Bivariate Return Period for Design Hyetograph and Relationship with T-Year Design Flood Peak
Abstract
:1. Introduction
2. Overview of Copula Functions
- C is a mapping
- , , and
- such that and :
3. Bivariate Return Period Definition
- , indicated as an OR event, for which the corresponding return period is:
- , indicated as an AND event, for which the corresponding return period is:
- , indicated as a COND event, for which the corresponding return period is:
4. Data and Materials
5. Results and Discussion
- the design hyetograph from the univariate analysis (based on the ADF curves represented in Figure 3) should correspond to a return period greater than 200 years in order to get, by using the chosen RR model, a peak discharge equal to Q50;
- the bivariate analysis allows for obtaining Q50, Q100, and Q200 with design hyetographs whose pairs can be associated to return periods TOR equal to the T of the peak discharges and, in any case, considerably less than those obtained from the univariate analysis;
- on the basis of Equation (13), the adoption of other forms for JRP (TAND, TKEN, TCOND) would imply T values for the DH greater than those obtained with TOR.
6. Conclusions
- -
- as expected, the common univariate approach, based on the ADF curves, implies very high T-values for the DHs, compared with the return period of the peak discharges, thus confirming the poor consistency of the classical iso-frequency assumption between rainfall and peak flow;
- -
- the bivariate analysis conducted on the pairs of random variables (rainfall peak, net volume), while the critical duration is kept constant, allows for the desired T-year flood quantile to be obtained with at least one pair of the design hyetograph characteristics associated to the same return period, and, in any case, significantly less than those obtained from the univariate analysis.
Author Contributions
Conflicts of Interest
References
- Chow, V.T.; Maidment, D.R.; Mays, L.W. Applied Hydrology; McGraw-Hill: NewYork, NY, USA, 1988. [Google Scholar]
- Keifer, C.J.; Chu, H.H. Synthetic storm pattern for drainage design. J. Hydraul. Div. 1957, 83, 1–25. [Google Scholar]
- Gericke, O.J.; Smithers, J.C. Review of methods used to estimate catchment response time for the purpose of peak discharge estimation. Hydrol. Sci. J. 2014, 59, 1935–1971. [Google Scholar] [CrossRef]
- Grimaldi, S.; Petroselli, A.; Tauro, F.; Porfiri, M. Time of concentration: A paradox in modern hydrology. Hydrol. Sci. J. 2012, 57, 217–228. [Google Scholar] [CrossRef]
- Yannopoulos, S.; Christidis, C.; Loukas, A.; Giannopoulou, I. A sensitivity analysis on the parameters of clark instantaneous unit hydrograph. In Proceedings of the 8th International Conference of EWRA (European Water Resources Association)—Water Resources Management in An Interdisciplinary and Changing Context, Porto, Portugal, 26–29 June 2013; pp. 1056–1066. [Google Scholar]
- Efstratiadis, A.; Koussis, A.D.; Koutsoyiannis, D.; Mamassis, N. Flood design recipes vs. reality: Can predictions for ungauged basins be trusted? Nat. Hazards Earth Syst. Sci. 2014, 14, 1417–1428. [Google Scholar] [CrossRef]
- Almeida, I.K.; Almeida, A.K.; Anache, J.A.A.; Steffen, J.L.; Alves Sobrinho, T. Estimation of time of concentration in overland flow in watersheds: A review. Geosciences 2014, 33, 661–671. [Google Scholar]
- McCuen, R.H. Uncertainty analyses of watershed time parameters. J. Hydrol. Eng. 2009, 14, 490–498. [Google Scholar] [CrossRef]
- Nelsen, R.B. An Introduction to Copulas, 2nd ed.; Springer: New York, NY, USA, 2006. [Google Scholar]
- Serinaldi, F.; Kilsby, C.G. The intrinsic dependence structure of peak, volume, duration and average intensity of hyetographs and hydrographs. Water Resour. Res. 2013, 49, 3423–3442. [Google Scholar] [CrossRef] [PubMed]
- Shiau, J.T. Return period of bivariate distributed extreme hydrological events. Stoch. Environ. Res. Risk Assess. 2003, 17, 42–57. [Google Scholar] [CrossRef]
- Serinaldi, F. Dismissing return periods. Stoch. Environ. Res. Risk Assess. 2015, 29, 1179–1189. [Google Scholar] [CrossRef]
- Sklar, A. Fonction de Repartition À N Dimensions Et Leurs Marges; Institut de Statistique Université de Paris: Paris, France, 1959; Volume 8, pp. 229–231. [Google Scholar]
- Genest, C.; Ghoudi, K.; Rivest, L.P. A semiparametric estimation procedure of dependence parameters in multivariate families of distributions. Biometrika 1995, 82, 543–552. [Google Scholar] [CrossRef]
- Bouye, E.; Durrleman, V.; Nikeghbali, A.; Riboulet, G.; Roncalli, T. Copulas for Finance: A Reading Guide and Some Applications. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1032533 (accessed on 30 June 2017).
- Grimaldi, S.; Serinaldi, F. Design hyetograph analysis with 3-copula function. Hydrol. Sci. J. 2006, 51, 223–238. [Google Scholar] [CrossRef]
- De Luca, D.L. Rainfall Nowcasting Models for Early Warning Systems; Wong, T.S.W., Ed.; Nova Publisher: Hauppauge, NY, USA, 2013; ISBN 978-1-62417-028-7. [Google Scholar]
- Nelsen, R.B. An Introduction to Copulas, 1st ed.; Springer: New York, NY, USA, 1999. [Google Scholar]
- Salvadori, G.; De Michele, C. Multivariate multiparameter extreme value models and return periods: A copula approach. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef]
- Yue, S.; Rasmussen, P. Bivariate frequency analysis: Discussion of some useful concepts in hydrological application. Hydrol. Process. 2002, 16, 2881–2898. [Google Scholar] [CrossRef]
- Salvadori, G. Bivariate return periods via 2-copulas. Stat. Methodol. 2004, 1, 129–144. [Google Scholar] [CrossRef]
- Gräler, B.; van den Berg, M.J.; Vandenberghe, S.; Petroselli, A.; Grimaldi, S.; De Baets, B.; Verhoest, N.E.C. Multivariate return periods in hydrology: A critical and practical review focusing on synthetic design hydrograph estimation. Hydrol. Earth Syst. Sci. 2013, 17, 1281–1296. [Google Scholar] [CrossRef] [Green Version]
- Vandenberghe, S.; Verhoest, N.E.C.; Onof, C.; De Baets, B. A comparative copula-based bivariate frequency analysis of observed and simulated storm events: A case study on Bartlett-Lewis modeled rainfall. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef]
- Volpi, E.; Fiori, A. Design event selection in bivariate hydrological frequency analysis. Hydrol. Earth Syst. Sci. 2012, 57, 1506–1515. [Google Scholar] [CrossRef]
- Salvadori, G.; De Michele, C.; Durante, F. On the return period and design in a multivariate framework. Hydrol. Earth Syst. Sc. 2011, 15, 3293–3305. [Google Scholar] [CrossRef] [Green Version]
- Biondi, D.; De Luca, D.L. Process-based design flood estimation in ungauged basins by conditioning model parameters on regional hydrological signatures. Nat. Hazards 2015, 79, 1015–1038. [Google Scholar] [CrossRef]
- De Luca, D.L. Analysis and modelling of rainfall fields at different resolutions in southern Italy. Hydrol. Sci. J. 2014, 59, 1536–1558. [Google Scholar] [CrossRef]
- Versace, P.; Ferrari, E.; Fiorentino, M.; Gabriele, S.; Rossi, F. La Valutazione Delle Piene in Calabria; CNR-GNDCI, LINEA 1, CNR-IRPI: Geodata, Cosenza, Italy, 1989. [Google Scholar]
- Alfieri, L.; Laio, F.; Claps, P. A simulation experiment for optimal design hyetograph selection. Hydrol. Process. 2008, 22, 813–820. [Google Scholar] [CrossRef]
- Pilgrim, D.H.; Cordery, I. Flood runoff. In Handbook of Hydrology; Maidment, D.R., Ed.; McGraw-Hill: New York, NY, USA, 1993; volume 9. [Google Scholar]
- Veneziano, D.; Villani, P. Best linear unbiased design hyetograph. Water Resour. Res. 1999, 38, 1138. [Google Scholar] [CrossRef]
- Biondi, D.; De Luca, D.L. Rainfall-runoff model parameter conditioning on regional hydrological signatures: Application to ungauged basins in southern Italy. Hydrol. Res. 2017, 48, 714–725. [Google Scholar] [CrossRef]
- United States Department of Agriculture (USDA). National Engineering Handbook, Sec. 4 Hydrology; USDA: Washington, DC, USA, 1964.
- Nash, J.E. The Form of Instantaneous Unit Hydrograph. Available online: http://iahs.info/uploads/dms/045011.pdf (accessed on 30 June 2017).
- Hawkins, R.H.; Ward, T.J.; Woodward, D.E.; van Mullem, J.A. Curve Number Hydrology: State of the Practice; ASCE: Reston, VA, USA, 2009. [Google Scholar]
- Michel, C.; Vazken, A.; Charles, P. Soil conservation service curve number method: How to mend among soil moisture accounting procedure? Water Resour. Res. 2005, 41, 1–6. [Google Scholar] [CrossRef]
- Singh, P.K.; Mishra, S.K.; Berndtsson, R.; Jain, M.K.; Pandey, R.P. Development of a Modified SMA Based MSCS-CN Model for Runoff Estimation. Water Resour. Manag. 2015, 29, 4111–4127. [Google Scholar] [CrossRef]
- Grimaldi, S.; Petroselli, A.; Romano, N. Curve-Number/Green-Ampt mixed procedure for streamflow predictions in ungauged basins: Parameter sensitivity analysis. Hydrol. Process. 2013, 27, 1265–1275. [Google Scholar] [CrossRef]
- Rossi, F.; Fiorentino, M.; Versace, P. Two-component extreme value distribution for flood frequency analysis. Water Resour. Res. 1984, 20, 847–856. [Google Scholar] [CrossRef]
Station | Name | Altitude (m above Sea Level) | Sample Size (Years) |
---|---|---|---|
Rain gauge | Tiriolo | 690 | 74 (daily rainfall); 25 (20-min rainfall) |
Rain gauge | Albi | 710 | 95 (daily rainfall); 14 (20-min rainfall) |
Rain gauge | Taverna-Ciricilla | 1270 | 14 (daily rainfall); 14 (20-min rainfall) |
Rain gauge | Parenti | 830 | 90 (daily rainfall); 13 (20-min rainfall) |
Rain gauge | Catanzaro | 334 | 99 (daily rainfall); 25 (20-min rainfall) |
Stream gauge | Grascio | 84 | 35 (annual maximum) |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Luca, D.L.; Biondi, D. Bivariate Return Period for Design Hyetograph and Relationship with T-Year Design Flood Peak. Water 2017, 9, 673. https://doi.org/10.3390/w9090673
De Luca DL, Biondi D. Bivariate Return Period for Design Hyetograph and Relationship with T-Year Design Flood Peak. Water. 2017; 9(9):673. https://doi.org/10.3390/w9090673
Chicago/Turabian StyleDe Luca, Davide Luciano, and Daniela Biondi. 2017. "Bivariate Return Period for Design Hyetograph and Relationship with T-Year Design Flood Peak" Water 9, no. 9: 673. https://doi.org/10.3390/w9090673
APA StyleDe Luca, D. L., & Biondi, D. (2017). Bivariate Return Period for Design Hyetograph and Relationship with T-Year Design Flood Peak. Water, 9(9), 673. https://doi.org/10.3390/w9090673