Modelling Extreme Wave Overtopping at Aberystwyth Promenade
Abstract
:1. Introduction
2. Case Study Area
3. Materials and Methods
3.1. Wave Model
3.2. Surfzone and Overtopping Model
4. Results
5. Discussion
5.1. Overtopping Processes on Landward Slope
5.2. Nearshore to Toe-of-Structure Wave Transformation
5.3. Comparison to Empirical Formulae
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Slingo, J.; Belcher, S.; Scaife, A.; McCarthy, M.; Saulter, A.; McBeath, K.; Jenkins, A.; Huntingford, C.; Marsh, T.; Hannaford, J.; et al. The Recent Storms and Floods in the UK; Centre for Ecology and Hydrology: Bailrigg, UK, February 2014. [Google Scholar]
- Defra. The Costs and Impacts of the Winter 2013 to 2014 Floods; UK Government: London, UK, February 2016.
- Lowe, J.; Howard, T.; Pardaens, A.; Tinker, J.; Jenkins, G.; Ridley, J.; Leake, J.; Holt, J.; Wakelin, S.; Wolf, J.; et al. UK Climate Projections Science Report: Marine and Coastal Projections; Met Office Hadley Centre: Exeter, UK, June 2009.
- Cazenave, A.; Cozannet, G.L. Sea level rise and its coastal impacts. Earth Future 2013, 2, 15–34. [Google Scholar] [CrossRef]
- Nicholls, R.J.; Cazenave, A. Sea Level Rise and Its Impact on Coastal Zones. Science 2010, 328, 1517–1520. [Google Scholar] [CrossRef] [PubMed]
- Hallegatte, S.; Green, C.; Nicholls, R.J.; Corfee-Morlot, J. Future flood losses in major coastal cities. Nat. Clim. Chang. 2013, 3, 802–806. [Google Scholar] [CrossRef]
- Vitousek, S.; Barnard, P.L.; Fletcher, C.H.; Frazer, N.; Erikson, L.; Storlazzi, C.D. Doubling of coastal flooding frequency within decades due to sea-level rise. Sci. Rep. 2017, 7, 1399. [Google Scholar] [CrossRef] [PubMed]
- Buchanan, M.K.; Oppenheimer, M.; Kopp, R.E. Amplification of flood frequencies with local sea level rise and emerging flood regimes. Environ. Res. Lett. 2017, 12. [Google Scholar] [CrossRef]
- Pugh, D.; Woodworth, P. Sea-Level Science: Understanding Tides, Surges, Tsunamis and Mean Sea-Level Changes; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Van der Meer, J.; Allsop, N.; Bruce, T.; De Rouck, J.; Kortenhaus, A.; Pullen, T.; Schüttrumpf, H.; Troch, P.; Zanuttigh, B. EurOtop 2016: Manual on Wave Overtopping of Sea Defences and Related Structures. An Overtopping Manual Largely Based on European Research, but for Worldwide Application. Available online: www.overtopping-manual.com (accessed on 11 September 2017).
- Reeve, D.; Chadwick, A.; Fleming, C. Coastal Engineering: Processes, Theory and Design Practice. Available online: http://marineman.ir/wp-content/uploads/2015/02/Coastal-Engineering-Processes-theory-and-design-practice.pdf (accessed on 11 September 2017).
- Zou, Q.P.; Chen, Y.; Cluckie, I.; Hewston, R.; Pan, S.; Peng, Z.; Reeve, D. Ensemble prediction of coastal flood risk arising from overtopping by linking meteorological, ocean, coastal and surf zone models. Q. J. R. Meteorol. Soc. 2013, 139, 298–313. [Google Scholar] [CrossRef]
- Stansby, P.; Chini, N.; Apsley, D.; Borthwick, A.; Bricheno, L.; Horrillo-Caraballo, J.; McCabe, M.; Reeve, D.; Rogers, B.; Saulter, A.; et al. An integrated model system for coastal flood prediction with a case history for Walcott, UK, on 9 November 2007. J. Flood Risk Manag. 2012, 6, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Ceredigion Storm Damage Repairs to Cost at least £1.5 m. Available online: http://www.bbc.co.uk/news/uk-wales-mid-wales-25850527 (accessed on 24 January 2014).
- Sibley, A.; Cox, D.; Titley, H. Coastal flooding in england and wales from atlantic and north sea storms during the 2013/2014 winter. Weather 2015, 70, 62–70. [Google Scholar] [CrossRef]
- Sibley, A.; Cox, D. Flooding along English Channel coast due to long-period swell waves. Weather 2014, 69, 59–66. [Google Scholar] [CrossRef]
- Hawkes, P. Mean Overtopping Rate in Swell and Bimodal Seas. Proc. Inst. Civ. Eng. Water Marit. Eng. 1999, 136, 235–238. [Google Scholar] [CrossRef]
- Owen, M.W. Design of Seawalls Allowing for Wave Overtopping; Hydraulics Research Station: Oxfordshire, UK, 1980. [Google Scholar]
- Tolman, H.L. User Manual and System Documentation of WAVEWATCH III Version 4.18; NOAA/NWS/NCEP/MMAB: College Park, MD, USA, 2014.
- Palmer, T. Energetic Swell Waves in the English Channel. Ph.D. Thesis, University of Southampton, Southampton, UK, 2011. [Google Scholar]
- Lin, P.; Liu, P.L.F. A numerical study of breaking waves in the surf zone. J. Fluid Mech. 1998, 359, 239–264. [Google Scholar] [CrossRef]
- Hirt, C.; Nichols, B. Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries. J. Comput. Phys. 1981, 39, 201–225. [Google Scholar] [CrossRef]
- Reeve, D.; Soliman, A.; Lin, P. Numerical study of combined overflow and wave overtopping over a smooth impermeable seawall. Coast. Eng. 2008, 55, 155–166. [Google Scholar] [CrossRef]
- Losada, I.J.; Lara, J.L.; Guanche, R.; Gonzalez-Ondina, J.M. Numerical analysis of wave overtopping of rubble mound breakwaters. Coast. Eng. 2008, 55, 47–62. [Google Scholar] [CrossRef]
- Jones, D.K.; Zou, Q.; Reeve, D.E. Computational modelling of coastal flooding caused by combined surge overflow and wave overtopping on embankments. J. Flood Risk Manag. 2013, 6, 70–84. [Google Scholar] [CrossRef]
- Thompson, D.A.; Karunarathna, H.; Reeve, D. Comparison between wave generation methods for numerical simulation of bimodal seas. Water Sci. Eng. 2016, 9, 3–13. [Google Scholar] [CrossRef]
- Burcharth, H.F.; Hughes, S. Part VI, Design of Coastal Project Elements. In Coastal Engineering Manual; U.S. Army Corps of Engineers: Washington, DC, USA, 2002; Chapter VI; EM 1110-2-1100; pp. A-1–A-94. [Google Scholar]
- Allsop, W.; Bruce, T.; Pullen, T.; van der Meer, J.W. Direct Hazards from Wave Overtopping—The Forgotten Aspect of Coastal Flood Risk Assessment? HR Wallingford: Oxfordshire, UK, July 2008. [Google Scholar]
- Coates, T.; Jones, R.J.; Bona, P.F.D. Wind/Swell Seas and Steep Approach Slopes: Technical Report on Wave Flume Studies; HR Wallingford: Oxfordshire, UK, 1998. [Google Scholar]
- Goda, Y. Random Seas and Design of Maritime Structures. Available online: https://books.google.co.uk/books?hl=en&lr=&id=v_unn4FtFXsC&oi=fnd&pg=PR5&dq=Random+Seas+and+Design+of+Maritime+Structures&ots=GFTitl_Ydl&sig=lco7EV2rRvq9Qy4ZcbNuR9cESUo#v=onepage&q=Random%20Seas%20and%20Design%20of%20Maritime%20Structures&f=false (accessed on 11 September 2017).
- Altomare, C.; Suzuki, T.; Chen, X.; Verwaest, T.; Kortenhaus, A. Wave overtopping of sea dikes with very shallow foreshores. Coast. Eng. 2016, 116, 236–257. [Google Scholar] [CrossRef]
Grid Name | Domain | Grid Resolution | Global Time Step (s) | Spatial Grid Time Step (s) | Refraction Time Step (s) | Integration of the Source Term (s) |
---|---|---|---|---|---|---|
Domain 1 | 0°–90° N 280°–360° W | 0.5° | 1500 | 500 | 1500 | 30 |
Domain 2 | 45°–60° N 345°– 358.9° W | 0.1° | 500 | 250 | 250 | 30 |
Domain 3 | 50°–53° N 352°–356.5° W | 0.025° | 150 | 75 | 75 | 30 |
Time (hh:mm) | Date (dd/mm) | Water Level ODN (m) |
---|---|---|
6:00 p.m. | 3 January | 19.05 |
7:00 p.m. | 3 January | 20.6 |
8:00 p.m. | 3 January | 21.8 |
9:00 p.m. | 3 January | 22.38 |
10:00 p.m. | 3 January | 21.8 |
11:00 p.m. | 3 January | 19.85 |
12:00 a.m. | 4 January | 19.05 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thompson, D.A.; Karunarathna, H.; Reeve, D.E. Modelling Extreme Wave Overtopping at Aberystwyth Promenade. Water 2017, 9, 663. https://doi.org/10.3390/w9090663
Thompson DA, Karunarathna H, Reeve DE. Modelling Extreme Wave Overtopping at Aberystwyth Promenade. Water. 2017; 9(9):663. https://doi.org/10.3390/w9090663
Chicago/Turabian StyleThompson, Daniel A., Harshinie Karunarathna, and Dominic E. Reeve. 2017. "Modelling Extreme Wave Overtopping at Aberystwyth Promenade" Water 9, no. 9: 663. https://doi.org/10.3390/w9090663
APA StyleThompson, D. A., Karunarathna, H., & Reeve, D. E. (2017). Modelling Extreme Wave Overtopping at Aberystwyth Promenade. Water, 9(9), 663. https://doi.org/10.3390/w9090663