Evaluating the Drivers of Seasonal Streamflow in the U.S. Midwest
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Model Formulation and Selection
3. Results and Discussion
3.1. Model Fits
3.2. Precipitation
3.3. Antecedent Wetness
3.4. Agriculture
3.5. Temperature
3.6. Population Density
4. Conclusions and Future Directions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Karl, T.R.; Knight, R.W. Secular Trends of Precipitation Amount, Frequency, and Intensity in the United States. Bull. Am. Meteorol. Soc. 1998, 79, 231–241. [Google Scholar] [CrossRef]
- Lins, H.; Slack, J.R. Seasonal and Regional Characteristics of U.S. Streamflow Trends in the United States from 1940 to 1999. Phys. Geogr. 2005, 26, 489–501. [Google Scholar] [CrossRef]
- Svensson, C.; Kundzewicz, W.Z.; Maurer, T. Trend detection in river flow series: 2. Flood and low-flow index series/Détection de tendance dans des séries de débit fluvial: 2. Séries d’indices de crue et d’étiage. Hydrol. Sci. J. 2005, 50, 824. [Google Scholar] [CrossRef]
- Kustu, M.D.; Fan, Y.; Rodell, M. Possible link between irrigation in the U.S. High Plains and increased summer streamflow in the Midwest. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef]
- Villarini, G.; Smith, J.A.; Baeck, M.L.; Krajewski, W.F. Examining Flood Frequency Distributions in the Midwest U.S.1. JAWRA J. Am. Water Resour. Assoc. 2011, 47, 447–463. [Google Scholar] [CrossRef]
- Norton, P.A.; Anderson, M.T.; Stamm, J.F. Trends in Annual, Seasonal, and Monthly Streamflow Characteristics at 227 Streamgages in the Missouri River Watershed, Water Years 1960–2011 Scientific Investigations Report 2014-5053; U.S. Department of the Interior and U.S. Geological Survey: Reston, VA, USA, 2014.
- Mallakpour, I.; Villarini, G. The changing nature of flooding across the central United States. Nat. Clim. Chang. 2015, 1–5. [Google Scholar] [CrossRef]
- Mallakpour, I.; Villarini, G. Investigating the relationship between the frequency of flooding over the central United States and large-scale climate. Adv. Water Resour. 2016, 92, 159–171. [Google Scholar] [CrossRef]
- Slater, L.J.; Singer, M.B.; Kirchner, J.W. Hydrologic versus geomorphic drivers of trends in flood hazard. Geophys. Res. Lett. 2015, 42, 370–376. [Google Scholar] [CrossRef] [Green Version]
- Slater, L.J.; Villarini, G. Recent trends in U.S. flood risk. Geophys. Res. Lett. 2016. [Google Scholar] [CrossRef]
- Tomer, M.D.; Schilling, K.E. A simple approach to distinguish land-use and climate-change effects on watershed hydrology. J. Hydrol. 2009, 376, 24–33. [Google Scholar] [CrossRef]
- Andresen, J.; Hilberg, S.; Kunkel, K. Historical Climate and Climate Trends in the Midwestern USA. In U.S. Natl. Clim. Assess. Midwest Tech. Input Rep; Winkler, J., Andresen, J., Hatfield, J., Bidwell, D., Brown, D., Eds.; Island Press: Washington, DC, USA, 2012; pp. 3–16. [Google Scholar]
- Frans, C.; Istanbulluoglu, E.; Mishra, V.; Munoz-Arriola, F.; Lettenmaier, D.P. Are climatic or land cover changes the dominant cause of runoff trends in the Upper Mississippi River Basin? Geophys. Res. Lett. 2013, 40, 1104–1110. [Google Scholar] [CrossRef]
- Georgakakos, A.; Fleming, P.; Dettinger, M.; Peters-Lidard, C.; Richmond, T.; Reckhow, K.; White, K.; Yates, D. Climate Change Impacts in the United States: The Third National Climate Assessment; Melillo, J.M., Richmond, T.C., Yohe, G.W., Eds.; U.S. Global Change Research Program: Washington, DC, USA, 2014; pp. 69–112.
- Mallakpour, I.; Villarini, G. Analysis of changes in the magnitude, frequency, and seasonality of heavy precipitation over the contiguous USA. Theor. Appl. Climatol. 2016. [Google Scholar] [CrossRef]
- Merz, B.; Vorogushyn, S.; Uhlemann, S.; Delgado, J.; Hundecha, Y. HESS Opinions “More efforts and scientific rigour are needed to attribute trends in flood time series”. Hydrol. Earth Syst. Sci. 2012, 16, 1379–1387. [Google Scholar] [CrossRef]
- Radeloff, V.C.; Hammer, R.B.; Stewart, S.I. Rural and suburban sprawl in the U.S. Midwest from 1940 to 2000 and its relation to forest fragmentation. Conserv. Biol. 2005, 19, 793–805. [Google Scholar] [CrossRef]
- Schilling, K.E.; Jha, M.K.; Zhang, Y.-K.; Gassman, P.W.; Wolter, C.F. Impact of land use and land cover change on the water balance of a large agricultural watershed: Historical effects and future directions. Water Resour. Res. 2008, 44, 1–12. [Google Scholar] [CrossRef]
- Zhang, Y.K.; Schilling, K.E. Increasing streamflow and baseflow in Mississippi River since the 1940s: Effect of land use change. J. Hydrol. 2006, 324, 412–422. [Google Scholar] [CrossRef]
- Gupta, S.C.; Kessler, A.C.; Brown, M.K.; Schuh, W.M. Reply to comment by Schottler et al. on “Climate and agricultural land use change impacts on streamflow in the upper Midwestern United States”. Water Resour. Res. 2016, 2, 2278–2285. [Google Scholar] [CrossRef]
- Gupta, S.C.; Kessler, A.C.; Brown, M.K.; Zvomuya, F. Climate and agricultural land use change impacts on streamflow in the upper midwestern United States. Water Resour. Res. 2015, 6, 446. [Google Scholar] [CrossRef]
- Mishra, V.; Cherkauer, K.A.; Niyogi, D.; Lei, M.; Pijanowski, B.C.; Ray, D.K.; Bowling, L.C.; Yang, G. A regional scale assessment of land use/land cover and climatic changes on water and energy cycle in the upper Midwest United States. Int. J. Climatol. 2010, 30, 2025–2044. [Google Scholar] [CrossRef]
- Villarini, G.; Strong, A. Roles of climate and agricultural practices in discharge changes in an agricultural watershed in Iowa. Agric. Ecosyst. Environ. 2014, 188, 204–211. [Google Scholar] [CrossRef]
- Slater, L.J.; Villarini, G.; Bradley, A.A.; Vecchi, G.A. A dynamical statistical framework for seasonal streamflow forecasting in an agricultural watershed. Clim. Dyn. 2017. [Google Scholar] [CrossRef]
- Schottler, S.P.; Ulrich, J.; Belmont, P.; Moore, R.; Lauer, J.W.; Engstrom, D.R.; Almendinger, J.E. Twentieth century agricultural drainage creates more erosive rivers. Hydrol. Process. 2014, 28, 1951–1961. [Google Scholar] [CrossRef]
- Krakauer, N.Y.; Fung, I. Mapping and attribution of change in streamflow in the coterminous United States. Hydrol. Earth Syst. Sci. 2008, 12, 1111–1120. [Google Scholar] [CrossRef]
- Leopold, L. Hydrology for urban land planning: A guidebook on the hydrologic effects of urban land use. Geol. Surv. Circ. 1968, 554, 1–18. [Google Scholar]
- Paul, M.J.; Meyer, J.L. Streams in the urban landscape. Annu. Rev. Ecol. Syst. 2001, 32, 333–365. [Google Scholar] [CrossRef]
- Jacobson, C.R. Identification and quantification of the hydrological impacts of imperviousness in urban catchments: A review. J. Environ. Manag. 2011, 92, 1438–1448. [Google Scholar] [CrossRef] [PubMed]
- Graf, W.L. Network Characteristics in Suburbanizing Streams. Water Resour. Res. 1977, 13, 459–463. [Google Scholar] [CrossRef]
- Villarini, G.; Smith, J.A.; Serinaldi, F.; Bales, J.; Bates, P.D.; Krajewski, W.F. Flood frequency analysis for nonstationary annual peak records in an urban drainage basin. Adv. Water Resour. 2009, 32, 1255–1266. [Google Scholar] [CrossRef]
- Villarini, G.; Smith, J.; Baeck, M.; Smith, B.; Sturdevant-Rees, P. Hydrologic Analyses of the July 17–18, 1996, Flood in Chicago and the Role of Urbanization. J. Hydrol. Eng. 2013, 18, 250–259. [Google Scholar] [CrossRef]
- Rougé, C.; Cai, X. Crossing-scale hydrological impacts of urbanization and climate variability in the Greater Chicago Area. J. Hydrol. 2014, 517, 13–27. [Google Scholar] [CrossRef]
- Smith, J.A.; Baeck, M.L.; Morrison, J.E.; Sturdevant-Rees, P.; Turner-Gillespie, D.F.; Bates, P.D. The Regional Hydrology of Extreme Floods in an Urbanizing Drainage Basin. J. Hydrometeorol. 2002, 3, 267–282. [Google Scholar] [CrossRef]
- White, M.D.; Greer, K.A. The effects of watershed urbanization on the stream hydrology and riparian vegetation of Los Penasquitos Creek, California. Landsc. Urban Plan. 2006, 74, 125–138. [Google Scholar] [CrossRef]
- Hewlett, J.D. Principles of Forest Hydrology; University of Georgia Press: Athens, GA, USA, 1982. [Google Scholar]
- Salavati, B.; Oudin, L.; Furusho-Percot, C.; Ribstein, P. Modelling approaches to detect land-use changes: Urbanization analyzed on a set of 43 US catchments. J. Hydrol. 2016, 538. [Google Scholar] [CrossRef]
- McCormick, B.C.; Eshleman, K.N.; Griffith, J.L.; Townsend, P.A. Detection of flooding responses at the river basin scale enhanced by land use change. Water Resour. Res. 2009, 45, 1–15. [Google Scholar] [CrossRef]
- Changnon, S.A.; Demissie, M. Detection of changes in streamflow and floods resulting from climate fluctuations and land use-drainage changes. Clim. Chang. 1996, 32, 411–421. [Google Scholar] [CrossRef]
- Andréassian, V. A distribution-free test to detect gradual changes in watershed behavior. Water Resour. Res. 2003, 39, 1–11. [Google Scholar] [CrossRef]
- Harrigan, S.; Murphy, C.; Hall, J.; Wilby, R.L.; Sweeney, J. Attribution of detected changes in streamflow using multiple working hypotheses. Hydrol. Earth Syst. Sci. 2014, 18, 1935–1952. [Google Scholar] [CrossRef] [Green Version]
- Seibert, J.; McDonnell, J.J. Land-cover impacts on streamflow: A change-detection modelling approach that incorporates parameter uncertainty. Hydrol. Sci. J. 2010, 55, 316–332. [Google Scholar] [CrossRef] [Green Version]
- Duethmann, D.; Bolch, T.; Farinotti, D.; Kriegel, D.; Vorogushyn, S.; Merz, B.; Pieczonka, T.; Jiang, T.; Su, B.; Güntner, A. Attribution of streamflow trends in snow-and glacier melt dominated catchments of the Tarim River, Central Asia. Water Resour. Res. 2015, 51, 4727–4750. [Google Scholar] [CrossRef]
- Hoogestraat, G.K.; Stamm, J.F. Climate and Streamflow Characteristics for Selected Streamgages in Eastern South Dakota, Water Years 1945–2013; Scientific Investigations Report 2015–5146; U.S. Department of the Interior and U.S. Geological Survey: Reston, VA, USA, 2015.
- Budyko, M.I. Climate and Life. International Geophysical Series; Academic Press: New York, NY, USA, 1974. [Google Scholar]
- Wang, D.; Hejazi, M. Quantifying the relative contribution of the climate and direct human impacts on mean annual streamflow in the contiguous United States. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef]
- Gudmundsson, L.; Greve, P.; Seneviratne, S.I. The sensitivity of water availability to changes in the aridity index and other factors—A probabilistic analysis in the Budyko space. Geophys. Res. Lett. 2016, 43. [Google Scholar] [CrossRef]
- U.S. Geological Survey. USGS Surface-Water Data for the Nation. Available online: http://waterdata.usgs.gov/nwis/sw (accessed on 1 January 2016).
- Slater, L.; Villarini, G. On the impact of gaps on trend detection in extreme streamflow time series. Int. J. Climatol. 2016. [Google Scholar] [CrossRef]
- Daly, C.; Gibson, W.P.; Taylor, G.H.; Johnson, G.L.; Pasteris, P. A knowledge-based approach to the statistical mapping of climate. Clim. Res. 2002, 22, 99–113. [Google Scholar] [CrossRef]
- Gibson, W.P.; Daly, C.; Kittel, T.; Nychka, D.; Johns, C.; Rosenbloom, N.; McNab, A.; Taylor, G.H. Development of a 103-Year High-Resolution Climate Data Set for the Conterminous United States. In Proceedings of the 13th AMS Conference on Applied Climatology, Portland, OR, USA, 12–16 May 2002; pp. 181–183. [Google Scholar]
- McCabe, G.J.; Wolock, D.M. Independent effects of temperature and precipitation on modeled runoff in the conterminous United States. Water Resour. Res. 2011, 47, 1–11. [Google Scholar] [CrossRef]
- USGS NHDPlus Version 1. Vector Digital Data; USGS: Reston, VA, USA, 2006.
- USDA Census of Agriculture. Ag Atlas Maps—Crops and Plants [Online highlights: Acres of Corn Harvested for Grain as Percent of Harvested Cropland Acreage: 2007 and Acres of Corn Harvested for Grain as Percent of Harvested Cropland Acreage: 2007]; USDA: Washington, DC, USA, 2007.
- USDA; NASS. Census of Agriculture; US Department of Agriculture: Washington, DC, USA, 2015. Available online: ftp://ftp.nass.usda.gov/quickstats/ (accessed on 1 January 2016).
- Forstall, R.L. Population of Counties by Decennial Census: 1900 to 1990; U.S. Census Bureau, Population Division: Washington, DC, USA, 1995.
- Roth, J. Census, U.S. Intercensal County Population Data, 1970–2014; National Bureau of Economic Research: Cambridge, MA, USA, 2016.
- U.S. Census Bureau Population Division. Annual Estimates of the Resident Population (PEPANNRES): April 1, 2010 to July 1, 2015 Census Bureau Population Estimates Program (PEP); U.S. Census Bureau, Population Division: Sutland, MD, USA, 2016.
- Cleveland, W. Robust locally weighted regression and smoothing scatterplots. J. Am. Stat. Assoc. 1979, 74, 829–836. [Google Scholar] [CrossRef]
- Hirsch, R.M.; Ryberg, K.R. Has the magnitude of floods across the USA changed with global CO2 levels? Hydrol. Sci. J. 2012, 57, 1–9. [Google Scholar] [CrossRef]
- Villarini, G.; Smith, J.A.; Napolitano, F. Nonstationary modeling of a long record of rainfall and temperature over Rome. Adv. Water Resour. 2010, 33, 1256–1267. [Google Scholar] [CrossRef]
- Rigby, R.A.; Stasinopoulos, D.M. Generalized additive models for location, scale and shape. J. R. Stat. Soc. Ser. C Appl. Stat. 2005, 54, 507–554. [Google Scholar] [CrossRef]
- Akaike, H. On the Likelihood of a Time Series Model. J. R. Stat. Soc. 1978, 27, 217–235. [Google Scholar] [CrossRef]
- Villarini, G.; Serinaldi, F. Development of statistical models for at-site probabilistic seasonal rainfall forecast. Int. J. Climatol. 2012, 32, 2197–2212. [Google Scholar] [CrossRef]
- Villarini, G. On the seasonality of flooding across the continental United States. Adv. Water Resour. 2016, 87, 80–91. [Google Scholar] [CrossRef]
- Stephens, E.; Day, J.J.; Pappenberger, F.; Cloke, H.L. Precipitation and floodiness. Geophys. Res. Lett. 2015, 42, 10316–10323. [Google Scholar] [CrossRef]
- Ivancic, T.J.; Shaw, S.B. A U.S.-based analysis of the ability of the Clausius-Clapeyron relationship to explain changes in extreme rainfall with changing temperature. J. Geophys. Res. Atmos. 2016, 1–13. [Google Scholar] [CrossRef]
- Berghuijs, W.R.; Woods, R.A.; Hutton, C.J.; Sivapalan, M. Dominant flood generating mechanisms across the United States. Geophys. Res. Lett. 2016, 43, 4382–4390. [Google Scholar] [CrossRef]
- Wang, D. Comment on “Climate and agricultural land use change impacts on streamflow in the upper midwestern United States” by Satish C. Gupta et al. Water Resour. Res. 2016, 52, 4193–4194. [Google Scholar] [CrossRef]
- Schilling, K.E. Comment on “Climate and agricultural land use change impacts on streamflow in the upper midwestern United States” by Satish C. Gupta et al. Water Resour. Res. 2016, 51, 9127–9140. [Google Scholar] [CrossRef]
- Belmont, P.; Stevens, J.R.; Czuba, J.A.; Kumarasamy, K.; Kelly, S.A. Comment on “Climate and agricultural land use change impacts on streamflow in the upper midwestern United States” by Satish C. Gupta et al. Water Resour. Res. 2016, 52, 7523–7528. [Google Scholar] [CrossRef]
- Foufoula-Georgiou, E.; Belmont, P.; Wilcock, P.; Gran, K.; Finlay, J.C.; Kumar, P.; Czuba, J.A.; Schwenk, J.; Takbiri, Z. Comment on “Climate and agricultural land use change impacts on streamflow in the upper midwestern United States” by Satish C. Gupta et al. Water Resour. Res. 2016, 52, 7536–7539. [Google Scholar] [CrossRef]
- Schottler, S.; Ulrich, J.; Engstrom, D. Comment on “Climate and agricultural land use change impacts on streamflow in the upper midwestern United States” by Satish C. Gupta et al. Water Resour. Res. 2016, 52, 6691–6698. [Google Scholar] [CrossRef]
- Gupta, S.C.; Kessler, A.C.; Brown, M.K.; Schuh, W.M. Reply to comment by Keith E. Schilling on “Climate and agricultural land use change impacts on streamflow in the upper Midwestern United States”. Water Resour. Res. 2016, 52, 5697–5700. [Google Scholar] [CrossRef]
- Gupta, S.C.; Kessler, A.C.; Brown, M.K.; Schuh, W.M. Reply to comment by Belmont et al. on “Climate and agricultural land use change impacts on streamflow in the upper midwestern United States”. Water Resour. Res. 2016, 52, 7529–7535. [Google Scholar] [CrossRef]
- Gupta, S.C.; Kessler, A.C.; Brown, M.K.; Schuh, W.M. Reply to comment by Foufoula-Georgiou et al. on “Climate and agricultural land use change impacts on streamflow in the upper midwestern United States”. Water Resour. Res. 2016, 52, 7540–7544. [Google Scholar] [CrossRef]
- Tran, L.T.; O’Neill, R.V. Detecting the effects of land use/land cover on mean annual streamflow in the Upper Mississippi River Basin, USA. J. Hydrol. 2013, 499, 82–90. [Google Scholar] [CrossRef]
- Schilling, K.E.; Gassman, P.W.; Kling, C.L.; Campbell, T.; Jha, M.K.; Wolter, C.F.; Arnold, J.G. The potential for agricultural land use change to reduce flood risk in a large watershed. Hydrol. Process. 2014, 28, 3314–3325. [Google Scholar] [CrossRef]
- Villarini, G.; Scoccimarro, E.; White, K.D.; Arnold, J.R.; Schilling, K.E.; Ghosh, J. Projected Changes in Discharge in an Agricultural Watershed in Iowa. J. Am. Water Resour. Assoc. 2015, 51, 1361–1371. [Google Scholar] [CrossRef]
- Rodell, M.; Beaudoing, H.K.; L’Ecuyer, T.S.; Olson, W.S.; Famiglietti, J.S.; Houser, P.R.; Adler, R.; Bosilovich, M.G.; Clayson, C.A.; Chambers, D.; et al. The observed state of the water cycle in the early twenty-first century. J. Clim. 2015, 28, 8289–8318. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency (EPA). Climate Change and South Dakota, EPA 236-F-98-007x; EPA: Washington, DC, USA, 1998.
- Tang, C.; Crosby, B.T.; Wheaton, J.M.; Piechota, T.C. Assessing streamflow sensitivity to temperature increases in the Salmon River Basin, Idaho. Glob. Planet. Chang. 2012, 88–89, 32–44. [Google Scholar] [CrossRef]
- Yang, L.; Smith, J.A.; Wright, D.B.; Baeck, M.L.; Villarini, G.; Tian, F.; Hu, H. Urbanization and Climate Change: An Examination of Nonstationarities in Urban Flooding. J. Hydrometeorol. 2013, 14, 1791–1809. [Google Scholar] [CrossRef]
- Novotny, E.V.; Stefan, H.G. Stream flow in Minnesota: Indicator of climate change. J. Hydrol. 2007, 334, 319–333. [Google Scholar] [CrossRef]
Model Acronym | Predictors | Model Formulation | # |
---|---|---|---|
P | : precipitation | 1 | |
P.T | : temperature | 2 | |
P.M | : antecedent wetness | 3 | |
P.PA | : agricultural land cover (%) | 4 | |
P.Ppop | : population | 5 | |
P.PA.M | as above | 6 | |
Mixed (spring) | : mean March–April temperature | 7a | |
Mixed (summer and fall) | : mean June–August temperature | 7b |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Slater, L.J.; Villarini, G. Evaluating the Drivers of Seasonal Streamflow in the U.S. Midwest. Water 2017, 9, 695. https://doi.org/10.3390/w9090695
Slater LJ, Villarini G. Evaluating the Drivers of Seasonal Streamflow in the U.S. Midwest. Water. 2017; 9(9):695. https://doi.org/10.3390/w9090695
Chicago/Turabian StyleSlater, Louise J., and Gabriele Villarini. 2017. "Evaluating the Drivers of Seasonal Streamflow in the U.S. Midwest" Water 9, no. 9: 695. https://doi.org/10.3390/w9090695
APA StyleSlater, L. J., & Villarini, G. (2017). Evaluating the Drivers of Seasonal Streamflow in the U.S. Midwest. Water, 9(9), 695. https://doi.org/10.3390/w9090695