrossRef]
- Klavon, K.; Fox, G.A.; Guertault, L.; Langendoen, E.; Enlow, H.; Miller, R.; Khanal, A. Evaluating a process-based model for use in streambank stabilization: Insights on the Bank Stability and Toe Erosion Model (BSTEM). Earth Surf. Process. Land. 2017, 42, 191–213. [Google Scholar] [CrossRef]
- Neitsch, S.; Arnold, J.; Kiniry, J.; Williams, J. Soil & Water Assessment Tool: Theoretical Documentation Version 2009; Texas Water Resources Institute: College Station, TX, USA, 2011; pp. 1–647. [Google Scholar]
- Wilson, B.N. Development of a fundamentally based detachment model. Trans. Am. Soc. Agric. Eng. 1993, 36, 1105–1114. [Google Scholar] [CrossRef]
- Wilson, B.N. Evaluation of a fundamentally based detachment model. Trans. Am. Soc. Agric. Eng. 1993, 36, 1115–1122. [Google Scholar] [CrossRef]
- Daly, E.R.; Fox, G.A.; Al-Madhhachi, A.S.T.; Storm, D.E. Variability of fluvial erodibility parameters for streambanks on a watershed scale. Geomorphology 2015, 231, 281–291. [Google Scholar] [CrossRef]
- Khanal, A.; Fox, G.A.; Al-Madhhachi, A.S.T. Variability of erodibility parameters from laboratory mini jet erosion tests. J. Hydrol. Eng. 2016, 21. [Google Scholar] [CrossRef]
- Hanson, G.J.; Cook, K.R. Development of excess shear stress parameters for circular jet testing. In Proceedings of the American Society of Agricultural Engineers International Meeting, Minnanapolis, MN, USA, 10–14 October 1997. [Google Scholar]
- Simon, A.; Thomas, R.E.; Klimetz, L. Comparison and experiences with field techniques to measure critical shear stress and erodibility of cohesive deposits. In Proceedings of the 2nd Joint Federal Interagency Conference, LasVegas, NV, USA, 27 June–1 July 2010. [Google Scholar]
- Al-Madhhachi, A.S.T.; Hanson, G.J.; Fox, G.A.; Avdhesh, K.T.; Bulut, R. Deriving parameters of a fundamental detachment model for cohesive soils from flume and jet erosion tests. Trans. ASABE 2013, 56, 489–504. [Google Scholar] [CrossRef]
- Grabowski, R.C.; Droppo, I.G.; Wharton, G. Erodibility of cohesive sediment: The importance of sediment properties. Earth Sci. Rev. 2011, 105, 101–120. [Google Scholar] [CrossRef]
- Noack, M.; Gerbersdorf, S.U.; Hillebrand, G.; Wieprecht, S. Combining field and laboratory measurements to determine the erosion risk of cohesive sediments best. Water 2015, 7, 5061–5077. [Google Scholar] [CrossRef]
- Church, M.; Kellerhals, R. On the statistics of grain size variation along a gravel river. Can. J. Earth Sci. 1978, 15, 1151–1160. [Google Scholar] [CrossRef]
- Rice, S.; Church, M. Grain size along two gravel-bed rivers: Statistical variation, spatial pattern and sedimentary links. Earth Surf. Process. Land. 1998, 23, 345–363. [Google Scholar] [CrossRef]
- Grabowski, R.C.; Wharton, G.; Davies, G.R.; Droppo, I.G. Spatial and temporal variations in the erosion threshold of fine riverbed sediments. J. Soils Sediments 2012, 12, 1174–1188. [Google Scholar] [CrossRef]
- Di Francesco, S.; Biscarini, C.; Manciola, P. Characterization of a flood event through a sediment analysis: The Tescio River case study. Water 2016, 8. [Google Scholar] [CrossRef]
- Knighton, D. Fluvial Forms and Processes: A New Perspective; Routledge: New York, NY, USA, 1988. [Google Scholar]
- Osterkamp, W.R.; Hupp, C.R.; Stoffel, M. The interactions between vegetation and erosion: New directions for research at the interface of ecology and geomorphology. Earth Surf. Process. Landf. 2012, 37, 23–36. [Google Scholar] [CrossRef]
- Yan, B.; Tomer, M.D.; James, D.E. Historical channel movement and sediment accretion along the South Fork of the Iowa River. J. Soil Water Conserv. 2010, 65, 1–8. [Google Scholar] [CrossRef]
- Hargrove, W.L.; Johnson, D.; Snethen, D.; Middendorf, J. From Dust Bowl to Mud Bowl: Sedimentation, conservation measures, and the future of reservoirs. J. Soil Water Conserv. 2010, 65, 14A–17A. [Google Scholar] [CrossRef]
- Konsoer, K.M.; Rhoads, B.L.; Langendoen, E.J.; Best, J.L.; Ursic, M.E.; Abad, J.D.; Garcia, M.H. Spatial variability in bank resistance to erosion on a large meandering, mixed bedrock-alluvial river. Geomorphology 2016, 252, 80–97. [Google Scholar] [CrossRef]
- Wynn, T.M.; Henderson, M.B.; Vaughan, D.H. Changes in streambank erodibility and critical shear stress due to subaerial processes along a headwater stream, southwestern Virginia, USA. Geomorphology 2008, 97, 260–273. [Google Scholar] [CrossRef]
- Soar, P.J.; Wallerstein, N.P.; Thorne, C.R. Quantifying river channel stability at the basin scale. Water 2017, 9. [Google Scholar] [CrossRef]
- Storm, D.E.; White, M.J.; Stoodley, S. Fort Cobb Basin-Modeling and Land Cover Classification; Final Report; Oklahoma Department of Environmental Quality: Stillwater, OK, USA, 2010. [Google Scholar]
- Moriasi, D.N.; Starks, P.J.; Steiner, J.L.; Guzman, J.A.; Allen, P.B.; Naney, J.W. Upper Washita River Experimental Watersheds: Physiography data. J. Environ. Qual. 2014, 43, 1298–1309. [Google Scholar] [CrossRef] [PubMed]
- Starks, P.J.; Daniel, J.A.; Moriasi, D.N.; Steiner, J.L. Soils, Crop Production, and Geology in the Fort Cobb Reservoir Watershed, Southwestern Oklahoma. In Assessment of Conservation Practices in the Fort Cobb Reservoir Watershed, Southwestern Oklahoma: U.S. Geological Survey Scientific Investigations Report 2010–5257; Becker, C.J., Ed.; United States Geological Survey: Reston, VA, USA, 2011; Chapter 3; 10p. [Google Scholar]
- Becker, C.J. Assessment of Conservation Practices in the Fort Cobb Reservoir Watershed, Southwestern Oklahoma: U.S. Geological Survey Scientific Investigations Report 2010-5257; Becker, C.J., Ed.; U.S. Geological Survey: Reston, VA, USA, 2011.
- Steiner, J.L.; Starks, P.J.; Daniel, J.A.; Garbrecht, J.D.; Moriasi, D.; McIntyre, S.; Chen, J.-S. Environmental effects of agricultural conservation: A framework for research in two watersheds in Oklahoma’s Upper Washita River Basin. J. Soil Water Conserv. 2008, 63, 443–452. [Google Scholar] [CrossRef]
- Daly, E.R.; Fox, G.A.; Enlow, H.K.; Storm, D.E.; Hunt, S.L. Site-scale variability of streambank fluvial erodibility parameters as measured with a jet erosion test. Hydrol. Process. 2015, 29, 5451–5464. [Google Scholar] [CrossRef]
- Daly, E.R.; Miller, R.B.; Fox, G.A. Modeling streambank erosion and failure along protected and unprotected composite streambanks. Adv. Water Resour. 2015, 81, 114–127. [Google Scholar] [CrossRef]
- ASTM. Standard Practice for Dry Preparation of Soil Samples for Particle-Size Analysis and Determination of Soil Constants; ASTM D421-85; ASTM International: West Conshohocken, PA, USA, 2007. [Google Scholar] [CrossRef]
- ASTM. Standard Test Method for Particle-Size Analysis of Soils; ASTM D422-63; ASTM International: West Conshohocken, PA, USA, 2007. [Google Scholar] [CrossRef]
- Daly, E.; Fox, G.A.; Al-Madhhachi, A.S.T.; Miller, R.B. A scour depth approach for deriving erodibility parameters from Jet Erosion Tests. Trans. ASABE 2013, 56, 1343–1351. [Google Scholar]
- Helsel, D.R.; Hirsch, R.M. Statistical methods in water resources. In Techniques of Water-Resources Investigations of the United States Geological Survey Book 4, Hydrologic Analysis and Interpretation; U.S. Geological Survey: Reston, VA, USA, 2002; p. 510. [Google Scholar]
- Langendoen, E.J.; Alonso, C.V. Modeling the evolution of incised streams: I. Model formulation and validation of flow and streambed evolution components. J. Hydraul. Eng. 2008, 134, 749–762. [Google Scholar] [CrossRef]
- Daly, E. Evaluation of the Conservational Channel Evolution and Pollutant Transport System (Concepts) Applied to Composite Streambanks in the Ozark Highlands Ecoregion. Master’s Thesis, Oklahoma State University, Stillwater, OK, USA, 2012. [Google Scholar]
- Enlow, H.K. Quantifying Sediment Loads from Streambank Erosion and Potential Load Reductions from Streambank Stabilization Using Process-Based Modeling. Ph.D. Thesis, Oklahoma State University, Stillwater, OK, USA, 2017. [Google Scholar]
- Khanal, A.; Klavon, K.R.; Fox, G.A.; Daly, E.R. Comparison of linear and nonlinear models for cohesive sediment detachment: Rill erosion, hole erosion test, and streambank erosion studies. J. Hydraul. Eng. 2016, 142. [Google Scholar] [CrossRef]
- Purvis, R.A.; Fox, G.A. Streambank sediment loading rates at the watershed scale and the benefit of riparian protection. Earth Surf. Process. Landf. 2016, 41, 1327–1336. [Google Scholar] [CrossRef]
- Heeren, D.M.; Mittelstet, A.R.; Fox, G.A.; Storm, D.E.; Al-Madhhachi, A.-T.; Midgley, T.L.; Stringer, A.F.; Stunkel, K.B.; Tejral, R.B. Using rapid geomorphic assessments to assess streambank stability in Oklahoma Ozark streams. Trans. ASABE 2012, 55, 957–968. [Google Scholar] [CrossRef]
- Hanson, G.J.; Simon, A. Erodibility of cohesive streambeds in the loess area of the midwestern USA. Hydrol. Process. 2001, 15, 23–38. [Google Scholar] [CrossRef]
- Wynn, T.; Mostaghimi, S. The effects of vegetation and soil types on streambank erosion, Southwestern Virginia, USA. J. Am. Water Resour. Assoc. 2006, 42, 69–82. [Google Scholar] [CrossRef]
- Thoman, R.W.; Niezgoda, S.L. Determining erodibility, critical shear stress, and allowable discharge estimates for cohesive channels: Case study in the Powder River Basin of Wyoming. J. Hydraul. Eng. 2008, 134, 1677–1687. [Google Scholar] [CrossRef]
- Millar, R.G. Influence of bank vegetation on alluvial channel patterns. Water Resour. Res. 2000, 36, 1109–1118. [Google Scholar] [CrossRef]
- Simon, A.; Collison, A.J.C. Quantifying the mechanical and hydrologic effects of riparian vegetation on streambank stability. Earth Surf. Process. Land. 2002, 27, 527–546. [Google Scholar] [CrossRef]
- Kean, J.W.; Smith, J.D. Flow and boundary shear stress in channels with woody bank vegetation. In Riparian Vegetation and Fluvial Geomorphology; Bennett, S.J., Simon, A., Eds.; American Geophysical Union: Washington, DC, USA, 2004; pp. 237–252. [Google Scholar]
- Thompson, A.M.; Wilson, B.N.; Hansen, B.J. Shear stress partitioning for idealized vegetated surfaces. Trans. ASAE 2004, 47, 701–709. [Google Scholar] [CrossRef]
- Gu, L.; Zhang, S.; He, L.; Chen, D.; Blanckaert, K.; Ottevanger, W.; Zhang, Y. Modeling flow pattern and evolution of meandering channels with a nonlinear model. Water 2016, 8, 418. [Google Scholar] [CrossRef]
Stream * | Length (km) | Bank Description | # of Sites | JET Testing Period |
---|---|---|---|---|
FC-FM | 10.25 | Homogeneous sandy loam, or composite sandy loam and clay layers | 4 | March–September 2014 |
FC-WC | 10.1 | 4 | March–September 2014 | |
IL-BF | 25.5 | Composite, silty loam top layer with an unconsolidated gravel toe | 7 | October 2011–April 2012 |
IL-IR | 69.1 | 6 | October 2011–April 2012 |
Stream | Statistic | Critical Shear Stress | Erodibility Coefficient | Wilson Model Parameters | % Sand | % Silt | % Clay | Bulk Density | Median Particle Size | |
---|---|---|---|---|---|---|---|---|---|---|
τc | kd | b0 | b1 | BD | d50 | |||||
(Pa) | (cm3 N−1 s−1) | (g m−1 s−1 N 0.5) | (Pa) | (g cm−3) | (mm) | |||||
FC-FM | Mean | 0.8 | 159.3 | 95.6 | 7.1 | 72 | 19.3 | 8.7 | 1.5 | 0.1 |
Median | 0.7 | 120.4 | 84.3 | 4.8 | 75.7 | 15.7 | 9.1 | 1.6 | 0.1 | |
Std. dev | 0.5 | 113.6 | 74.9 | 6.2 | 12.8 | 9.8 | 4.9 | 0.2 | 0.02 | |
CV | 0.64 | 0.71 | 0.78 | 0.88 | 0.18 | 0.51 | 0.56 | 0.11 | 0.17 | |
Count | 12 | 12 | 11 | 11 | 12 | 12 | 12 | 12 | 12 | |
FC-WC | Mean | 0.7 | 255.7 | 257.5 | 3.6 | 77 | 15.7 | 7.3 | 1.3 | 0.21 |
Median | 0.7 | 203.4 | 315.1 | 3.6 | 79.5 | 13.1 | 7.5 | 1.3 | 0.11 | |
Std. dev | 0.3 | 196.9 | 149.4 | 1.2 | 8.3 | 5.6 | 2.8 | 0.2 | 0.32 | |
CV | 0.45 | 0.77 | 0.58 | 0.34 | 0.11 | 0.36 | 0.39 | 0.11 | 1.53 | |
Count | 12 | 12 | 12 | 12 | 9 | 9 | 9 | 9 | 9 | |
IL-BF | Mean | 3.3 | 54.6 | 202 | 24.8 | 32.8 | 50 | 15 | 1.2 | 0.13 |
Median | 2.2 | 36.6 | 98.9 | 16.7 | 25.5 | 54.8 | 15.7 | 1.3 | 0.04 | |
Std. dev | 3.8 | 78.3 | 379 | 28.3 | 17.4 | 15.5 | 3.8 | 0.1 | 0.18 | |
CV | 1.13 | 1.43 | 1.88 | 1.14 | 0.53 | 0.31 | 0.25 | 0.07 | 1.39 | |
Count | 18 | 18 | 18 | 18 | 11 | 11 | 11 | 7 | 11 | |
IL-IR | Mean | 3.3 | 35.7 | 112.3 | 23.5 | 17.2 | 61.9 | 17.9 | 1.2 | 0.04 |
Median | 3 | 20 | 55.6 | 20.4 | 10.7 | 69.2 | 19.5 | 1.3 | 0.03 | |
Std. dev | 4 | 51 | 144.1 | 21.5 | 14.8 | 16.6 | 3.4 | 0.04 | 0.02 | |
CV | 1.21 | 1.43 | 1.28 | 0.92 | 0.86 | 0.27 | 0.19 | 0.03 | 0.58 | |
Count | 18 | 18 | 18 | 18 | 6 | 6 | 6 | 6 | 6 |
IL-BF | IL-IR | FC-FM | FC-WC | |
---|---|---|---|---|
Critical Shear Stress, τc (Pa) | 0.04 | 0.30 | 0.12 | 0.03 |
Erodibility Coefficient, kd (cm3 N−1 s−1) | 0.08 | 0.32 | 0.22 | 0.22 |
Bulk Density, BD (g cm−3) | 0.00 | 0.02 | 0.09 | 0.05 |
Median Particle Size, d50 (mm) | 0.09 | 0.26 | 0.04 | 0.44 |
Sand (%) | 0.04 | 0.00 | 0.07 | 0.00 |
Silt (%) | 0.07 | 0.00 | 0.06 | 0.00 |
Clay (%) | 0.04 | 0.00 | 0.07 | 0.01 |
Wilson Model Parameter, b0 (g m−1 s−1 N−0.5) | 0.04 | 0.15 | 0.15 | 0.06 |
Wilson Model Parameter, b1 (Pa) | 0.05 | 0.29 | 0.09 | 0.01 |
IL-BF | FC-FM | ||||
---|---|---|---|---|---|
JET Data Source | Statistic | Excess Shear Stress Model | Wilson Model | Excess Shear Stress Model | Wilson Model |
Site | Mean | 12.3 | 31.1 | 34.1 | 37.6 |
Std. dev. * | 6.4 | 2.6 | 11.1 | 7.5 | |
CV * | 0.52 | 0.08 | 0.32 | 0.20 | |
Range | 12.6 | 5.3 | 22.1 | 14.1 | |
Stream | Mean | 12.1 | 30.6 | 40.4 | 29.1 |
Std. dev. | 6.0 | 2.0 | 9.6 | 13.4 | |
CV | 0.50 | 0.06 | 0.24 | 0.46 | |
Range | 15.9 | 6.6 | 31.6 | 38.5 | |
Observed retreat | 20.0 | 6.0 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Enlow, H.K.; Fox, G.A.; Guertault, L. Watershed Variability in Streambank Erodibility and Implications for Erosion Prediction. Water 2017, 9, 605. https://doi.org/10.3390/w9080605
Enlow HK, Fox GA, Guertault L. Watershed Variability in Streambank Erodibility and Implications for Erosion Prediction. Water. 2017; 9(8):605. https://doi.org/10.3390/w9080605
Chicago/Turabian StyleEnlow, Holly K., Garey A. Fox, and Lucie Guertault. 2017. "Watershed Variability in Streambank Erodibility and Implications for Erosion Prediction" Water 9, no. 8: 605. https://doi.org/10.3390/w9080605
APA StyleEnlow, H. K., Fox, G. A., & Guertault, L. (2017). Watershed Variability in Streambank Erodibility and Implications for Erosion Prediction. Water, 9(8), 605. https://doi.org/10.3390/w9080605